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Using factorization and bosonization of quark currents derived from the anomalous Wess-
Zumino-Witten terms and from the electroweak perturbations to a @CD-motivated model for
nonanomalous p chiral Lagrangians, we obtain leading 1/N, fourth-order ES=1 weak chiral La-
grangians coupled to external electromagnetic fields, valid to the zeroth order of gluonic correc-
tions. Applications to radiative K decays, e.g., K~~y ~el+1, K~~yy, K~mm. y, and
K~mlvy, are studied. The twofold ambiguity for the predictions of K~ml l is suggestively
resolved. The branching ratio of K+~a.+yy is predicted to be 5.1 X 10,while the current upper
bound based on a pion phase-space spectrum is 10 . The direct K +~a+~ y decays offer an excel-
lent test on both anomalous and nonanomalous weak chiral Lagrangians; the agreement between
theory and experiment is marvelous. The branching ratio of the interference between inner-
bremsstrahlung and direct-emission amplitudes in the process KI ~n.evy is found to be of order
10-'.

I. INTRODUCTION

In a recent paper' we have derived higher-order
effective chiral Lagrangians for AS=1 nonleptonic weak
interactions within the framework of the 1/N, approach
and applied them successfully to E~mmm decays. We
extend in the present paper the previous work to derive
electromagnetically induced effective weak chiral La-
grangians and study the applications to various radiative
kaon decays: K~my'~ttl+l, K~tryy, K~~my,
and E~mlvy.

It is well known that the infrared properties of QCD
can be elaborated on by chiral symmetry and PCAC (par-
tial conservation of axial-vector current). The descrip-
tion of the interactions of pseudo-Goldstone bosons at
low energies is model independent (e.g., chiral perturba-
tion theory, current algebra, linear or nonlinear tr model)
as long as chiral symmetry is respected. However,
beyond the low-energy limit, the dynamics of meson in-
teractions is no longer fixed by the requirement of chiral
invariance alone: Higher-order chiral Lagrangians and
unitarity corrections arising from chiral loops become
important at moderate energies, say, 200-500 MeV.

Chiral symmetry is realized nonlinearly in chiral per-
turbation theory which is confined to describe only pseu-
doscalar mesons. The feature of nonlinear realization
brings two effects: First, the chiral-Lagrangian descrip-
tion of strong and electroweak interactions at low ener-
gies is given in terms of perturbative expansion in powers
of particle four-momenta and masses. Second, higher-
order chiral Lagrangians depend on the choice of the re-
normalization scale p as divergences of chiral loops are
absorbed by the counterterms which have the same struc-
ture as that of higher-derivative Lagrangian terms. As a
consequence, the couplings of higher-order chiral pertur-
bation theory are running parameters and hence can be

determined only empirica)ly from various low-energy ha-
dronic processes. (In general, only certain combinations
of the running couplings are empirically extracted from
experiment. ) This means that no first-principles predic-
tions can be made in the standard framework of chiral
perturbation theory.

The aforementioned drawbacks with the chiral-
Lagrangian approach can be circumvented in the large-
N, limit. A QCD-inspired model for p nonanomalous
effective action for strong interactions can be derived
from the integration of nontopological chiral
anomalies, ' just as the well-known Wess-Zumino-
Witten action is derived from the integration of topologi-
cal Bardeen anomalies. Moreover, the coupling con-
stants are renormalization scale independent as chiral
loops are suppressed in the leading 1/N, expansion. This
approach is phenomenologically successful when applied
to various low-energy physical processes.

In the previous paper, ' we derived a large-N, effective
Lagrangian for nonleptonic hS =1 weak interactions at
order p based on the following three ingredients: a rath-
er simple structure of the effective weak Hamiltonian in
the leading 1/N, expansion, bosonization up to the sub-
leading order, and factorization valid in the limit of large

Confrontation with experiment for I( ~3m decays
reveals a good agreement for two of the measured param-
eters in the Dalitz expansion of X~3m amplitudes.
Based on the same approach, we derive in the present pa-
per nonanomalous and anomalous fourth-order chiral La-
grangians (valid to the zeroth order in a, ) responsible for
hS = 1 radiative weak transitions.

The radiative kaon decay is an ideal place to test the
above-mentioned effective weak Lagrangians coupled to
external photon fields: It cannot be generated from the
lowest-order chiral Lagrangian since Lorentz and gauge
invariance requires at least two powers of momenta in the
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radiative transition amplitude. Since to the zeroth order
of a, the coupling constants are fixed in the 1/N, ap-

proach, predictions thus can be made at least in the limit
of large N, and in the absence of gluonic corrections.
Especially, the study of the structure-dependent com-
ponent of K~m~y, a formidable task before, now be-
cornes manageable.

This paper is organized as follows. We present in Sec.
II a brief overview of the formulism of chiral perturba-
tion theory. A detailed derivation of the AS=1 elec-
tromagnetically induced weak Lagrangians is given in
Sec. III and applications to various radiative kaon transi-
tions are discussed in Sec. IV. Section V is devoted to
summary and conclusions.

II. OVERVIEW OF CHIRAL PERTURBATION THEORY

In this section we give a brief overview of the formu-
lism of chiral perturbation theory for strong and elec-
troweak interactions. The lowest-order chiral Lagrang-
ian including explicit chiral-symmetry breaking for low-
energy QCD is given by

2 2

Tr(BqUP'U )+ Tr(MU +UM ), (2.1)

where

Q= 0

0 0
1 0
3

0 0 —1

and A; = 1 and vanishes otherwise for the quark current
q;y„(1—y5)q . For convenience, we have factored out
the factor (g/&2)sin&c (or cosHC ) in Eq. (2.6).

