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Topological quantities on an anisotropic SU(3) lattice around the critical temperature are studied.
The distribution of instantons has been investigated through semilocal measurements of topological
charge and magnetic and electric actions in the framework of a cooling method. The suppression of
the topological susceptibility ¥, in a deconfining phase, seen on isotropic lattices, is found also on
the anisotropic lattice. The instanton density is also suppressed above T,. In addition to the instan-
tons, other topological configurations are found and studied. Among those with no instantons, one
class shows a vanishing topological charge density and metastable plateau of magnetic action in the
cooling. Analyses of the magnetic charge, flux, and zero mode of a three-dimensional staggered fer-
mionic operator indicate that such configurations have a nontrivial structure of magnetic flux and

monopoles of the SU(3) gauge system.

I. INTRODUCTION

An investigation of the topological nature of a gauge
field around the critical temperature of the deconfining
transition seems useful in understanding the mechanism
of confinement and chiral structure.’? It is well known
that instantons have a close relationship with the axial
U(1) anomaly.® And its anomaly restoration at finite
temperature is expressed by the suppression of instan-
tons. As for magnetic monopoles, their role in non-
Abelian gauge field theory has been discussed from
different points of view. In the confinement phase, mono-
pole condensation is expected to induce the dual Meiss-
ner effect.* Also in the deconfinement phase, the genera-
tion of a magnetic mass of gluons and screening of triality
by monopoles have been discussed.’

These problems have been studied on isotropic lattices
by several different methods.®’ Recent investigations of
the instanton by isotropic lattices have shown a suppres-
sion of the topological susceptibility in the deconfinement
phase.” A suppression of the monopole above the critical
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temperature has also been reported,®® while a static
monopole configuration has been observed more clearly
in the deconfining phase.!® They supply increasing evi-
dence for the idea that changes of a topological nature
are a dynamical issue connected with the deconfining and
chiral transitions.

In this paper, we report the results of a topological
study on an anisotropic lattice. As is well known, there
are several different ways to simulate a finite-temperature
system. Instead of the usual way of reducing the number
of lattice sites in a temporal direction (isotropic lattice),
we use a contracted lattice unit in a temporal direction
(anisotropic lattice).!' A motivation of the anisotropic
lattice is to keep the sensitivity in the temporal direction
even at high temperatures. On an isotropic lattice, the
number of sites in the time direction is reduced to a very
small number at high temperatures, and we then have
insufficient degrees of freedom in the time direction to de-
scribe field configurations with good accuracy. Here, we
will present the results of the topological susceptibility,
instanton density, and measurements of the magnetic
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charge and three-dimensional fermionic zero mode for a
class of magnetic configurations on an anisotropic SU(3)
lattice.

Recently, the anisotropic lattice has been investigated
by Burgers, Karsch, Nakamura, and Stamatescu. 12 The
lattice action is given as

S=3 S(n)

1—Py(n)
2-—7/——+2[1—P0f(n)]7/ , (D

i<j i#0

=3

where (3 is the lattice coupling constant, the P;;(n) and
P,,(n) are, respectively, the space-space and space-time
plaquettes at site n. The parameter y represents the lat-
tice anisotropy. In the naive continuum limit we expect
Y =a,/a,. However, it is subject to renormalization and
we set yn=a,/a,. In Ref. 12, 1 is then determined
through the measurements of the lattice observables,
such as Wilson loops. It was found that n=1.31 for an 8*
lattice with y =2. It was also confirmed that 1 has no 8
dependence at least over the range 5.65 <[ =5.75, where
the critical coupling for the deconfinement phase transi-
tion was given as 3, ~5.67.

The present paper is organized as follows. In Sec. II,
the cooling method in the present analyses and data sam-
pling are described. In Sec. III distributions of the topo-
logical charge and instanton below and above the critical
point are presented. In Sec. IV we report analyses of the
magnetic field, charge, and eigenvalues of a three-
dimensional fermionic operator for a class of magnetic
configurations. The last section is devoted to a summary
and discussions.

