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Bound states for a massive spin-one particle and a magnetic monopole
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We analyze the interaction of a magnetic monopole with a massive spin-one particle that has an
extra permanent magnetic moment, as well as an extra gauge-invariant interaction, quadratic in the
monopole magnetic field, an induced magnetization. This interaction can lead to bound states. The
corresponding bound-state energies depend critically on the strength of the induced magnetization.

I. INTRODUCTION

In an accompanying paper' (referred to as I), we show
that a massive spin-one particle that has a suitable per-
manent magnetic moment can be attracted to a magnetic
monopole, but that this system is unstable at short dis-
tances. More specifically, the radial equations that de-
scribe the would-be bound states do not permit a wave
function that vanishes at the origin as it must because of
the way the eigenfunctions of angular momentum
behave. 2'3

If, however, the spin-one particle has some additional,
intrinsic property that makes it repel the monopole at
short distances, without having any significant effect at
large distances, then bound states could exist. One possi-
bility which we consider in this paper is to endow the
spin-one particle with an extra gauge-invariant interac-
tion, quadratic in the monopole magnetic field, an in-
duced magnetization. It turns out that if this term is
repulsive at short distances it is suSciently singular to
make the wave function vanish at the origin.

The paper is organized as follows. In Sec. II we find
the eigenvalue equation for the vector field P. In Sec. III
we determine the corresponding coupled (scalar) radial
equations. Sections IV and V are devoted to a study of
these equations at short distances, for type-A and -B
states, respectively. In Secs. VI and VII we discuss the
type-C eigenvalue equation in some more detail, and
determine the bound-state spectrum.

II. PROCA EQUATION FOR THE CASE
OF INDUCED MAGNETIZATION

Let Xo be the Lagrangian of Ref. 1:

'F F"' 'G G—"—+m P "P +i—etc—F0 4 pv 2 pv P pv

(2.1)

short distances. In this paper we discuss, as an example,
how the introduction of a term that is bilinear in the
magnetic field,

X=J0+ A,(e /m ) F„F "P "g, (2.2)

The eigenvalue equation corresponding to the present
Lagrangian is derived in the same way as in Sec. II of pa-
per I. The equation of motion takes the form [compare
Eq. (I.2.4)]

D„G"'+m P" iettP„F"—"+A(elm) F,"'F„pt'=0,
(2.4)

or

D„D"P" D„D"P"+—m P" iea/„F"'— .

+A(e/m) F"'F„pt'=0 . (2.5)

We next consider the covariant divergence of this expres-
sion:

D,D„D"P' D,D„D'P"+m—D„P' ietcD„Q„F"—
+A(e/m) D„F"'F„+=0. (2.6)

Invoking Eqs. (I.2.7) and (I.2.9), we find

m D„P" ie(1 tc)F„„D—"P +A(e—lm) D F" F $t'=0 .

(2.7)

can lead to wave functions that are well behaved also at
short distances.

Written out in terms of the monopole magnetic field
B=gr/r, the extra interaction term is given by

2

(2.3)

We have seen' that while the extra magnetic-moment in-
teraction iettF„„Q "P" can lead to attraction at large dis-
tances (i.e., wave functions that are oscillatory in some
region, and then fall off exponentially as r ~ ~ ), it can-
not at the same time provide an acceptable solution at

We next rewrite Eq. (2.5) as [cf. Eq. (I.2.11)]

(D„D"+m )P D„D„P" ie(1+ tc—)QF„, —

+A,(e/m) F„„F"t'P =0, (2.&)
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which, by virtue of Eq. (2.7) takes the form

(D„D"+m )P„—ie(1+Ir)P"F„„+A(elm) F„„F"~P~
2

(1 «—)D„F pD P~+ D„DpF ~F +=0 .
m Pl

(2.9)

(D„D"+m )P"—ie (1+x )Q, F'"+ A(e lm ) F'"F,

k 2

2
" lJ(1 «—)D "F, D'"P+ D "D F' F,,P =0

4 J

By Eq. (I.2.14),

F/JF k jkg2+g jg k

(2.10)

(2.11)

For the spatial components of P, this equation takes
the form

with g""=diag(1, —1,—1,—1) the metric tensor, and thus
Eq. (1.2.15) gets replaced by

2 —
( V ie—A) + m P" ie ( 1—+«)e;k& B 'P'+ A (e Im ) (g "~B +B"B )P

+ (1—«) ieA— e; IB . —ieA' P' — ieA—
ie 8 . k ~

8 . ; Ae 8
m' gx" "' gx' m4 gx"

cl
ieA—J (g~'B +B~B')$&=0 .

