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Renormalixation-group flow in lattice QED and four-Fermi coupling
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Renormalization-group flow of the U(1) lattice gauge theory with staggered fermions is studied by
the Migdal-Kadanoff renormalization-group method. The phase structure is extensively investigat-
ed. It is shown that an induced four-Fermi coupling term becomes relevant in the strong-gauge-

coupling region while it becomes irrelevant in the weak-gauge-coupling one. The P function, the
chiral order parameter, and the anomalous dimension of the fermion mass operator are calculated.

I. INTRODUCTION

QED may have a nontrivial fixed point when the gauge
coupling becomes strong. ' Recent studies have shown
that the four-Fermi interaction plays an important role
with the dynamics governing the strong-gauge-coupling
region. It amounts to producing the large anomalous di-
mension of the fermion mass operator in the low-energy
physics, and as a consequence it may open a new possibil-
ity toward the origin of the spontaneous breaking of the
electroweak gauge symmetry.

However, it is not yet clear how the four-Fermi in-
teraction concerns itself with original QED. Such an in-
teraction may be induced effectively in the low-energy re-
gion from original QED in a nonperturbative manner.
To make it clear if it is true or not, a renormalization-
group (RG) study of the theory regularized on the lattice
is suitable to this end.

The Migdal-Kadanoff renormalization-group (MKRG)
method ' is an approximate but suitable tool to get into
an essential feature of the lattice gauge models. "
Such a method may provide us with important informa-
tion on the dynamics with strong four-Fermi coupling,
and is complementary to Monte Carlo calculations which
are currently providing interesting results. ' ' One of
the authors (M.I.) has recently studied the theory by in-

corporating the fermion self-energy to the recursion
equation, and found that the four-Fermi interaction is in
fact induced from the original QED in the strong-gauge-
coupling region. In this paper we make an extensive
study of its RG flow and the phase structure.

The main results are as follows. The bare parameter
space is divided into two phases, one being the phase
where the four-Fermi coupling is relevant and another
where it is irrelevant. %ithin the former phase, there is a
distinction with respect to RG flow between the strong-

I

and weak-gauge-coupling regions. By making use of the
unique trajectory (UT) method, the P function for the
gauge coupling is calculated. The chiral order parameter
shows a transition separating the two phases. The anom-
alous dimension y of the fermion mass operator is also
calculated by the UT method in the chiral-symmetry-
unbroken phase. It is found that y is large at the criti-
cal line and monotonically decreases as one goes off from
the critical line; i.e., y decreases monotonically as the
gauge coupling and/or the four-Fermi coupling Co be-
come weak.

In Sec. II the recursion equations are presented. In
Sec. III we study the RG flow and the phase structure.
Particular attention is paid to the vicinity of the critical
line in Sec. IV. The P function and the chiral order pa-
rameter are studied in Sec. IV A, and the anomalous di-
mension of the operator tits is discussed in Sec. IVB.
Summary and discussions are presented in Sec. V. An
analytic investigation of the recursion equations in the
strong four-Fermi coupling region is made in the Appen-

II. MIGDAL-KADANOFF
RENORMALIZATION-GROUP TRANSFORMATION

A. Lattice action

The recursion equations for the MKRG transforma-
tion for U(l) lattice gauge theory (LGT) with staggered
fermions ' are presented.

In general, RG transformations induce couplings
which are not in the original bare theory. It is then con-
venient to write here the most general form of action in
the MKRG framework. The lattice action of the U(1)
gauge group with staggered fermions 1(t and ti'j is given by

S=Ss+Sf S = 2 g g [1 Rey (8)]Pq
plaq q =1

Sf= Ao g g„(n)[e+f(n)U„(n)p(n +is)+e p(n +p)U„(n)g(n)] Bo g f(n)g(n)—
n, p n

—Co g 1(t(n) U„(n)g(n +p)g(n +@)U„(n)Q(n),
n, p

(2.1)
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(b)

FIG. 1. Gauge plaquette decimation. The vacuum polariza-
tion is contained. Crosses denote the fermion decimations. A. is
taken to be three.