Before proceeding it should be stressed that the cou-
pling constants L; of Xs are in general renormalization
scale dependent: Counterterrns necessary to renormalize
one-loop meson graphs have the same structure as that of
Xs. That is, divergences of the one-loop chiral graphs
generated from Xs are of order p and hence can be ab-
sorbed by the counterterms which have the same form as
Ls. Let the bare coupling constant of Xs be denoted by
L, ; the renormalized couplings are then given by

For the physical applications discussed in this paper
the external gauge fields are identified with the photon
A„and the left-handed W„—boson fields

A„= ieA„Q 2—i AW„,
(2.6)

A„"= i—eA„Q,
where

U =exp 2i, P = —P'A, ',1f„' V'2

b;
L;(p)=L, + ln

32K p
(2.7)

Tr(VA, ")=25', f„=132MeV
(2.2}

and M is a meson mass matrix with the nonvanishing ma-
trix elements (isospin invariance being assumed):

M)) =M22 =m ~, M33 =2m~ —m ~ .2 = 2 2 (2.3}

D„U=B„U+A„U —UA„",
FL'R=d A L'R 8 AL +[AL" AP~ P ~ ~ P P 7 ~ l

A~"=V +AP P P

(2.5)

It was established by Gasser and Leutwyler that the
most general expressions for the p effective chiral La-
grangians including external vector V„and axial-vector
A„gauge fields are (in the chiral limit}

Xs =L, [Tr(D"U~D„U)] +L2[Tr(D„Ut D, U)]

+L3Tr(D"Ut D„U)

+L9Tr(FR+"Ut D "U+FL+"U D "Ut)

+L ~OTr( UtFR UFI vL) (2.4)

with

where A is a cutoff, p is an arbitrary renormalization
scale, and b; are coefficients to be determined from chiral
loops. As a consequence, although the lowest-order
chiral Lagrangian Xs is scale independent, higher-order
effective Lagrangians do depend on the choice of p,
reflected by the nonrenormalizability of the nonlinear
chiral-Lagrangian approach. Of course, physical quanti-
ties should be independent of the renormalization scale.
For example, the p dependence of the one-loop diagram
generated by Xs must be canceled by the tree amplitude
induced by Xs.

It is well known that the lowest-order chiral Lagrang-
ian responsible for ES=1 and AI= —,

' nonleptonic weak
interactions reads

gsTr(A~L„L"),— (2.8)

where L„—= (B„U}U is an SU(3)R singlet and L„= L„. —
The parameter gs of the octet weak interaction is deter-
mined from the measured K —+~+ rates. In the chiral
limit and in the absence of external gauge fields there are
seven independent CP-even quartic-derivative weak La-
grangian terms ' which transforms as (8L, lR} under
chiral rotations:

[h, Tr(A6L„L"L L')+h2Tr(A6L„L„L "L")+h3Tr(A6L„L„L L"}+h4Tr(A6L„L„)Tr(L"L")

h+~ Tr(A YY6)+h6Tr([A6, Y]L„L")+h7Tr( [A6, Y„]L"L")], (2.9)
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where Y„„=(B„B„U) U, Y„„=Y„, —Y„„and
Y=g""Y„„.Under the CP transformation, Y„„—+ —Y T„

(Ref. 7).
The coupling constants of the higher-order chiral La-

grangians Xz and X]r are a priori unknown parameters:
They are not fixed by the requirement of chiral symmetry
alone. In fact, these couplings are not really fundamental
coupling constants as they depend on the choice of the
renormalization scale p. For strong interactions, the
coefficients b; and hence the p dependence of the cou-
plings L;(p) in Xs have been calculated by Gasser and
Leutwyler ' ' with the results

b, =
—,'„b2 =

—,'„b3 Oy b9 —,
'

y b]]] (2.10}

Furthermore, they have empirically determined those pa-
rameters at the mass scale p=m„ from various low-

energy hadronic processes in conjunction with the
Zweig-rule argument. For nonleptonic b,S= 1 weak de-
cays, there is only one process, namely, E~mwm,
relevant for the determination of the unknown parame-
ters b;(]M ) in X]r. Consequently, only combinations of b,
can be extracted from experiment.

In the limit of large N, (N, being the number of
colors}, all aforementioned coupling constants are fixed at
least to the zeroth order in a, within the framework of a
QCD-motivated model. First of all, the chiral-loop con-
tribution is suppressed by at least a factor of 1/N, rela-
tive to the quark loop at the same order ofp" in the lead-
ing 1/N, expansion. Subsequently, the higher-order cou-
plings in the large N, chiral perturbation theory are re-
normalization scale independent. Second, consider QCD
coupled to external gauge fields. The integration of both
quark and gluonic degrees of freedom yields two
categories of global chiral anomalies: proper (Bardeen)
anomalies which contain the totally antisymmetric tensor

e„&and spurious anomalies which do not. The varia-
tion of the fermion determinant under a local chiral
transformation is governed by chiral anomalies. The re-
sulting effective action is thus the difference of the gen-
erating function before and after chiral rotations. It is
well known that the integration of topological (Bardeen)
anomalies gives rise to the Wess-Zumino-Witten effective
action. Likewise, in the absence of gluonic corrections,
the integration of nontopological (spurious) chiral
anomalies yields an action for the quartic-derivative
nonanomalous chiral Lagrangians for strong interactions.

The large-S, limit is a well-defined approximation to
QCD. A consistent leading 1/N, expansion for the non-
topological chiral anomalies requires one to include not
only the contributions from the quark loops but also the
gluon effects arising from all planar diagrams without the
internal quark loops. The gluonic corrections which have
been ignored in all previous publications ' were dis-
cussed recently by Espriu, de Rafael, and Taron" (ERT).
Technically, the Qaws with previous work come from
stopping at the a2 coefficient in the heat-kernel expansion
of the fermion determinant. To the first order in a„ERT
found that only the couplings L3 and L,p receive gluonic
modifications. Because of the theoretical difficulty in es-

timating the nonperturbative part of gluonic corrections,
we shall consider in the present paper the strong chiral
Lagrangian to the zeroth order of a, . In the absence of
gluonic modifications, the p strong chiral Lagrangian
derived from the integration of spurious anomalies has
the couplings

N,
SL) =4L2= —2L3=L9= —2L)p=

48m
(2.11}

It should be stressed that the strong Lagrangian given by
Eqs. (2.4) and (2.11) should be considered as a QCD-
motivated model rather than a formal chiral Lagrangian
derived from large-N, QCD. First, the effective Lagrang-
ian is derived by coupling QCD to "external" meson and
gauge fields. Second, gluonic contributions in the large-
N, limit are not included in the naive QCD-inspired mod-
el.