II. SAMPLING AND COOLING METHOD

Topology is the long-range property of gauge field
theory. In order to extract the topological nature of
thermalized configurations, we use the so-called cooling
method.® We perform the following iterations in the
cooling stage, i.e., iterations by a classical equation of
motion in fictitious time:'3

U™ (n)=exp[iX (n)]JU(n) (2)
and
—_ a a SS —
X (n)=i(87)tr |1 U#(n)SU#(n) : (3)

where U, (n) is a SU(3) link matrix and ¢“ are the group
generators. The ‘“‘step” parameter 87 of fictitious time
adjusts the speed to the underlying classical config-
urations. (Larger &7 gives more acceleration but too
large a value leads to fast decay of an instanton. We take
67=0.04.)

Different measurements are performed in the normal
updating stage and the cooling stage. In the normal up-
dating stage, the action and the Polyakov line are mea-
sured. The latter is used to distinguish the configuration
to be cooled whether it is in the confining or deconfining
phase. In the cooling stage, we have monitored the topo-
logical charge according to the formula’

Q=Y poln), (4)

poln)= #%Vpatr[Pm(n)Ppo(n)] : (5)
T

In addition to the total topological charge, we also mea-
sure the quantity

Io=3 Ipo(n) (6)

n

and the normalized action S,
S=S/47B/3) , (7)

and space-space and space-time actions which convey in-
formation about the total number of instantons and anti-
instantons. Furthermore, to obtain the semilocal distri-
butions, we divide each direction into two sectors (0 and
1) and we measure these quantities in the 16 sublattices of
size 4%, [See Figs. 2(b) and 2(d).]

For assignment of multi-instanton configurations, IQ
and Q in the sublattices are quite helpful in identifying
the existence of an instanton—anti-instanton pair. This
pair gives no contribution to Q and their identification
through S is usually very difficult because of the slow
convergence of S along the cooling sweeps. With a rather
high probability, such a pair can annihilate or decay be-
fore the convergence of S. In most configurations with a
large instanton density, decays of instantons during the
cooling sweeps can happen at a very early stage (80-150
sweeps). In this situation, we required a stabilization of
I, and a localization of the topological charge over sub-
lattices for the criterion for a multiinstanton config-
uration.

To check the reproducibility of the cooling method, we
performed the cooling from the same configuration in the
following different way. Cool by the classical equation of
motion [Eq. (2)] with different time steps, and cool from
different four-dimensional directions, and apply heat-bath
cooling. All indicate the same topological result except
the speed of convergence. We will come back to this
point in Sec. IV.

In some cases, we add weak Gaussian random noise to
the right-hand side of Eq. (3) in order to see the stability
of the configuration against small perturbation. The to-
pology is found to be unaffected by these short-range
effects as expected.

In investigating the topological nature of the Monte
Carlo—generated configurations, we must be careful of
sequential correlation, and sample independent vacua.
Then we define the topological correction length & from
(QuQi+:)/C{QF) =exp(—i/E) (Q, is the topological
charge at kth Monte Carlo sweeps and { ) means the k
average). Then we find £=10-20 in our 8% ¥
=2 SU(3) pseudo-heat-bath-generated configurations at
B=5.64-5.70. Taking into account these facts, we
prepare well thermalized SU(3) vacua and 100 pseudo-
heat-bath updates have been made before the next sam-
pling. Furthermore, the generations have been restarted
for each five samplings. From this manipulation, we can
avoid the topological correlation and get independent
configurations.
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III. TOPOLOGICAL CHARGE AND INSTANTON
DENSITY