Bx'

(2.12)

The time dependence is given by P"-e ' '. Invoking also Eq. (1.2.18), we find the equation of motion of the spin-one
particle in the field of the magnetic monopole:

E+m ——— r2 +—(L —
q ) P ie(1—+a)BX/+A(elm) [B P —B(B P)]', a. a.

i 2

+ (1 «)(V—ie A—)[B [(V—ie A) XP]I —
4 (V ie A—)I (V ie A—) [B P —B(B $)]I =0 . (2.13)

III. RADIAL EQUATIONS

We write the wave function for a type-A state of angular momentum (j,j, ) as

j+ 1

f&, ( r)YJ('I&' (r ),
I=j—1

where, in the notation of Sec. III of paper I,

fj ~
&(r)=f (r),

foal(r)

=g (r), fj 1+,(r) =h (r),
and Y')J' (r) are the monopole vector harmonics.

2

(3.1)

(3.2)

A. Terms multiplying A,

As compared with Eq. (I.2.19), Eq. (2.13) here has two more terms, namely, those multiplying A.. We start out by ex-
pressing the first of those in terms of Y'g' (r). Since B=gr/r, we obtain

2

2

B P,, —B(B P-, )= g f, (1r){Y'f'(r)—r[r YI)'(r)]I .
1 I

Here, we can simplify the last term, using Eqs. (I.4.1) and (I.4.13),

r[r.Y') (Jr)]= g C,'f'C'g'Y, 'g' (r),
L

and therefore

2

B PJ~ B(B P~J
)= . —X h, u

. fir(r)Y~), (r),
7 lL

with

(q) [q)
hj lL ~IL Cj 1 CjL

(3.3)

(3.4)

(3.5)

(3.6)
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We next turn to the last term in (2.13). By Eq. (I.5.8),

2

(V —ie A) [B P,, —B(B.P,, )]= r ——rXL . Qhj&LfJI(r)Y, ),' (r)
Z Z Br r2 4 JL J

IL
Z

(3.7)

In order to evaluate the last term here, we need relation (I.4.9).

2 ~ 2

g h Iz f I(r) C'g'Y'~ (r) — f I(r)r. [LXY'$ (r)]
r r

Invoking also Eq. (I.4.1), we can write Eq. (3.7) as

2 ~ 2

=g h ILC'L' f,((r) — f,I(r)D,L F,',~'(r)
r ' r'

(3.8)

Invoking again Eq. (I.5.8), we can thus write the quantity that appears in the last term of Eq. (2.13) as

(V ie—A)I(V ie A) [—B P" —B(B P )]) = r ——rXL u(r)Y'g'(r)

C~g' u(r) + A'gz'&j (j +1)—u(r) Y'LI. (r) .
dr r 2

(3.9)

In the last step, we have for the first term used Eq. (I.4.13), whereas for the second one, we have used Eqs. (I.4.14) and
(I.4.5).

Let us now return to v (r), as defined by Eqs. (3.8), (I.4.2), and (I.4.11),

v(r)= ghJ~LCJ'g' 4 foal(r) + f l(r)[1+—,'[L(L+1)—j(j +1)]I (3.10)

Invoking Eqs. (I.4.4) and (3.6), we find that

g h, u C,'g'=0 .
L

Therefore, the expression for u (r) simplifies,

2

v(r)= g f I(r)h ILC~g'L(L+1) .
2r IL

By explicit evaluation, we have
' 1/2 1/2

v (r) = (j + 1)A(j) — f (r)+ g (r) —jA(j+ I )
j+1

r 2j+1 v j(j+1) 2J'+1

with A(j)= [1—(q/j) ]'~ as defined by Eq. (I.4.3).