Since the parameters L; under the large-S, approxima-
tion are scale-independent constants, one should in prin-
ciple not compare L; directly with the running renormal-
ized couplings L,'(p, ) determined empirically by Gasser
and Leutwyler, though numerically they are quite close
at the mass scale between 0.5 and 1 GeV. ' However, it
is evident from Eq. (2.10) that the combinations, e.g.,

2L ] (p) —L2(p) =2L] L2, —

L�(P)=L

L 9(P)+L ]o(P)=L9+L 10

(2.12)

are independent of the renormalization point p, and
hence can be utilized to test the validity of the quark-loop
approach. Empirically, L"„L2, and L3 extracted from
the D-wave mm scattering length together with the Zweig
rule+~" are consistent with Eq. (2.12). The value of
L9+L ]p may be extracted from the pion polarizability
a measured in the pion Compton effect in the reaction

A Ae y

a = (L9+L",]]) .
m„f~

(2.13)

The experimental result' a„=(6.8+1.4) X 10 cm3

translates into

L9+L]o=(3.69+0.76) X10 (2.14}

which is in good agreement with the "zeroth-order"
theoretical prediction

L9 +L ~p
= =3 ~ 2 X 10

1

32' (2.15)

f~y—= =32m (L9+L]0)
V

(2.16)

where f„and fr are structure-dependent axial-vector
and vector form factors, respectively. A very recent mea-
surement at the Swiss Institute for Nuclear Research'
(SIN) of these form factors from the process

Another bit of information on the combination L9+L ~p

comes from the radiative pion decay n ~evy [Ref. 3(b)]
or the related process m.~eve e
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~+~e+ve+e yields

f 0 021+o.oui f 0 023+o.ops (2.17)

in good accord with the "lowest-order" prediction
17

Several remarks are in order. (i) The fact that the
higher-order effective chiral Lagrangians in the leading
1/N, expansion have been applied successfully to various
low-energy hadronic processes' ' " indicates that
chiral-loop effects induced by Xs are in general small
compared to the tree-level contributions from Xs and
Xs, as expected from the large-N, argument. Of course,
this does not mean that meson-loop contributions are al-
ways trifling or negligible. Examples which show the im-
portance of the one-loop correction are the rare decays
Ks~yy and KL ~~yy which, to the order p, receive
contributions only from the loop diagrams. Nevertheless,
it should be stressed from the outset that only in the limit
of large N, can one use the scale-independent coupling
constants, Eq. (2.11), derived from the integration of
spurious chiral anomalies. (ii) It is evident from Eqs.
(2.1), (2.4), and (2.11) that contributions from X are
suppressed by factors of p /A2, where A =2m f„=830
MeV is the scale of chira1-symmetry breaking. This ex-
plains why the kaon system is an ideal place to test chiral
perturbation theory. (iii) As far as the color factor is con-
cerned, the Xs contribution to the amplitude relative to
that of Xs is of order N, /f „. Since f scales with N, as

, this factor is independent of N, when N, is large.
In practice we can thus put N, =3 as f is taken to be the
physical value 132 MeV in our N, =3 world.

As for the weak couplings h; of Xs, they can also be
theoretically calculated in the large-N, approximation
based on factorization, bosonization, and a simple struc-
ture of the effective weak Hamiltonian, which will be elu-
cidated on in the next section. The predictions' are (in
the absence of gluonic corrections}

N,
A = —1c /3=6 /3=6 = —A1 2 4 6 7

24 2

while a possible anomalous term is

Was, '=icos gsed'"c' F„„Tr(QL )Tr(A6L )f2 (3.2)

in which the ordinary derivative in L„ is replaced by the
covariant derivative in the presence of external gauge
fields. It was argued by EPR that Eqs. (3.1) and (3.2)
complete the structure of the effective weak chiral La-
grangians at the p level necessary for a consistent one-
loop calculation of nonleptonic radiative AI= —,', AS=1
transitions with at most two external photon fields. How-
ever, as we shall see later in this section, there are addi-
tional contributions to the anomalous weak interaction.

For radiative hS =1 transitions, EPR found that the
relation

co2=4L9 (3.3)

as= i
ff —sin8ccosec [cs(Q2

—Q, )+ c27( Q2 +2Q, ) ]
2

must hold at least for the divergent parts of the counter-
term coupling constants because they must render the
divergent loop amplitudes finite. " From the experi-
mental K+~m+e+e decay rate, EPR obtained two
solutions for the renormalized constant co&.

co",(@=m„)=(1.67+0.19)X 10

or (4.95%0.19)X 10 . (3.4)

As a result, predictions for E+~++@+A and
Ks —+m 1+1 (1=e,p) are subject to twofold
ambiguity.

The main task of this section is to determine the pa-
rarneters co; within the framework of 1/N, chiral pertur-
bation theory. This requires three ingredients: the
hS =1 effective weak Hamiltonian at the quark level, bo-
sonization, and factorization, as we are going to elaborate
on. The b,S=1 effective nonleptonic Hamiltonian in the
limit of large N, has a rather simple structure:

h3=h5=0 . (2.18)
(3.5}

=i
2 gseF""[co,Tr(L6L„L„Q)

+co2Tr( A 6L „QL„)]

g~e F" F&„Tr(A6QUQU ), (3.1)

The effective weak chiral Lagrangians &~~+&~~(1/N, )
have been tested successfully in the study of the nonlep-
tonic K ~~em decay. '

III. ELECTROMAGNETICALLY INDUCED
ANOMALOUS AND NONANOMALOUS

%KAK CHIRAL LAGRANGIANS

It was pointed out recently by Ecker, Pich, and de
Rafael (EPR) that the p electromagnetically induced
AS=1 nonanomalous weak Lagrangians which satisfy
the constraints of chiral and CPS symmetry should
have the form

04=(su }(ud }+(sd}(uu ) —(sd )(dd ) . (3.6)

The short-distance contributions to the Wilson coefficient
functions cs and c27 are perturbatively calculable from
M~ down to the renormalization scale p-1 GeV. The
long-distance contribution below 1 GeV is, however,
beyond the task of perturbative @CD.