A. Cooling analyses of configurations

About 400 vacuum configurations each for the values
B=5.62, 5.64, 5.70, and 5.72 are accumulated on an an-
isotropic lattice 8% y=2, using the pseudo-heat-bath
method. It is noted that the deconfining transition occurs
at B=5.67 on this lattice.!> The Polyakov line is mea-
sured for each configuration before cooling. In Fig. 1
scatter plots in terms of S (normalized action) versus Q
(topological charge) and I, versus Q at 100, 200, and 300
cooling stages for 3=5.64 are shown. These plots show
the approximate quantization of these quantities as cool-
ing goes on. The units of quantization are 0.8-0.9 for Q
and Iy and ~1 for the normalized action. These values
are similar to those observed on isotropic lattices. The
convergence of the topological charge to quantized values
is faster than that of the action. For the assignment of
the topological charge and instanton number to each
configuration we need more careful tracing of the cooling
history and a semilocal study. One of the reasons is the
decay or pair annihilation of the topological charge. In
Fig. 2 several examples of cooling histories are shown.
Configurations having a unit topological charge and unit
normalized action are typically observed. An instanton
event is shown in Fig. 2(a). In this example, semilocal
distributions of Q, the electric action, and magnetic ac-
tion show a clear localization and approximate self-
duality, which is expected from an instanton nature [see
Fig. 2(b)]. Sometimes the decay of the topological charge
occurs before the convergence of the action, as shown in
Fig. 2(c). However, the plateau of I, and the fact that
semilocal distributions of Q show isolated localization
[Fig. 2(d)] indicate this example is an instanton—anti-
instanton pair. In this way, we can assign Q and I, ex-
cept for a small number of configurations (less than 5%).

Most configurations are interpreted as those composed
of instantons and anti-instantons. However, there are
some configurations which cannot be interpreted as in-
stanton type. One such group is seen in the configur-
ations with vanishing Q and I,. In Fig. 3 scatter plots
with respect to space-time action versus space-space ac-
tion at the cooling stages of 100 (a), 200 (b), and 300 (c)
for Q=0 and I, =0 events are presented. Although most
configurations lose both the magnetic and electric action
at the stage of 200 cooling, roughly 10% of them keep a
sizable magnetic action greater than 0.3 at the 300 cool-
ing stage. Such types of configuration are more often ob-
served in the deconfinement phase rather than in the
confinement phase. Analyses of these magnetic
configurations will be presented in Sec. IV. Another class
of configurations which does not belong to the instanton
type also has been seen. In Fig. 4 an example of the cool-
ing history and semilocal distributions of such config-
urations is presented. Although the normalized action
and I, tend to converge to unit values, the topological
charge vanishes. In the semilocal distributions, roughly
half a unit of positive and negative topological charges lo-
calize. A remarkable fact is that such configurations are
found in the confinement phase in the present sample. It

seems quite interesting to investigate the interpretation of
such configurations as meron-anti-meron pair. At
present, however, because of limitation of the data sam-
ple, further investigation is not adequate.

B. Distribution of topological charge

Distributions of the topological charge Q and I, at
different temperatures are displayed in Fig. 5. As shown
in the figure, the distributions are narrower in high-
temperature deconfining phases (=5.70,5.72) than in
low-temperature confining phases (3=56.2,5.64). As the
range of B is limited to a neighborhood of B,, such a
suppression can hardly be explained by a trivial decreas-
ing toward a larger 3. To see this more clearly, we divide
configurations at the same temperature (S=5.70) with
respect to the value of the Polyakov line (less and greater

o
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FIG. 1. (a) Scatter plots Svs Qand (b) I, vs Q after 100 (top),
200 (center), and 300 (bottom) cooling sweeps. 8%, y =2 lattice
at B=5.64 is used. Number of events is 400.
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FIG. 2. Typical examples of cooling curves of S (solid line), Q (dotted line), and I, (dashed line) (a) for a one-instanton
configuration and (b) distribution of space-space (magnetic) action over 16 sublattices at the cooling stage represented (a) by the ar-
row. Similar distributions of space-time (electric) action and topological charge Q, (c) for a multi-instanton configuration with decay
and (d) distribution of Q at the cooling stage represented (c) by the arrow.

than 0.1) to distinguish the confining phase from the
deconfining one (Fig. 6). The resultant distribution for
the confining group is prominently wider than that of the
deconfining group although statistics is rather poor.
Thus, suppressions of the topological charge and I
which is considered as the instanton density are observed
in the present anisotropic lattice. Another feature is that,
for B=5.64, the distribution seems to be narrower than
Poissonian (dashed histogram). However we cannot take
this point seriously because of the- finite-size-effect.

In Fig. 7 the average values of Q2 and I, are present-
ed. We obtained quite small values for both quan-
tities above the critical point. Again, if we divide
configurations with respect to the value of the Polyakov
line to distinguish two phases, a suppression of Q2 and I,
in the deconfining phase becomes clear. Furthermore
discontinuous types of behavior are observed. It is noted
that the average value of the Polyakov line of the
deconfining phase at §=5.70 is 0.195 in the present an-
isotropic lattice.