h (r)

(3.1 1)

(3.12)

(3.13)

B. Coupled di8'erential equations

The coupled radial equations are determined from (2.13), expanding everything in terms of Yg'' (r). The terms that
Z

are independent of A, are given by Eqs. (I.5.23)—(I.5.25), the new ones are found from (3.5) and (3.9). The results are

1/2
( —1) 1++&+ z 1 ~ z ~ +(J 1)J q f(„)+1+ q f( }+ g(') J+1

r~ dr c}r r~ r~ j 2j +1 g(r)

1 —K . j
qA, (j)

' 1/2 j+1u'(r)+ u (r)

1/2 1/2

+ [j (j +1)+q ] f(r)+qj A(j)g(r)+j (j + l)k(j)A(j+I) h(r)1 j+1 j
m r j&(j+1)(2j+1) 2j+1 2j+1

1/2
A, e

~ . J
m4 ~j+1

v'(r)+ v (r) =0,j+1 (3.14)
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E+ 1 a a + j(j+1)—q'
)—F+m —— r + g r)

r2 c)r 3r r2

1/2 1/2
I+~ . j+1 f (r) — g(r)+qA(j+ I)j(j+1) 2j+1 h(r}

2
1

m~ &j(j + I) r mir4 j(j +1) 2j+1

1/2

f (r}+[f (i +1)—q']g (r}

1/2

—q(j +1)A.(j +1) . h(r)2j+1

+ 4
v'(r)+ —v (r) =0, (3.15)

A,e q, 1

m Yj(j+1) r
1/2

2

g(r) —
. h(r)j+1E~+m——1 8 8 + (j+1)(j+2)—q h(r)+ k( +1) j

r~ dr dr 2 2 2j+1
' 1/2

+ qA(j+ I) u'(r) —lu (r)
1 —v . j+1

2j+1 r
' 1/2

+
z 4 j (j +1)A(j )A(j +1) f (r) q(j +—1}A(j+1)g(r)Aq 1 . . . . j+1

m r (j+1) j(2j+1) 2j+1
' 1/2

+[j(j+1)+q ] 2j+1 h(r)

1/2

v'(r) ~v (—r) =0 . (3 16)
r

It is convenient to introduce the functions F(r), G(r), and H(r) defined by Eq. (I.5.26). Furthermore, in analogy
with Eq. (I.5.27},

K(r)=jl(j)F(r)+[j(j +1)—q ]G(r)—(j+1)A(j+1)H(r), (3.17)

we define

M(r)=e q&j (j +1)r v(r)=q [—j(j +1)A(j)F+q G —j(j +1)k(j +1)H] . (3.18)

The three radial equations (3.14)—(3.16}then take on a somewhat simpler appearance:

Ez) „~
d' +(. 1} z F+ q'(1+ ) F ~g(, )g(g+I) G

q'(1 —
) k(j) d

d. 2 j &j + & (mr)' 2j +1 dr

k 2

+
z . . [[j(j+1)+q ]F+q j k(j )G+j (j +1)A(j)A(j+1)H j-

(mr)' j(2j+1)
A(j) d

r +j —5 M=0,
(mr)' 2j+1

(3.19)

d2 2 2

r (m E) rz +j—(j+1—) qG+(I+&) A(—j)F— . G+A(j+1)H + . r —3
dr i (i+1} (mr)~ j(j+1) dr

+, &I(j) F+[ j(j +I) q')G (j 1+)A(j —1+) [H—+ . . r —5 M=0,Xq 1. . . 2 1 d

(mr)' j(j+1) (mr)' j(j+1)
(3.20}
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2

r (m E—) r— +(j+1)(j+2)—q H

q'(I+~) . j(j+1) q'(1 —x) A(j+1) d

j+1 2j +1 (mr)~ 2j +1 dr

2

+ q [j (j + l)A(j)A(j+1)F q—(j +1)k(j+1)G+[j(j+1)+q ]H I
(mr)2 (j+1)(2j+1)

k(j+ I) d ' (3 21)
(mr)4 2j + 1 dr

IV. BEHAVIOR OF THE TYPE-A WAVE FUNCTIONS AT THE ORIGIN

At short distances we can neglect the small terms r-(m E) in E—qs. (3.19)—(3.21). It is furthermore convenient
to introduce, as a new variable,