FIG. 2. (a) Link function K. (b) Fermion self-energy correc-
tion.

where y in S denotes the q-irreducible character of a
plaquette variable; Xq(8)= TrUq=e'qe (q =integer,
0 (8( 2qr), and Pq is the corresponding bare inverse

gauge coupling. The fermionic action Sf contains three
bare parameters, A p Bp and Cp which represent the
hopping parameter, mass, and four-Fermi coupling in
turn. Note that the sign convention of Cp is changed
compared with the previous paper, and that positive
values of Cp correspond to an attractive force. e+ and
e are sign factors (e+ = —1 and e = + 1) and

n 1+n2+ +n
ri„(n)=( —1) ",where n; is the ith coordi-
nate of the site n. Throughout this paper the following
convention for integrating Grassmann variables f and P
is employed:

P(8)=P +P, [y, (8)+y*, (8)], (2.7)

and Pp and P, are given in terms of A, B, and C at scale
Las

Pp =2A +B 4B A 6'

+4C(B F+e A —)+2C

while Q is the coefficient in the expansion of Q(L, O),
which represents the contribution from the innermost
plaquette in Fig. 1 receiving the fermion loop correction
with Nf flavors (vacuum polarization),

A'

Q(L, O)=P(8) exp —+[1—Reg (8)]pq, (2.6)
q

where

f dedeexp( pA'+05+00) p e"p n (2.2) P1= A
(2.8)

A RG transformation consists of two procedures: de-
cimation and bond moving, both for the gauge and fer-
mionic degrees of freedom. In each decimation, the
gauge degrees of freedom receive fermion loop correc-
tions, while the fermionic ones contain self-energy correc-
tions.

where F is a coeScient in the character expansion of the
plaquette function F (L, O) at scale L,

F(L 8) QFq(L)yq(8)
q

(2.4)

where F (L, O) is written in terms of the gauge couplings
as

B. Recursion equation for the gauge coupling

The recursion equation for the gauge field" connecting
two scales L and A,L is given by

gD —2

F(AL 8) QFq(L) Qq(L)yq(8)
q

The exponent k —1 in (2.3) stands for the decimation of
A,

—1 plaquettes except for the innermost one. [N.B.
The contribution of the innermost one is already counted
in (2.6).]

A RG transformation is thus completed by bond mov-
ing as is represented by the exponent A, in (2.3), which
is the contribution from the D —2 directions perpendicu-
lar to the plane on which the plaquette in question is sit-
ting.

The left-hand side (LHS) of (2.3) is also represented by
the renormalized couplings [P (AL)I at scale kL in the
same manner as (2.5):

F(AL, O) =F(AL, O) exp —2 g [1—Regq(8)]P (AL)
q=1

(2.9)

Therefore, by solving (2.3) and (2.9) one obtains the re-
cursion equation for the gauge coupling [Pq(L)]

[P (A.L )I.

F(L,O)=F(L,O) exp —2 g [1—Regq(8)]gq(L)
q=1

(2.5)
I

C. Recursion equation for the fermionic couplings

As to the fermionic contribution in Fig. 2(a), the link
function K ( v ) is characterized by

E(v)=N exp[ B(0)g(0)g(0—) B(j +1)f(j +1)g(j—+1)+A (0)[E+P(0)UP(j +I)+e g(j +1)U itj(0)]

—C (0)g(0) UQ( j+ I )P(j + I ) U g(0) ], (2. 10)
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with j =0, where N is a normalization constant and v stands for the group element of the link U. The parameters A, 8,
and C are, by j times decimations [Fig. 2(b)], transformed to

N(P)[8(j —1)(j)+8(P)(j)] A (j)(0) A (j —1)(0)A (P)(j)/[8(j —1)(j)+8(P)(j)]
8(j)(0)=8(j-"(0)+~8(j)(0), 8(j'(j —1)=8")(&+1)+~8(j)(j+1),
C"'(0)= &8—"'(0)&8"'(j +1)+A ""(0)e'g'e ",
gB (j)(P)— [ A (j—1)2(P ) (j—I) (j —i) C(j —1)(0)]/[8(j i)( ~

) +8 (P)( ~

)]
(2.11)

bB'j'(j +1)=—[A' ' (j)e' 'e' ' C' —'(j )]/[8' "(j)+8' '(j)], rj' '(0)=rj' "(0)rj' '(j) and e'j'=e'j "e' ',
where the notation is that A (j'(k) is a quantity at site k after j decimations have been performed. So the quantities after

j decimations are recursively calculated by (2.11) from the ones (2.10) before the decimation.
These parameters then receive self-energy corrections as shown in Fig. 2(b). The convolution of the j(,( =j—1) pla-

quettes yields a corrected EG ..