As for the topological susceptibility, the ratio with
respect to the temperature near the critical point is given
to be

x./T*={{Q*) /[(a,N,)a,N,1} /T*
={(Q?)/[(a,N,)/(a,N)]}}

_ [0.156+0.008 for p=5.64 ,
= 10.0436+0.002 for B=5.70 , (8)

where the value of a; /a,~2.6 for y =2 obtained in Ref.
12 is used. Similarly the instanton density ng is estimat-
ed to be

ng/T*=(Iy) /[(a,Ny)/(a,N,)]?

0.0978+0.005 for B=5.64 ,
0.0414+0.002 for B=5.70 . ©)

These values at B=5.64 give x,~(144 MeV)* and
ng=(128 MeV)* if we set 7=230 MeV.

Suppressions of the topological charge and instanton
density are observed in both the present anisotropic lat-
tice and isotropic lattice.” Thus the suppression of the
topological charge in the deconfining phase seems a
dynamical issue related to the deconfining transition rath-
er than a simple spilling out of the instanton from a
coarse lattice.
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FIG. 3. Scatter plots with respect to a space-time action S
vs space-space action S for 50 I, =0 events after (a) 100 cool-
ing sweeps, (b) 200 sweeps, and (c) 300 sweeps. (Time step
6=0.04.)
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FIG. 4. Cooling curve of (a) a meron and (b) a semilocal dis-
tribution of Q.
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FIG. 5. Distributions of Q for (a) 8=5.70 (b) B=5.64, and
distributions of I, for (c) $=5.70, (d) B=5.64. Dashed lines
represent Poisson distributions.

IV. ANALYSES OF MAGNETIC CONFIGURATIONS

Here we concentrate on the magnetic configurations
which appear in the cooling analyses. As mentioned in
Sec. IIT A a class of configurations in the sample of Q=0
and I,=0 (i.e., no instanton and anti-instanton) group
have the following characteristics: (1) Space-space action
shows a plateaulike behavior around 0.5-0.3 (in 4728/3
units) as cooling goes on; (2) for those configurations, the
space-time action vanishes in the early stage of cooling;
(3) distribution of the magnetic action is constant in a
temporal direction.

On the present anisotropic SU(3) lattice (8%, ¥ =2), we
have about 200 configurations of I, =0 in the total 400
configurations. In these configurations, roughly 5-10%
of them have the above characteristics at §=5.70-5.72
(note that 8. =5.67). For later convenience, we call such
a configuration an M-type event. On the other hand, the
configuration which loses the magnetic action as well as
the electric one quickly is called a T-type event. Al-
though such configurations have been observed and ana-
lyzed above and below the critical point in both SU(3)
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FIG. 6. Distributions of Q and I, at =5.70 for deconfining
(|P|>0.1) and confining (|P| <0.1) configurations.
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FIG. 7. Averages of (a) Q% and (b) I, above and below the
critical point of the deconfining transition. Black squares corre-
spond to the average over all configurations. Open triangles
and open circles are the average over configurations having the
values of the Polyakov line greater and smaller than 0.1, respec-
tively.

and SU(2) lattices, here we restrict ourselves in the
deconfinement region. An obvious question on the ap-
pearance of such a cooling pattern is whether it depends
on the method of cooling. On this problem, we have
made supplemental studies on both isotropic and aniso-
tropic SU(2) lattices. Comparisons are made for (a) re-
sults of heat-bath cooling with an infinite 8 and cooling
by the equation of motion for the same SU(2) config-
uration and (b) cooling curves of different time steps
(6=0.008,0.02,0.08) for the same SU(2) configuration.
As shown in Table I, we see roughly the same plateaulike
behavior if we suitably rescale the cooling steps. The
dependence on the path of cooling in a sweep has been
also checked and no substantial differences have been
observed. Thus the appearance of such magnetic behav-
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FIG. 8. Magnetic actions (S,) of typical SU(2) M-type events
vs cooling sweeps for different lattice sizes and different bound-
ary conditions. X, O, and @ are periodic boundary conditions
and + is antiperiodic boundary conditions. Cooling sweeps are
rescaled to sweep X 12/N;.

ior is insensitive to the details of the cooling method.