From Eq. (2.1) it is easily seen that the bosonization of
the quark current J'~=(q'qj) to the leading order in
chiral expansion reads

Q, =(sd )(uu ), Q2 =(su )(ud ),
where (q, q ) =q, y„(1—ys)qj. The combination (Qz—

Q& ) is a EI= ,' four-quark ope—rator which transforms
as (8L, lz ) under chiral rotations. Using the fact the ma-
trix elements of g~ (sd )(qq) vanish in the leading 1/N,
expansion and that (sd)(ss) does not contribute to non-
leptonic kaon decays, it is easily seen that (Qz+2Q, ) is
equivalent to the 27-piet EI=

—,
' operator
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(J„)j,=i (L„),J .
V J~ (3.7)

Since factorization is valid in the large-N, limit, we may
substitute Eq. (3.7) into (3.5) to obtain the octet weak
chiral Lagrangian Eq. (2.8) with

6 f4
g&(1/N, )= — — n~c o 19c sv'2 4

and the 27-piet hI =—,'weak Lagrangian

+27 g27(L 13 21 + p23L 11 Lp23L 22 )
b,S=1

with

G f4
g27( 1 /N, ) = — sin0ccosecc27

2

(3.8)

(3.9)

(3.10)

Therefore, though the sign of g8 and gz7 cannot be deter-
mined from the measured E~~m rates, it is fixed to be

negative via Eqs. (3.8) and (3.10) as the Wilson
coefticients cs and cz7 are positive. The experimental
values of the weak couplings are given by

gs = —0.26 X 10 m~,

gq7= —0.86X10 ' m~ .
(3.11)

It is worth stressing that chiral-Lagrangian coupling con-
stants receive both short- and long-distance contribu-
tions.

We next proceed to incorporate the external photon
fields into the bosonization of the quark current. An easy
way of deriving this current is to recast the effective La-
grangian in the form Tr(W&J"), where W„ is the left-
handed vector-boson field. Substituting Eq. (2.6) into
Xs(1/N, ) [i.e., Eq. (2.4)+Eq. (2.11)] and expanding to
first order in 8'„and second order in A„, we find the
relevant Lagrangian terms to be

N, Nc
eF""W„Tr([Q,A]L„)+i e F""W„A„Tr(QU QAU QU AQ—U) . (3.12)

Hence, the bosonization of the quark current reads

(J"),=i (L"),, — eF"'(QL„LQ),, —i —e F""A,(UQU Q QUQU—)J .

Writing J„=(if /2)(L„+E„)and substituting into (Q2 —Q, ) we find

2

Q2
—Qi ~ [Tr(A6L„L")+Tr(ksL„E")+Tr(A~X„L")—Tr(A6L„)Tr(L ")],4

(3.13)

(3.14)

where we have neglected the term quadratic in E„. This, together with Eqs. (3.5) and (3.8), yields the nonanomalous
b,S= 1 Lagrangian X„,„=,„', [Eq. (3.1)] with

N,
N —Np—,N —0,

12m
(3.15)

where uses of [Q,As]=0 and integration by parts have been made. The previous observation of e32=4L9 made by EPR
is numerically reproduced here. The implications of this large-N, chiral Lagrangian to the radiative kaon decay will be
discussed in the next section.

To derive the anomalous weak chiral Lagrangian coupled to the external photon fields, we first write down the
relevant Wess-Zumino-Witten terms

Lwzw= —
2

e"" Tr[ —
( A„R„R&R~+A„L,L&L~)

—
—,
' A„L,A L~ —A„"U A„URER~+ A„UA", U L&L~

48m

+B„A,U ALUR +B„A„UA"U L +(A„B,A +B„A„A )L ]+
where R„=U B„U. After a lengthy evaluation we find '

iN,
Xwzw= ee" ~ B„A„WTr(3f„(A,QIB P+3i tA, Q)[Q, B P] 2iAI[Q—, Q], B PI)

127r f
X, ee" ~ A„Tr(QB„JB QB P)+ .
2f3 P

(3.16)

(3.17)

We have proven explicitly that there are not any gauge-noninvariant terms in the expansion of the Sess-Zumino-
Wit ten action.

Since
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the bosonization in the anomalous case has the form

(J")J.;= (L");1+ ee""I' F I[Q,P],B PJ;.+ ee" I' F ~[Q,L„J;J . (3.19)

Plugging this into Eq. (3.14) leads to

N, N,
X,„, '=i gsee" c' F„„Tr(QL )+ Tr(QR } Tr(A6L )—

(3.20)

where we have used

L„—R„=—
2 [$,8„$]+0(p } .4

Comparing (3.20) with (3.2) we find not only

N,

12m

(3.21)

(3.22)

either gauge in variance or conservation of angular
momentum. ) A direct calculation of the K(k)~m(p)
+y'(q ) amplitudes induced by X„,„,„', yields

.4 egsA(K+~m+y')=i —
~ (co, +2c02)q (p+k}.e,

(4.1}
egs

A(K ~n. y'}= i — (c0 —co )q (p+k) e .
3v2 f

but also two additional contributions to the electromag-
netically induced ES=1 anomalous interactions. The
term d'"~ F„„Tr(QR }Tr(A,6L ) does survive all symme-

try constraints including CPS invariance. Since the last
term in X,„, ' is not written in terms of L„, R„, or U
fields, the fact that it satisfies all symmetry constraints is
thus not manifest. Equations (3.1), (3.15), and (3.20) are
the main results in this section. It should be stressed
again that gluonic modifications, arising from all planar
diagrams without the internal quark loops, to the cou-
pling constants of higher-order chiral Lagrangians are
not considered in the present paper.

IV. APPLICATIONS TO RADIATIVE KAON DECAY

In the preceding section we have derived p anomalous
and nonanomalous weak chiral Lagrangians responsible
for b,S=1 radiative transitions within the framework of
the 1/E, approach. The radiative K decay is an ideal
place to test higher-order effective Lagrangians since it
cannot be generated by lowest-order tree Lagrangians:
Lorentz and gauge invariance requires at least two

powers of momenta in the radiative amplitude whereas
the amplitude induced by X is only linear in the momen-
ta in the case of one-photon emission.