EG —=f du@(v)F(u 'w)= f duE(u)QF "(L)g (u 'w)

=NF p expI —BG(0)iT)(0)(t('j(0)—BG(j)g(j)g(j)+AG(0)[e+g(0) Ui)'j( j)+e 1()(j)U 1'(0)]
—CG(0)g(0) Ui)()(j)f(j)U f(0)j, (2.12)

where renormalized parameters are given by

A (0)=A'j'(0)
F

BG(0)=8'j'(0), (2.13)

I

renormalization-group approach. The fundamental
quantity at each scale is a plaquette and links running
along the plaquette. At, say, scale j(,'a (t times of recur-
sions), by integrating the fermion fields (outermost loop),
one is left with only the gauge degrees of freedom to be
integrated:

2A.

C (0)=C(J'(0) — 1—
G

A factor F, /Fp is analytically represented by the
modified Bessel functions as I) /Ip for the bare Wilson
action. The renormalized parameters obtained in this
way are further bond moved in the D —2 directions per-
pendicular to the plaquette in consideration. Namely,
each AG, BG, and CG in (2.13) are multiplied by D —2.
This completes a RG transformation from A, B,C at scale
L to the counterparts at scale A.L.

Note that the four-Fermi coupling C is not induced by
decimations by (2.11); i.e., if one sets C =0 on the right-
hand side, one sees that C on the left-hand side is identi-
cally vanishing. It is self-energy corrections (2.13) that
induces C, and its effect is large (small) in the strong-
(weak-) gauge-coupling region since [1—(F, /Fp) ] is ap-
proximated by 1 —P, for P, ((1 and 0(1/P) ) for P) &&1
(Ref. 22).

It may be convenient to define normalized parameters
Mand G rather than using A, 8, and C. They are defined

by

A (j)2(0)e+e

M =8/2, G =C/2 (2.14)

D. Partition function

The partition function Z

Z = f [dgdg][dU]e ' (2.15)

is calculated recursively in the Migdal-Kadanoff

' D(D —1)/2
Z = 10 k'au (2.16)

where Q is

Q(A, 'a, v) =R (A, 'a, v) F(A, 'a, u), (2.17)

and dA stands for the group measure over all gauge
fields. R in (2.17) is the contribution from the fermionic
modes

R (&,u) = f [dydee]I(: p)I('(2I(-23&3p, (2.18)

where I(:;j is the link function (2.10) for the link ij, while
F is the plaquette contribution.

III. RKNORMALIZATION-GROUP FLOW
AND PHASE STRUCTURE

We are now ready to calculate RG flow. Throughout
this paper the scale factor A, and the number of flavor XI
are taken to be three and unity, respectively. All the cal-
culations in this section are made for a sufficiently small
fixed value of Bp( =0.05). Its extrapolation to Bp =0 will

be discussed in the following section.
Flow of the renormalization-group transformations by

(2.3) and (2.13) runs in the infinite-dimensional parameter
space, ([P;q = 1 —ao ),M, G). It may then be convenient
to project it to various subspaces. In what follows we, in
turn, see the one projected to the subspaces of pure gauge
(P„P2), gauge and fermion (P„G), and pure fermion
(G, jM).

The flow diagram of gauge couplings is shown for two
cases in Fig. 3. One is the case with vacuum polarization
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FIG. 3. Flow diagrams of gauge coupling constants projected
onto (P~, j3z) plane. (a) Case with vacuum polarization and
without the fermion self-energy correction. (b) Case containing
both the effects.

but without the fermion self-energy effect [Fig. 3(a)], and
the other is with both effects [Fig. 3(b)]. As seen in Fig.
3(a), trajectories for p", ~2.2 flow into a fixed point at

P~ =0 (strong-coupling phase), and those for P, ~ 2. 3 flow
to larger pI along the Gaussian line (weak-coupling
phase).

When fermion self-energy is taken into account, the
flow shifts a little to stronger coupling; /3& =2.3 turns to
the strong-coupling phase. For pt~ 2.4, trajectories flow
to a weaker-coupling region. In this case the movement
of the trajectories is not so simple due to the roughness of
the approximation. For example, starting from P", =2.4,
the flow moves to a larger P, (namely, weaker coupling)
up to t =6, where t is the number of RG transformations.
But beyond t =6, couplings move back extremely slowly
to smaller P&, which we call "switchback. " This behavior
does not mean in the strict sense that the corresponding
bare theory belongs to the weak-coupling phase. In prac-
tice, however, our calculations become poor in precision
at large RG steps (I =6 in the case of p& =2.4) due mainly
to rapid movement of some fermionic parameters. A, in
particular, decreases quickly. So it appears reasonable to
truncate RG transformations at a reliable step, which
coincides with the location where the "switchback" takes
place for each bare gauge coupling (e.g. , I =11—12 for
P, =3.0).