The dependence on the size of the lattice is important
from the viewpoint of the finite-size effect. To see this we
need further extensive investigation in larger lattices. In
the present stage, we have found such magnetic
configurations in SU(2) lattices with a size up to 10X20°
for both periodic and antiperiodic space boundary condi-
tions. In Fig. 8 typical examples of plateaulike behavior
in the cooling process in an SU(2) lattice of
10X 123,143,183 (periodic and anti-periodic boundary
conditions) in the deconfinement region are shown. In
these examples, there is no substantial difference in the
plateau behavior and its height.

A. Magnetic field and charge

In this section, the results of magnetic charge measure-
ments for M-type configurations defined in the previous
section are reported. An interesting possibility for the
M-type configuration is the one with a magnetic mono-
pole. Although a magnetic monopole in a non-Abelian
gauge system does not exist in the classical level, the pos-
sible existence under a quantum-induced adjoint scalar
field has been pointed out.* Analyses from this point of

TABLE 1. Comparisons of the cooling history of the space-space action between the Langevin with
6=0.04 and heat-bath methods (a), and between different time steps (§=0.02,0.01,0.002) in the

Langevin method (b).

(a)

Cooling sweep S Cooling sweep S Cooling sweep S
6=0.04 15 4.7 45 1.89 300 0.45
Heat bath 5 4.7 15 1.69 100 0.44

(b)
8

0.02 10 19.7 20 7.25 40 3.25
0.01 20 21.1 40 7.20 80 3.42
0.002 100 22.6 200 7.05 400 3.38
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view for such configurations in an SU(2) lattice have been
reported in Ref. 10 and the results support the view. In
the case of the SU(3) lattice, enough analysis has not been
made yet. Furthermore, the possibility that such magnet-
ic behavior is produced by cooling from a class of instan-
ton configurations, has been pointed out recently.'*
Motivated by these facts, we have analyzed the magnetic
field of an M-type configuration in our SU(3) lattice along
with cooling. Here, magnetic fields are measured for
these events based on a U(1) projection to the Polyakov
line P (unitary gauge) because it is an ordered field at
least in the deconfining region. Namely, In(P)/i is con-
sidered a Higgs field.* Following the procedure in Ref. 8,
Abelian magnetic fields are extracted. In the first step, ei-
genvalues of In(P) are evaluated at each site and three ei-
genvalues are rearranged in the decreasing order to ob-
tain a smooth “Higgs field” over the lattice. Then, the
U(1) field defined on a link U,(n) with respect to an
eigenspace of an ith eigenvalue of In(P) (i=1,2,3) is
defined as

0. (n)=Arg{n, ()| Uy(m)n +a,(D) , 1o

where |n,(i)) is an eigenvector belonging to the ith eigen-
value of In(P) at site n. The corresponding U(1) field
strength associated with a plaquette Pz is

F(n)=mod[ 6y (n)+ 6y (n +a)— 6y (n +B)
—603'(n),2m] . (11)

The magnetic charge of a space cube(n) corresponding
to the Abelian field (11) is

Dn)= 3

r Ecube(n)

Fip(r) . (12)

We have applied this procedure to about ten SU(3) M-
type configurations. In Fig. 9 the magnetic charge and
flux distributions (at a time slice) of two M-type
configurations at several cooling stages are shown. In the
early stage of cooling, many magnetic charges and an-
ticharges are seen and those distributions vary time slice
to time slice. As cooling goes on further, a nontrivial
three-dimensional magnetic structure appears. In most
cases, a few pairs of magnetic charge remain, as shown in
Fig. 9(a). In some cases, no magnetic charges are found
but a kind of squeezed magnetic flux is left, as shown in
Fig. 9(b). Sometimes, magnetic charge pairs are created
at the position of squeezed flux by further cooling. For
T-type configurations, no such magnetic structure has
been seen in the deep cooling stage. Correlations between
these magnetic structures and the Polyakov line have
been seen in the following analyses. In Fig. 10, for an M-
type configuration, we display the spatial distribution of
the magnetic action 10(a), the largest eigenvalue of
In(P)/i 10(b), the magnetic charge 10(c), and the sum of
the absolute square of an off-diagonal element of space
link (x direction in this example) 10(d), which is defined
as