With

1

(mr)

d
2x

dx
d—r = —4x —6x
dr dx

(4.1)

(4.2)

Eqs. (3.19)—(3.21) can for large x (i.e., at short distances) be approximated as

—4x
z

—6x +(j —1)j—q F+ (q JK M) — — x —2x +j —3 K2 d d . . 2 (I+v) 2. q (1 —~)A(J) d
dx dx j (2j +1)A(j) 2J+1 dx

+ x(q K jM) —A,— x —2x +j—5 M =0,4 . A(j) z d

j (2j +1)A(j) 2J+1 dx

(4.3)

—4x —6x +j(j+1)—q G — M+ x —2x —3 K2
d2 d . . 2 1+v q (1—a) d

dx dx q j(j +1) J(J+1) dx

+ . . xK+ . . x —2x —5 M=0, (4.4)
Aq 2 d

j (j +1) j J(+1) dx

d2—4x'
2

—6x +(j+1)(j+2)—q' H+
z [q (j +1)K+M)]

dx (j +1) (2j+ 1)A(j+I)

q 1 K)A(J + I )
2

d
(

. +4) K
A

[ 4K+( . +1)M]2J+1 dx (j+1)2(2j+1)A(j+1)

+A, x —2x —(j+6) M =0 . (4.5)
A(j+1) 2 d

2j +1 dx

It is possible to obtain equations between K and M only. In order to do this, we first note that Eqs. (3.17) and (3.18)
may be combined to yield

q (2j +1)&o(j)F+q (j+1)o(j)G=q jK —M,
q'jo(j+1)G q'(2j+1—)&0(j+1)H=q'(j+1)K+M,

where we have introduced the notation

~(J)=—[J~(j)l'—=j'—q' .

Forming now suitable linear combinations of Eqs. (4.3)—(4.5), one obtains

—2j A(j)F —2(j+1) A(j+1)H+2)K — M+q (1 v)xK+Aq xK+M M =0-,
/

(4.6a)

(4.6b)

(4.7)

(4.8)
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and

2q j (j +1)[jA(j)F—(j +1)A(j+1)H)+2)M —(1+«)q K +q (1 «—)[j (j+1)—q ]xK

+Aq XM+Aq [j (j +1)—q ]x M =0,
with

(4.9)

2)—= —4x —6x +j(j+1)—q' .
dx

Eliminating further F and H, one obtains, after some algebra,

Xl[(2) 2j +—Aq x)(q jK —M)+(I+«)(q K —jM) —(1 «)q—o(j)xK Aq'c—r(j )x M]+2(1+«)o(j)M
r

—2kq o(j)xK+2(1 —«)q o(j)x 2x +3 K+2Aq cr(j)x 2x +5 M =0,
dx dX

2)[[$+2(j+1)+Aq'x][q'(j+1)K+M] (1—+«)[q K+(j+1)M]+(1 «)q'cr—(j+1)xK+Xq'cr(j+1)x'M I

(4.10)

(4.11}

d—2(1+le)cr(j +1)M+2Aq cr(j +1)xK —2(1 —«}q cr(j+1}x 2x +3 K —2Aq o(j+1)x 2x +5 M =0 .
dx dX

(4.12)

It turns out that Eqs. (4.11) and (4.12) have solutions
whose leading types of behavior are of the forms

By Eq. (4.1), the corresponding short-distance behavior
is, for the power solutions,

(I) K (x) — Koe ""x~, M (x) — Moe ""x~, M(r) —(mr) (4.21)

(4.13a) By Eqs. (4.8) and (4.9),

( II ) K (x ) — Kox ", M (x ) — Mox ',
(III) K(x) — K,x"+', M(x) — Mox' .