This might partly be due to the limitations of our treat-
ment of vacuum polarization and the self-energy effect.
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FIG. 4. RG flow projected onto P, -G plane.

In our treatment the former may not be taken into ac-
count enough, since only the innermost plaquette among

2 plaquettes receives the fermionic effect as discussed in
(2.6). The result may therefore be too strongly controlled
by the fermion self-energy effect. Anyway it appears
reasonable to regard in the MK approximation that such
"switchback" in the weak-coupling region after many
RG steps signals the behavior of the weak-coupling
phase.

As to the projection onto the subspace (pt, G) the RG
flow moves as shown in Fig. 4. For each trajectory in
the figure, the starting point corresponds to the bare
theory with certain (/3~, Co). One clearly sees that the
two-ditnensional subspace (p„Co) is divided into two
phases in view of the manner of the movement of the 6.
For stnall P, and all allowed Co values, trajectories move

up to the large-6 region very quickly. This feature is
seen up to the critical point P, . In the weak-gauge-
coupling region beyond p„ trajectories move up first but
eventually go down to small 6 for small Co values, while
for large Co values the trajectories move up quickly to
the large-6 region. Namely, inbetween strong and weak
four-Fermi coupling regions, a critical line runs (see Fig.
7).

Keeping the above features in mind, let us now see the
behavior of the trajectories in the fermionic parameter
subspace (M, G); for small Pt( &/I, ).

(1) In the very-strong-coupling region Pt( ~ 1.0), a
range of bare theories in diff'erent /3, and Co values moves
on to a scaling trajectory as seen in Fig. 5. The function-
al form of the trajectory reads 6 ~ M for large M and 6
values.

(2) As P, increases beyond 1.0, the flow starts to devi-
ate from such a trajectory, and the slope of the trajectory
becomes smaller in the log toG- log, oM Plot.

For large P, ( & f3, ), the behavior is quite different from
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2xlQ

10

20

2 p

FIG. 8. P, tG plot -for Co=0.O.

PG =10 . 4 becomes small as P, ~P, from below and
changes sign at P, [as can be inferred from Figs. 3(a) and

3(b)].
Chiral order parameter ( —gg) is calculated from the

partition function Z by
r

(4.2)

T T V T ~ TP„3
FIG. 9. ( —1tl() vs /3, . CO=0. O. With fermion self-energy

correction (C) and without it (0). The former is fitted by
a exp( —pl+/3, —P, ) with /3, =2.3, a=18.14, and y=12.50
(bold line).

different values of Bp converge to single trajectory.
Therefore the unique trajectory method applies in order
to get the anomalous dimension of 1(1/|. That is, one sets
up a gate on the trajectory, and then count the number of
steps tG of RG transformations necessary to reach the

site 0 Bo

and by taking linear extrapolation to Bp =0. N it,
denotes the total site number, A,', with t and D being the
number of RG iterations and the spacetime dimension
(=4 in our case), respectively. The result is shown in Fig.
9. We observe that ( —fg) at strong gauge couplings is
much larger than that at weak ones. In the weak-gauge-
coupling region, however, ( —Pg) is not exactly zero.
Subtracting the value (=5X10 ') at large P, , therefore,
it is fitted by an essential singularity form
aexp( —y/QP, —P, ). The result is fairly insensitive to
the assumed value of P, . For example, a case for P, =2.3
is shown in the figure.

In Fig. 10 we show the dependence of ( —fg) on the
bare four-Fermi coupling constant Cp for various bare
gauge couplings. In the strong-gauge-coupling region
(P, =0.2 in the figure), all the values are nonzero, which
shows the chiral-symmetry-broken phase. In the weak
one (P, =5.0) we observe a transition from the symmetric
phase at small Co to the broken one at large Co( ~ 1.0).

2x&0

B. Anomalous dimension

In this section we discuss the anomalous dimension of
Figure 11 show. s RG flow for various small values of

bare mass Bo in the symmetric phase (or domain II). One
sees that all bare theories (for Co =0) with these different

0
0 2co

FIG. 10. ( —bP) vs C~ for P, =0.2(o ), 2.0( ), and 5.0(6).