3
S Kn, WU (n)ln+x,G) 1%, (13)

=17

1
3

FIG. 9. (a) An example of magnetic flux, charge (O) and an-
ticharge (@) of an M-type configuration [i=1 eigenstate in Egs.
(10)=(12)] (after 400 cooling sweeps with time step 6=0.08). (b)
Top, magnetic charge of an M-type configuration (i=1) after
ten cooling sweeps. The magnetic flux is omitted in the figure.
Middle, magnetic flux and charge of the same configuration as
top figure after 100 cooling sweeps. Bottom, similar to middle
figure except for 200 cooling sweeps. The squeezed flux is left
although no charge is seen.
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FIG. 10. (a) Spatial distributions of the magnetic action, (b)
the largest eigenvalue of InP, (c) the magnetic charge, (d) the
strength of off-diagonal element squared of the space link, and
(e) the strength of magnetic flux of an M-type event (i=1 and
two-dimensional section including monopole and antimono-
pole).

and tells us about the strength of the color rotation
around the site n. The strength of the magnetic flux is
shown in Fig. 10(e). A remarkable point is that most
space links are approximately diagonalized simultaneous-
ly with the Polyakov line except for in the neighborhood
of the magnetic charge. The dip of the eigenvalue of
In(P) and the position of charge is consistent with the
SU(2) case in Ref. 10. These features are consistent with
the semiclassical monopole in the gauge —In(P)/i is a
Higgs field. However, some points are left unsolved. As
seen in Fig. 10(a), the distributions of the magnetic action
spread over widely more than other quantities, and have
a nonvanishing value even where the charge and flux van-
ish. Therefore, the relation between the mechanism for
sustaining the magnetic action and the existence of a
monopole may not be as simple as in the semiclassical
monopole picture. Another point is that creation and an-
nihilation of a close pair of magnetic charges are easily
induced by a small quantum effect. For example, if we
add small Gaussian random noise of the 1073 level to the
right-hand side of Eq. (2), many pairs of magnetic charge
appear. However, if we switch off the noise and return to
normal cooling, we see a few monopole pairs or a
squeezed magnetic flux again. Thus, the short-range
structure might receive a cooling artifact. On the other
hand, a middle- or long-range magnetic structure looks
free of the cooling artifact. For example, charges and

flux at 10, 100, and 200 cooling sweeps, shown in Fig.
9(b) distribute over a common region although the num-
ber of charges changes. This feature seems different from
recent observations of the magnetic monopole and Dirac
string in the three-dimensional George-Glashow model. '

As for the stability of the presently observed squeezed
flux structure, studying of the finite-size effect seems quite
important. About this point, as mentioned before, we
have observed an M-type configuration in an SU(2) lattice
up to 10X 20° with both periodic and antiperiodic bound-
ary conditions. These magnetic features are found ir-
respective of the lattice size and space boundary condi-
tion.

B. Three-dimensional fermionic zero mode

One characteristic of M-type configurations in the deep
cooling stage is its three-dimensional (i.e., static) struc-
ture.!® In the previous section, a charge or squeezed
magnetic flux is found. Although the existence of a mag-
netic structure certainly is seen, some portion might de-
pend on the cooling. In this section, we further study
M-type configurations from the viewpoint of the zero
mode in a three-dimensional fermionic (Dirac) operator.
In the studies of the instanton, the existence of zero
modes in a four-dimensional fermionic operator have
been reported. !’