In this section we apply the electromagnetically in-
duced weak Lagrangians to the following radiative I( de-
cays: E~my*~ml+l, K ~myy, E~may, and
E~m.ivy. The structure-dependent K~myyy, mary
transitions will not be investigated here as the experimen-
tal feasibility for them is still remote. As we shall see, the
direct decay K ~a.my, which has not yet been studied in
chiral perturbation theory (except for pole contributions),
offers the most excellent test on both anomalous and
nonanomalous ES=1 effective Lagrangians. Effects of
CP violation will not be addressed in the present paper.

However, the E+~m+y* amplitude receives an addi-
tional pole contribution from Fig. 1 induced by Xs and
the L9 term of Xs. The total K+ +n+y -amplitude be-
comes

A (K+~m'+y' )„„(
.4 egs=i (—c0, +2c02 —12L9)q (p+k).e . (4.2)

Our results are in agreement with Ref. 25(a).
Based on the observation that the one-loop amplitudes

of E~my' satisfy the relation

A (K+ +n+y'))„p—= —. &2A (K ~m' y" ))„p (4.3)

in the SU(3) limit, EPR conclude "that the correlation
co2=4L9 must hold for the divergent parts of the counter-
term coupling constants in order for the tree amplitudes
(4.1) and (4.2) to satisfy the same relation (4.3) as the loop
amplitudes in the SU(3} limit. Moreover, EPR conjec-
tured that (3.3} holds also for the finite renormalization

K

A. K —+e.l+ l transitions K

We Srst consider the transition K ~m.y' with y' being
a virtual photon. (K~my is known to be prohibited by FIG. 1. Pole diagrams contributing to K+~n.+y .
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parts. We have already seen in the preceding section that
the relation co2=4L9 is a natural consequence in the
large-N, chiral-Lagrangian approach.

Unfortunately, it is easily seen from Eq. (3.15) that the
K~my amplitudes vanish in the limit of large N, . This
means that the K ~m.y* transitions receive contributions
first from the 1/N, corrections in chiral perturbation
theory. At the next-to-leading level, chiral loops contrib-
ute to the decay amplitude and couplings co; get renor-
malization. Using the experimental measurement of
K+~n.+e+e as an input, EPR obtained two solutions
for co& at the renormalization point p=m„as shown in
Eq. (3.4). Consequently, predictions for K+ ~n+p+. p,
and K&~~ l+l are twofold ambiguous. Nevertheless,
the empirical fact' that the predicted parameters L; for
strong interactions in the 1/N, approach are very close
to those renormalized couplings L determined from vari-
ous low-energy hadronic processes at the mass scale 0.5
GeV&p&1 GeV suggests that one of the solutions,
namely, co",(m„)=(1.67+0.19)X10, is more favored.
(The value of cu', will be sharpened by a new high-
statistics experiment at BNL, E777, and a near-future ex-
periment at BNL, E851.) This in turn implies that the
predictions done in Ref. 25(a),

B(K+ n+p+p, ) =(6.1+,")X 10

B(K, ~'e'e )=(4-8",', .) X 10-",
B(Ks~m. p, +p )=(1.0+0.4) X10

are preferred to the other set of predictions,

B(K+~n+p+p ) =(4.5+o's) X 10

B(Ks~m e+e )=(4.9+0.6) X 10

B(Ks~m p+p )=(1.0+0.1)X10

(4.4)

(4.5)

based on the solution coi=(4.95+0.19)X10 . Three
candidate events for the rare decay E+~~+p+p were
recently reported by the Brookhaven E787 Collabora-
tion, Assuming an estimate background of 0.3 events,
those three events result in a measured branching ratio of
(9+6)X10 . Since a significant signal for this decay
mode has not yet been established, an upper limit of
2.3X 10 is set at the 90% confidence level. However,
analysis of new data with many more candidate events is
still ongoing.

Before ending this subsection, we remark that in the
short-distance effective Hamiltonian approach, the
K+~m+I+l decay is dominated by the so-called elec-
tromagnetic penguin diagram, which is realized in chiral
perturbation theory as the co, term of X„o„,„', . It is easi-

ly seen from the analysis of Ref. 25(a) [cf. Eq. (3.40)] that
the electromagnetic penguin contribution alone already
saturates the observed E+~m+e+e rates if the long-
distance effect to the coefficient of the electromagnetic
penguin operator and to co& is the same.

B. The It. +~m.+yy decay

As first pointed out by EPR, ' ' the loop amplitudes of
KL, & myy and E+~w+yy are finite. From the point

p2 80 X 10GV I 0. 17cX10GeV
I;„,=0.87c X 10 GeV, I wzw=0. 26X 10 GeV,

(4.7)

and

c =32m. [4(L9+L,o) ——I(coi+2co2+2a)4)] . (4.8)

Since the loop amplitude is finite, the combination
co, +2co2+2co4 is thus scale independent. (It was already
shown in Sec. II that L9+L",0 is independent of p. )

From Eqs. (2.11) and (3.15) we obtain c= —4 and the
prediction

B(K+ n+yy)=5. 1X10 (4.9)

Notice that this decay is dominated by chiral-loop effects.
The present best upper limit for K+~~+yy is

8.4X10 . This bound was recently pushed to the level
of 10 by the Brookhaven E-787 experiment. At first
glance, the prediction (4.9) seems to indicate that this ra-
diative decay should be in the vicinity of being observed.
However, it should be stressed that all previous experi-
mental upper bounds were obtained by assuming a
phase-space spectrum. If the theoretical spectrum is
used, then the upper limit will be pulled back to the level
of 10 . ' Figure 2 depicts the expected two-photon

I I l I
)

I I

4

Z

FIG. 2. The normalized differential decay rate of
E ~ lT y y vs z pl y y /771 & &

for c = —4 (solid curve), where
m ~~ is the invariant-mass squared of the two-photon pair. Also
shown for comparison is the two-photon spectrum for c = —2
(dotted curve) and c =0 (dashed curve).

of view of large-N, chiral-Lagrangian approach, the
mode E+~m.+yy is more interesting since it also re-
ceives contributions from the tree Lagrangians X„,„,„',
and X& via pole diagrams (except for the A@4 term, which
contributes via the direct-emission diagram).

The total decay rate of K+ —+m. +yy was calculated in
Ref. 25(c) to be

1(K+ ~+) y)=r...,+I „„+I,„,+r„,„, (4.6)

with
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spectrum as a function of the invariant-mass squared z of
the photon pair for c = —4. For the purpose of compar-
ison, the spectra for c =0 and c = —2 are also shown in
Fig. 2.