For ansatz (I), Eqs. (4.11) and (4.12) yield

A =+—,'~q~+A[j(j+1) —
q ],

with the upper-sign solution acceptable for

(4.13b)

(4.13c)

(4.14)

F — x M —(mr) (4.22)

and similarly G and H.
In order to determine precisely which condition F(r)

must satisfy at the origin, we apply the analysis of paper
I, Sec. VII. With the extra interaction term (2.3), the
Hamiltonian takes the form [cf. (I.7.7)]

(4.15)

In order to discuss the solutions whose leading behav-
ior is powerlike, we introduce the notation

H=H, +H~+H, + d+, + f+H,
with

(4.23)

(4.24)

2)„=—x "2)x"=—4v(v —1)—6v+ J (j+ 1)—q (4.16)

For ansatz (II), Eqs. (4.11) and (4.12) yield immediately

2)„+2=2(2v+ 5 } . (4.17)

Substituting for 2)„+z according to Eq. (4.16), we find the
two solutions

v, = —
—,
'

[ l l++ I+4[ j (j+ I)—q~] I .
2

(4.18)

For ansatz (III), Eqs. (4.11) and (4.12) yield, for the
dominant terms,

and the other quantities given in Sec. VII of paper I.
Here, Hb and H, are given by integrals that involve $0.
For the present interaction, P can be determined from
Eq. (2.7) as [cf. Eq. (I.7.9)]

(V ie A) P—— B [(V ie A)X—P]
i . ie(1 —«)

Pl
'2

+ —
[ (V ie A). (B P)—

m

or

2) +2=0, (4.19)
(V ie A).[(B—.P}B—]I

(4.25)

v3= —
—,'I9++1+4[j(j+1)—q ]I,

4
(4.20) At short distances, the term proportional to A, is the most

singular one. Indeed, using the results of Secs. IV and V
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of paper I, the last term can be written as

(V —ie A).(B P) —(V —ie A).[(B.Q)B]

i—gr f 1(r) D I
—

QDI (C'g') C'p'Y, ',~'(r) .
I L

By Eqs. (I.7.27) and (I.5.26),

F(r)-r +', G(r) —ri'+', H(r)-rJ' ' as r~O .

(I.7.29)

Invoking Eq. (4.22), we convert (4.28) to a condition on v:
(4.26)

With the radial functions behaving as

f(r)-r, g(r)-r~, h (r)-re as r~0, (I.7.27)

it follows from (4.25} and (4.26) that

(4.29)

In (4.18) and (4.20), only the upper-sign solutions vi
and v3 are of interest. Furthermore, since lv, I

)
I v&l, the

most restrictive one is v, . For this case, Eq. (4.29) is
satisfied when

yo p —5 (4.27)
Vl+4[j(j+1)—q ])10 . (4.30)

As compared with the previous case of no A, term, P is
now more singular as r ~0, by a factor —r (because of
the extra magnetic-field factor).

Requiring the various contributions to the Hamiltoni-
an, H„. . . , Hf to be finite, one is led to conditions on p.
As was the case for the interaction studied in paper I, we
find the most restrictive term to be H„Eq. (I.7.8). By
simple power counting, we obtain the condition

Thus, for A, )0 and with Eq. (4.30) satisfied, we have
three linearly independent solutions that are acceptable
as r ~0. Hence, type-A bound states exist.

V. BEHAVIOR OF THE TYPE-B WAVE FUNCTIONS
AT THE ORIGIN

For type-B states, F=O, and

Rep) —', , (4.28) j = lql, A(j) =0 . (5.1)

as compared with Re p ) —,
' for the interaction of paper I.

This difference of four units in the power p is due to the
fact that P now is more singular, by two units in p.

We therefore only need to consider Eqs. (4.4) and (4.5).
Equivalently, cr(j) =0, and Eq. (4.9) becomes trivial. The
remaining equation, (4.10), takes the form

—4x —6x + Iql
dx

12—4x ' —6x +21 ql +2 —
I qli~+ (I —~)q 'x +~q'x +~

I
ql'x '

dx

—2(I+&)lql+2Aq x —2(1—v)q x 2x +3 —2kIql x 2x +5 K =0,
dx X

(5.2)

where we have used Eq. (4.6a) to obtain

M=lq K . (5.3)

with

v, = —
—,'( l I+&I +41ql } .