The fermion operator adopted here is the three-
dimensional staggered fermion'* operator

Ngln)

=1

D
mn 2

[Uy(n)8pia—Ukn—a)s,, ,_.1, (14)

where

nytny+ o+

No(n)=(—1) ot (15)

The eigenvalue of this operator are analyzed by using
Lanczos and Householder transformation methods. We
apply the analysis for three-dimensional configurations
changing time slices. In Fig. 11 distributions of the ei-
genvalue squared of typical M- and T-type configurations
up to initial 10 cooling are shown. For T-type events, all
levels go upward as cooling goes on and there is no small
eigenvalue corresponding to the zero mode. On the other
hand, for M-type configurations, a few lowest levels
remain small whereas higher levels shift upward with
cooling. They are an order of magnitude smaller in com-
parison with the other level. Such a pattern of eigenval-
ues is commonly seen at every time slice. Thus, these lev-
els with small eigenvalues are identified as the three-
dimensional zero mode.

Such small eigenvalues are also found in configurations
having a squeezed magnetic flux, as shown in Fig. 9(b).
We also note that the existence of zero modes seems
stable against small perturbations, as stated in Sec. IV B.
A similar analysis is applied to configurations having an
instanton. In this case, the existence of small eigenvalues
depends on the time slice, as expected from the four-
dimensional nature of the instanton. Thus, based on
these analysis, the existence of such a three-dimensional
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FIG. 11. Distribution of a few smallest eigenvalues squared
and its density for (a) a 7-type event and (b) an M-type event vs
cooling. Separation of the smallest eigenvalue (b) is evident.

zero mode irrespective of time slices seems a good
characteristic of M-type configurations. The distinction
of M-type configurations from those of instanton type is
rather clear in this way. 4

V. SUMMARY AND DISCUSSION

The topological properties of the SU(3) gauge field on
an anisotropic lattice (8* a,/a,~2.6) near the critical
temperature are studied. Semilocal measurements of the
topological charge, the sum of the absolute value of the
topological charge density I, and the electric action and
magnetic action are used to classify configurations in the
framework of the cooling method. Most configurations
are consistent with those composed of instantons and an-
tiinstantons. The distribution of the topological charge
and I, in the deconfining phase is drastically suppressed
in comparison with those in the confinement phase.
Some other classes which cannot be interpreted as instan-
ton type are also found.

A class of configurations which have a plateau in the
magnetic action and a vanishing topological charge den-
sity in the cooling stage is studied in detail. The appear-
ance of the plateau seems insensitive to the cooling
methods. In an SU(2) lattice, such a class of
configurations is found in a 10* (anisotropy=2) to
10X 203 lattice. In the case of an 8* (anisotropy parame-

ter equal to) SU(3) lattice, the rate of such configurations
is about 5-10 % of the total I, =0 events, slightly above
the critical point (8=5.70-5.72). The magnetic charge in
a unitary gauge and the three-dimensional fermionic zero
mode are examined along with cooling. A few pairs of
isolated magnetic charges or squeezed magnetic flux are
found in the deep region of cooling. Most space links are
simultaneously diagonalized with the Polyakov line, ex-
cept in the neighborhood of the magnetic charge. A dip
structure of the eigenvalue of the logarithm of the Po-
lyakov line is found near the position of the magnetic
charge. As for eigenvalues of the three-dimensional stag-
gered fermion operator, a few lowest eigenvalues keep
their smallness in contrast with the upward shift of
higher levels in cooling. This separation can be seen
rather quickly after the start of cooling sweeps. This
seems a good characteristic of M-type configurations.
Most of the above results suggest that M-type
configurations in the deep cooling stage include a mono-
pole consistent with the semiclassical picture or a certain
squeezed magnetic flux. Many points are still unsolved in
this picture. For examples, the relation between the dis-
tribution of the action and the magnetic field and details
of the squeezed flux should be analyzed. Another impor-
tant question is the use of cooling in a magnetic field
analysis. On this problem, some results, such as the
identification of the zero mode, or a relevant region of the
magnetic structure as discussed in Sec. IV B, are estab-
lished soon after cooling.

An anisotropic lattice provides a good resolution to de-
scribe the temporal structure even at high temperatures,
in contrast with the ordinary isotropic lattice. In this
sense, the observations of the dual structure of instantons
and the static nature of the magnetic configurations in
Sec. IV (no structure in temporal direction) seem remark-
able.
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FIG. 5. Distributions of Q for (a) $=5.70 (b) =5.64, and
distributions of I, for (c) B=5.70, (d) B=5.64. Dashed lines
represent Poisson distributions.