C. Direct K ~em.y transitions

The radiative decay E~m.my receives two contribu-
tions: direct emission (DE) and inner bremsstrahlung.
The process of direct photon emission has not yet been
studied within the framework of chiral perturbation
theory except for the long-distance pole effects. Previous
calculations using the vector-meson-dominance model,
the short-distance effective weak Hamiltonian, current
algebra, etc., are crude, unreliable, and erroneous in some
respects. For example, it was pointed out in Ref. 21
that the soft-pion technique cannot be applied to the
magnetic transition amplitude as in the case of m ~yy.
Armed with the Lagrangians X„,„,„', and X,„, ' derived
in the 1/N, approach, this once formidable task now be-
comes manageable. It turns out that the direct radiative
decay, especially E+~m+n. y, offers an excellent test on
the electromagnetically induced effective weak Lagrang-
ians. First, unlike the previous two transitions
K~ml+I and K~m.yy, the decay K~nmy consists of
the anomalous hS = 1 direct emission. Second, it is dom-
inated by tree contributions in contrast with the previous
two examples, which are dominated by loop effects.

Under Lorentz and gauge invariance, the general ex-
pression for the invariant DE amplitude of the decay
K( k )~n (p, )n (p2 )y(q ) reads

K

K

FIG. 3. Long-distance pole contributions to the direct pho-
ton emission of KL~m+n. y and K+~~+m y.

ADE=pM+yE,

~=86'p
p P ]P2qP v p cT

E—:e[(p& 'e)(p2'q ) (p2'e)(p
&
'q )]

where e„ is the polarization vector of the photon. The
first term of ADE corresponds to magnetic transitions
whereas the second term is caused by electric transitions.
Taking into account the experimental cutoff on the pho-
ton energy, we have the branching ratios '

a(K+ ~+~ay)DE=1. 32X 1O' GeV' (Ipl'+lyl'),

a(K, ~+~-y)D, =1.33x lo' Gev' (Ipl'+ lyl'),
(4.11)

where

m& —m„2y= 1+ [(—,
' )'~~(1+()cos8+2(—', )' p sin8]

mz —m

X[(—,
')'~ (f„/f, ) cos8 —( —', )'~ (f„/fo) sin8]

m —m
+ "[(—,

')'~ (1+()sin8 —2( —', )'~ pcos8]
m

X[(—,
')' (f /fs) sin8+( —', )'~ (f„/fo) cos8],

(4.13)

a(Ks ~+~ y)DE=2. 2&x 1o' Ge~' (Ipl'+ lyl') . and uses have been made of

1. Long-distance pole contributions

We will 6rst concentrate on the long-distance pole con-
tributions induced by the pole diagrams, Fig. 3. The
anomalous /Ply vertex is governed by the last term of
Eq. (3.17). The results are '

A (K ~m. m. y } „,= + — M,+ 0 — 4

(1T+(k )IX IK+(k ) & =4 k',

(1r (k)IL IK (k}&=—4, k',
(4.14)

with the 27-piet contributions being neglected. In Eq.
(4.13), g measures SU(3) breaking in relating the matrix
element (71sIXs IKI & to (m IX~IKr &

2
4 g8 mgA(K~~n+rI. y)„„=—~'2 ~f5 m~2 —m'.

(4.12) IKL &=(-,')'"(1+()&~'IX~IK,&, (4.15)

the decay constants fs and fo are not identical to f if
SU(3) breaking in gs, rlo~~ny is included, 8 is the mix-
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ing angle of the SU(3) octet res and singlet bio,

g =g8cosO —qosin0, g' =g&sin0+ gocos0,

and p is the complex parameter introduced via

& qol& ~)K, ) = —2(-', )'"p(~'f& ~(K, )

(4.16)

(4.17)

chiral perturbation theory suggests p = 1, a consequence
of nonet symmetry. However, assuming that the
EL ~yy is dominated by the same pole contributions, a
fit to experiment yields

p = (0.22+0.05 )+0.74( or (0.63+0.05 )+0.74( .
as the matrix element (go~X~~KL ) is not related to the

KL 7r t-ransition by SU(3) symmetry.
Unlike the radiative charged kaon decay, there exists a

large theoretical uncertainty in the estimate of pole con-
tributions to EL m+m y owing to the presence of the
ri' pole. The SU(3) singlet rio is outside of the framework
of SU(3) chiral perturbation theory, and hence a priori
the parameter p cannot be fixed theoretically. The value
of y is fairly sensitive to the unknown parameter p, the

mixing angle 8, and SU(3) breaking in f„/fs,
f /fo and in the matrix element (gs~X~~KL ) measured
by the parameter (. Nevertheless, the mixing angle 8 can
be taken reliably as —20, as implied by the 1/X,
approach ' ' and confirmed by the recent measure-
ments of q, ri'~yy rates. As for the parameter p, U(3)

(4.18)

To see the sensitivity of y with p, we find g=1.44, 0.63,
and —0.27, respectively, for p=1, 0.63, and 0.22 in the
absence of SU(3) breaking. Therefore, there is a large
theoretical uncertainty in the magnitude and even in the
sign of g. The value of p=0. 22 was employed in Ref. 21
for the consideration of long-distance effects.

As we are going to show shortly, since the contact-
term contributions can be calculated reliably in the 1/X,
approach, information on the parameter p may be ex-
tracted from the experimental measurement of
KL ~m. +m y. It turns out that a large value of p= 1.1 is

suggested by this work.

2. Contact-term contributions

To compute contact-term contributions (i.e., direct weak transitions) we expand Eqs. (3.1) and (3.20) and retain terms
relevant for our purposes:

as= i

a„~ ~'a~'+ ~+a„~'a~ a„+—a—„~'K
P P 2

— ' a„~+~oa~ a„~ a-„~—+K'+-a„~ ~+a~' a„~+a„~—K'+a„~-+~-ag' +

(4.19)

and

+ '
a,~'a.~+K a,~'~-'—a.K +~+a,~ a.K'--

P P

2a,~'~ a.K' —a,~+~ a-.K '+—2~+a,~-a.K ' +- (4.20)

A(K ~~ ny)„—„„„=— .—,(+6M+4E),
&2~'f'„

&2~'f.'
(4.21)

&2~'f'.