2

(5.7)

H= 1

2( lql+1)&2 ql+I
—4x —6x —~lql

2d' d
dx

The relation between H and K is
These correspond to the solutions (4.18) of Sec. IV, with

j =Iql.
Here, we have

+(1—v)q x+Aq x

+klql'x2 rc .

H — x K —(mr)
r=O

By Eqs. (4.29) and (5.7), we must require

lql)16,

(5.8)

(5.9)

& —exp(+ —,
'

I ql &~
I ql x }x', (5.5}

In analogy with the type-A wave functions analyzed in

Sec. IV, we find two exponential solutions
in order to have an acceptable short-distance behavior.

With two linearly independent, physically acceptable
solutions at both large and small values of r, a matching
is possible, and therefore type-B bound states exist.

K —x (5.6)

where for k) 0 the upper sign gives acceptable solutions.
Furthermore, there are two solutions whose leading

types of behavior are powerlike:

VI. TYPE-C WAVE FUNCTIONS

For type-C states, F =0,6 =0,

j= lql
—1, X(j+1)=0, (6.1)
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and Eqs. (3.19) and (3.20) are trivially satisfied, whereas
(3.21) takes the form

2 2 2 2 d 2

r (m E—)
—r —~q~v+A. H(r)=0 .

dr (mr)

(6.2)

This equation is valid at all distances. We note that we
must require

H —=&zh(z),

then h (z) is found to obey the equation

d 1 d v b+— —1 — ——h(z)=0,
dz z dz z z

where

v'=-,' —Iql~ .

(6.11)

(6.12)

(6.13}

A. &0, (6.3)

in order to have solutions that vanish at the origin.
Because of (6.1), the most singular terms of (3.21) van-

ish identically. This great simplification is connected to
the fact that the wave function for j =

~q~
—1 is transver-

sal [see Eqs. (I.3.14), (I.4.1), and (1.4.2)],

r Y''ti+,
~

(r)=0 . (6.4)

m —E m —E
2m «& i m

(6.5)

Different (discrete) eigenvalues, corresponding to the en-
ergies E„will be labeled e„. Since E„&0, it follows that

0&a„&—,
' .

Introducing then a new variable

(6.6}

It is instructive to simplify Eq. (6.2) further. Let us
define, as an eigenvalue parameter,

This equation is "inversion symmetric, " in the sense that
h (z) and h (&b Iz) both satisfy this same equation. Since
the boundary conditions also are consistent with this

symmetry, the eigenfunctions must satisfy

h (z }=+h (&b /z) . (6.14)

e„(A, ;„)= —,',
the energy vanishes:

E„=O;

(6.15)

(6.16)

i.e., the binding energy equals the mass. This lower value

depends on n.

Because of (6.6), there is a lower value A, ;„, beyond
which the interaction (10.1) does not yield bound states of
type C. At this value, which is determined implicitly by
the relation

z =mr&2F. , (6.7)
VII. APPROXIMATE SOLUTIONS

OF THE TYPE-C RADIAL EQUATION

we can write Eq. (6.2) as

1+ Iql b H=o,
dz z z

(6.g)

Accurate approximate solutions to Eq. (6.12) can be
found analytically. At large distances, for

with

z »max b (7.1)

b =2Aeq (6.9)
the last term (involving A, ) can be neglected, and the solu-
tion is a modified Bessel function,

Hence, after this rescaling of the variable, the eigenval-
ue equation is written in terms of two parameters q~a and
b, one of which represents the eigenvalue. Thus, the ei-
genvalue e„ is inversely proportional to A, . This is an exact
result. For any ~q~ and ~, it suffices to determine e„ for
one value ko. For other values k it can be obtained by the
scaling relation

h (z) =const XE„(z), (7.2)

with v given by Eq. (6.13). This is actually the solution
given in Sec. VI of paper I (for the case of A. =O).

We thus have the solutions

(6.10)
H =C„,&zK„( )z

for large z and

(7.3)

Furthermore, the eigenfunctions H (z) form a one-
parameter family. An eigenfunction determined for one
value of A, is therefore an eigenfunction for any A, , with
appropriate rescaling of e„(keepi gnn fixed).

Equation (6.8) has an inversion symmetry. If we take
out a factor

H =C;„,&zK, (&b Iz) (7.4)

for small z.
The necessary condition that these solutions overlap is
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TABLE I. Binding-energy eigenvalues Ae for type-C states, where e=(m' —E )/(2m') for ~q~=1

and j=0. Values larger than
~

are only relevant for A, & 1.

6.831X10-"'
9.669X10 ''
1.363 X 10-'

2.573 X 10
2.972 X 10
3.369X 10-'

2.282 X 10
4.058 X 10
6.919X 10- '

10

8.769 X 10-'
6.472 X 10-'
4.921'

'Approximate value given by Eq. (7.12).

b 1/4
Zp

i.e., that

b «(~q~a. —
—,') -q a

(7.5)

(7.6)

or

e„A, « —,'x (7.7)

There exists a range in which both solutions (7.3} and
(7.4) are valid, provided Eq. (7.7) holds. We determine
the eigenvalue from a matching of powers in this region.

For the modified Bessel functions we have

that the term b/z remains small at the "inversion
point":

We show in Tables I and II the values of e„ for the
three lowest-energy states, for a few values of a, and
~q~=1 and —,', respectively. Here we have taken A, =l.
The variation of the binding energy with a is reminiscent
of that found for the case of spin —,'. ' The values quot-
ed in Tables I and II are exact. In this range of ~, those
given by Eq. (7.12) are accurate to within 2%%uo.

In Fig. 1 we show plots of the wave function. The gen-
eral shape of these type-C wave functions is similar to
that found for the case of spin —,', ' except that those
states are described by two or four radial functions, as
opposed to one for the present type-C states.

In order to determine the range of validity of this re-
sult (7.12},we note that the exterior solution, (7.3), can be
approximated by the leading powers for

(-,'z)
K„(z}=

2 sin(m. v) I (1—v)

valid for ~z~ && l. If we substitute

v=i p=i ( ~q~ir
—

—,
' )'

(-,'z)'

I (1+v) (7.8}

(7.9)

z «I+ ivy . (7.13)

2e„k.q «1+q v (7.14)

This must hold at the inversion point, and thus we must
require that [see Eqs. (7.5) and (6.13)]

e'~=e "&E„—8 (7.10)

where we have defined

and match powers of (7.3) and (7.4) according to (7.8), we
obtain

The formula (7.12) is therefore valid provided only that
the product e„A. is small, e„might be of order unity. For
~q~a & 1, this condition (7.14) reduces to (7.7)

We can use the approximate energies (7.12}to estimate
the lowest value of A, at which the Lagrangian (2.2) pro-
duces bound states according to (6.15):

(7.11)
16 2

exp — (n rr 2P—)—
q

(7.15)

The binding energies are thus given by

8 2e„= exp ——(n n —2P)
Aq' p

(7.12)

for n =1,2, 3, . . . . [It turns out that Eq. (6.12}has no ei-
genvalue corresponding to n=0.]

VIII. SUMMARY

The magnetic-moment interaction that for spin- —,
' par-

ticles leads to binding with magnetic monopoles, was in
the case of spin-1 particles found to lead to unsatisfactory
behavior at short distances. ' In the present paper, we

TABLE II. Binding-energy eigenvalues Ae for type-C states, where e=(m' —E )/(2m') for ~q~= —',

and j= z. Values larger than
z

are only relevant for A. & 1.

6.110 X 10-"
1.685 X 10
4.595 X 10-'

'Approximate value given by Eq. (7.12).

3.352 X 10
1.480 X 10-'
6.338 X 10-'

9.553 X 10
9.761 X 10-'
1.018'

10

2.302 X 10-'
1.190'
6.113'
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