From Eqs. (4.19) and (4.20) it is straightforward to ob-
tain

where KL z=(1/&2)(K +K ) within the convention of
chiral perturbation theory. We see that if CP violation is
neglected, the decay mode KI ~m+m y proceeds only
via the magnetic transition, whereas Kz~~ m y is
caused by electric transitions.

Thus far, only AI= —,
' contributions to the radiative

weak decay have been considered. The AI= —,', ES=1
electromagnetically induced weak chiral Lagrangians can
be obtained by substituting Eqs. (3.13) and (3.19) into the
operator Q&+2Q, in (3.5), analogous to the EI=

—,
' ones.
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suits for the total direct weak contributions including
AI =—,'effects:

A(E* +m-*m y)„„„„

5
[+6(1—5)M+4(1+5)E],2' f'

A(EL~rr+rr y)„„„„= 2 s
12(1——,'5)M, (4.22)

&2n'f '.

A(Es~n+m y. )„„„„=— 5
8(1+5)E,f5

with 5=g27lgs. Since 5= —,', from Eq. (3.11), it is clear
that EI=

—,
' contributions are very small.

Numerical values for the predictions (4.12) and (4.22)
are shown in Table I with the experimental results taken
from Refs. 41—43. It is evident from Table I that the
agreement between theory and experiment for the direct
emission of E+~m+m. y is striking. This indicates that
very little room is left for chiral-loop corrections. For
E&~m. +m y, the branching ratio of the structure-
dependent component is predicted to be 2X10, which
is beyond the present upper limit 6X 10

We cannot make a definite prediction for the direct
emission of EI ~m+m y owing to a large theoretical un-

certainty in the estimate of the long-distance effect. The
direct weak contribution alone will yield a branching ra-
tio of 2X10 from Eqs. (4.11) and (4.22), which is too
large by an order of magnitude. This means that a large
destructive interference between pole and direct-
transition amplitudes of EL ~m m y is required in or-

der to explain data. Fitting to the experimental branch-
ing fraction of (2.89+0.28) X 10 (Ref. 42) and neglect-
ing SU(3) breaking, we find surprisingly p= l. 1, recalling
that p=1 is the naive prediction of nonet symmetry or
U(3) chiral perturbation theory. However, it is still not
clear to us how to explain the decay EL ~yy satisfacto-
rily within the framework of the effective-Lagrangian ap-
proach with this value ofp.

Three remarks are in order. (i) Pole and contact-term
contributions are equally important for the direct radia-
tive transition of E+ and EL, whereas only the latter one
contributes to E&—+m+m y in the limit of CP symmetry.
(ii) Unlike inner bremsstrahlung, the direct-emission am-
plitudes of K*~m*m y and EL ~~+~ y are no longer
subject to the hI= —,

' rule and CP violation, respectively.
This explains why the branching ratio of E+ and EL is

larger than that of Ez by two orders of magnitude and
why structure-dependent effects can be seen in those two
decay modes. (iii) The two additional terms in Eq. (3.20),
which were not considered in the original EPR work,
reduce the co3-term contribution to magnetic transitions
by a factor of 2. In other words, the co3 term alone will

lead to a P„„„„whichis too large by a factor of 2.

D. The K~mlvy decay

The radiative K» decay was systematically studied by
Fearing, Fischbach, and Smith two decades ago. They
wrote down the most general Lorentz- and gauge-
invariant direct-emission amplitude for the radiative de-
cay K(k ) ~ir(p )I(p, )v(p„)y(q ):

eo@sine/T=i [A(e lk q
—e kl q)+.Be""~ e„l„k q +C(e Ip q ep I—q)+De""~ e&l„pzq ],

2IK
(4.23)

where I„=u(p&)y„(1 —ys)v(p ) is the leptonic current, and A, B, C, and D are four unknown parameters.
In the I lN, approach advocated in Sec. III, the coefficients of the structure-dependent K,3 amplitude are completely

determined. First of all, we expand Eqs. (3.12) and (3.17) and keep those terms relevant for K&3 decays:

eg sinOC + 0

4 2m. f e" t)„A,W —E+r) n
2

'a.re+ '
It. -e. '+—' 'a.Z-+a. ( +Z') —a.( -17')

2 2 &2

+a~"w„~'a~++ sc a„~'+~'a~'+-E''a„~
2

(4.24)

TABLE I. Theoretical predictions for the direct-emission contributions to the radiative decay K ~m my. Form factors P and y are
defined in Eq. {4.10) and are in units of 10 GeV . As explained in the text, because of the large theoretical uncertainties in the
long-distance efFects (i.e., the form factor P~„,), no definite prediction for the branching ratio of Kl ~n. m. y can be made. Experi-
mental values are taken from Refs. 41-43.

Decay mode

K* ~-~'y+ 0

KL ~m+m y
s~~+~ r

+4.56
?

contact

+ 6.62
—12.23

3 contact

4.70

—9.40

I ~ )theor

1.94 X 10-'

2.02 X 10

~~ )expt

~2 05+0 46+0.39) X 10
—5

(2.89+0.28) X 10
(6X10 '
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2
mgE:A=S=C=—D=&&r'

2 zf2

(4.25)

where the form factors of K[3@ (K 13y) are opposite to
that of K+r (KI3r ), and use of the relation

g /M~ =4 2GF has been made.
It is known that this radiative decay is dominated by

inner bremsstrahlung and hence experimentally it is
fairly difBcult to isolate the direct-emission component
from the "structureless" bremsstrahlung contributions.
To have a theoretical estimate of the structure-dependent
contribution, we apply the formula given in Ref. 4S(b) for
the decay rate of interference between inner bremsstrah-
lung and direct emission:

I'(K ~m+e Vy, Er & 30 MeV);„,

GF2sin2ec m~5

f+(0)X10
64m.

X(3.72+1.2B+2.8C+1.2D) . (4.26)

This, together with Eq. (4.25), leads immediately to the
prediction [with f+ (0)= I ]

B(K&~n+e Vy, E &30 MeV);„,=2X10 (4.27)

As a consequence, the branching fraction of the direct
emission should be —10 -10 . For K+~m e+vy, a
rough estimate using the phase-space integral given in
Ref. 45(a) yields

B(K+~ne+vy, Er &. 30 MeV};„,-1X10 (4.28)

which in turn implies a branching ratio of order 10 for
the structure-dependent component. At present, the best
upper limit for the direct-emission rate is '

B(K+~moe+vy, E &10 MeV}Da(S.3X10 ' . (4.29}

V. SUMMARY AND CONCLUSIONS

In the standard framework of chiral perturbation
theory, the couplings of higher-order chiral Lagrangians
are running parameters; that is, they depend on the
choice of the renormalization scale. A priori, those cou-
plings are unknown and can only be empirically deter-
mined from low-energy hadronic experiments. However,
predictions can be made in the QCD-inspired model for
higher-order chiral Lagrangians. The main purpose of
this paper is to continue this approach to study hS = 1

radiative weak transitions.
In the QCD-motivated model, the nonanomalous

higher-order strong chiral Lagrangians Xs arise from the
integration of spurious (nontopological) chiral anomalies,
in analog to the anomalous Wess-Zumino-Mitten terms
Xwzw determined by the integration of topological Bar-
deen anomalies. The couplings of these effective 1/N,

where the factor g sin6}c/&2 is now displayed explicitly.
From Eq. (4.24) we find

2
m&

KI3 ..A = —B=C=—D/3= 2~x~'f' '

Lagrangians are scale-independent constants since
chiral-loop effects are suppressed in the large-N, limit.
The higher-derivative large-N, Lagrangian can be tested
on the ground that certain combinations of the running
renormalized coupling constants are independent of the
renormalization point, for example, the combination
L9 +L,o. Experiment on the pion polarizability reveals a
good agreement with the "lowest-order" theoretical pre-
diction on L9+L,o, which is also in accord with the very
recent measurement of form factors in the decay ampli-
tude of n.+ ~e+ve+e

The higher-order AS =1 effective weak chiral Lagrang-
ians in the 1/N, approach are derived based on the fol-
lowing three ingredients: an extremely simple structure
of the effective weak Hamiltonian at the quark level in
the leading 1/N, expansion, bosonization determined
from the electroweak perturbations to Xs+Xs+Xwzw,
and factorization valid on the large-N, approximation.
Equations (3.1), (3.15), and (3.20) are the main results for
the weak chiral Lagrangians X„o„,„',~ and X,„, ' coupled
to external electromagnetic fields. For anomalous hS = 1

weak interactions, we find two additional contributions
not considered before.

The radiative kaon transition cannot be generated from
the lowest-order chiral Lagrangian since Lorentz and
gauge invariance requires at least two powers of momen-
ta in the amplitude. Therefore, radiative hS =1 weak de-
cays ofi'er a nice test on the Lagrangians X„„,„', and

Unfortunately, we find vanishing K ~my'~ml I transitions in the large-N, approximation.
This means that the K~m 1+1 ( l =e,p ) decay receives
contributions first from the I/N, corrections due to
chiral loops and hence weak couplings co; get renormal-
ization. Nevertheless, the relation co2=4L9 found previ-
ously from the study of meson loop contributions to
K~~y' is numerically reproduced in the large-S, ap-
proach advocated in the present paper. Moreover, the
fact that the 1/N, predicted couplings L; are consistent
with the empirically determined renormalized constants
L at the mass scale between 0.5 and 1 GeV enables us to
pick up one of the solutions for the weak renormalized
constant co& determined from I (K+~n.+e+e ). The
twofold ambiguity for the predictions of the decay rates
of K+ —+m+p+p, Ks~~ l+l (l=e,p) given by Eck-
er, Pich, and de Rafael is thus suggestively resolved. On
the experimental side, three candidate events were recent-
ly reported by the Brookhaven E-787 Collaboration.
However, a significant signal for this decay mode has not
yet been established.

As for the decay K+~~+yy, the loop amplitude is
finite but it also receives contributions from tree La-
grangians. The branching ratio is predicted to be
5. 1 X 10,which is close to the present best upper limit
10 set by the Brookhaven E-787 experiment derived by
assuming a pion phase-space spectrum.

The transitions K~~my provide an excellent test on
the Lagrangians X„,„,„', and X,„, '. Unlike the previ-
ous two decay modes E~ml+l and I( ~myy, the
structure-dependent photon emission of K~n.m.y re-
ceives contributions from X,„, ' and is dominated by the
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tree amplitude. Previous considerations in the frame-
work of, e.g., current algebra, the vector-meson-
dominance model, and the effective weak Hamiltonian
are unreliable, crude, and erroneous in some respects.
The computation for the direct decays E+~++~ y and
Es~~+m y is now amenable to the large-N, chiral per-
turbation theory. We find a striking agreement for the
direct emission of E*~m.*m y, implying that very little
room is left for loop corrections. The branching ratio of
the direct Es~m. +m y decay is predicted to be 2X10

Owing to a large theoretical uncertainty in the estimate
of the pole contribution to Ki ~~+a y, no definite pre-
diction on the branching fraction can be made. The pole
eff'ect on this mode is very sensitive to SU(3) breaking and
especially to the parameter p which relates the K-go ma-
trix element to the E-m transition. After subtracting the
contact-term part, which is calculable in the large-N,
chiral perturbation theory, we find from the experimental
result for the structure-dependent component of
KL ~m+m y that p=1.1, recalling that p=1 is predict-
ed by nonet symmetry.

A low-energy test of the higher-derivative chiral La-
grangians is also devoted to the radiative E» decay. The
structure-dependent K»~ amplitude is completely deter-

mined in the framework of 1/N, chiral perturbation

theory. The branching fractions of the direct emission of
KL ~m. e vy and its interference with inner brems-

strahlung are estimated to be of order 10 —10 and

10,respectively.
To conclude, we have extended the @CD-motivated

approach for higher-order chiral Lagrangians to radiative
kaon decays. Decay rates and spectra are unambiguously
predictable (at least) to the leading 1/N, expansion and

to the zeroth order in gluonic modifications. Future
high-statistics experiments with great sensitivity will be
able to test those predictions.
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