616 MASAHIRO IMACHI AND HIROSHI YONEYAMA 42

—0.2

logiOG

alous dimension of I(tp as follows.
The anomalous dimension y is defined by

log&pmp(A)
F pl

log )pA
(4.5)

-03
where mp is a dimensionful bare mass and A denotes an
ultraviolet cutoff. In the lattice notation, (4.5) reads

-04
t) log&oIIo(tt) —1,

t}log)oa
(4.6)

since mo(A)=Bc(a)/a and A= I/a. By using (4.3) and
(4.6), y is also represented as

loglO M

FIG. 11. RG flow projected onto log&OM log&O-G plane for
go =Q.QI (o ), Q.Q25 ( }, 0.05 (6), and 0.1 (+). p, and Co are
chosen to be 5.0 and 0.0, respectively.

—1

t)»gizmo

y —1.
log )pX BEG

For P, values in question, (4.4) leads to

y =c (P, ) / log)oA, —1 .

(4.7)

(4.8)

gate from various bare points. The scale at the gate gG
and the lattice constant a of a bare point is related by

log&oa = tG log—~pA, + logio(G (4.3)

Figure 12 shows a log, +o tG p—lot for various Pt values.
One sees that for each P„ log, oIIo is linear in tG,

log, oBo = —c (P, )tG+d (P, ), (4.4}

and its slope c(P&) decreases as P& increases. The c(P&) is

read off to be 0.37. 0.28, 0.19, and 0.14 for P, =2.5, 3.0
5.0, and 10.0 in order. This slope is essentially the anom-

For k=3, y reads —0.22, —0.41, —0.61, and —0.71
for P, =2.5, 3.0, 5.0, and 10.0 in turn. This result seems
queer, since it is expected that y is positive and be-
comes vanishing as p, goes to infinity, where the theory
becomes free. This is due to the quantitative roughness
of the approximation. In the free theory, for example,
the mass M ought to change to kM by a scale transforma-
tion by A, . However, in the MK framework, or rather
generally in approximated RG transformations, M does
not transform properly' but by A.,/WE, }. Therefore we

normalize y in (4.8) so that y =0 is correctly repro-
duced in the weak-gauge-coupling limit. Namely, we
take A, to be A,,~ which is fixed at a large P, . We choose
P&=10.0 (some other choice, say, P, =15.0 does not
make much difference in the following result). The es-
timated value of X,z is 1.39. This leads to y =1.64, 1.0,
0.36, and 0.0 for P, =2.5, 3.0, 5.0, and 10.0 (see Fig. 13).

This way of calculations applies to the whole region of
the domain II (chiral-symmetry-unbroken phase). Figure
14(a} shows the behavior of y on an axis Co=0.6. It
looks almost the same as the one of Cp =0.0 case except
that the location of the critical point is shifted to the
weaker gauge coupling side. Figure 14(b) is, on the other

Ip 0

FIG. 12. Iog,+o-tG plot for p, =2.5 (O ), 3.0 {0),5.0 (6},and
10.0 (0). Co is chosen to be 0.0. The gate is chosen in each case
at log&~G =1.5 on the trajectory and the result is insensitive if
the gate is set up at log, oMG =0.5 or 1.0. Iog, OMG is taken to be
0.5 for P, =10.0 case.

0
0

FIG. 13. y vs P, for Co=0.0.

10
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0

0
0 0.5

Cp

FIG. 14. (a) y vs P~ for CO=0. 6. (b) y vs Co for P, =5.0.

V. SUMMARY AND DISCUSSION

We have studied the RG (low of lattice QED in the
MKRG approach. Although it is based upon an approxi-
mate procedure, it still provides us with interesting re-
sults concerning nonperturbative nature of the dynamics
of the model. We have seen that the four-Fermi interac-
tion is induced from the original QED and is relevant for
the physics in the strong gauge coupling. The RG flow,

hand, for an axis Pi=5.0. The value at P, =2.5 in Fig.
13, near the critical point, is fairly large compared to the
value 1.0, predicted in the quenched Schwinger-Dyson
equation approach. ' This merely shows to what extent
the MKRG is quantitatively precise. The above results
are, however, qualitatively good that y is large at the
critical point and monotonically decreases as one goes
away from the critical point, i.e., as the gauge coupling
and/or the four-Fermi coupling becomes weak.

The similar result is a1so obtained in the calculation of
the SU(2) and SU(3) pure gauge theory. ' ' There the
coefficient of the P function obtained by the UT inethod
depends on the scale factor A.. Qualitatively speaking,
however, the MK method predicts correctly the asymp-
totically free behavior in the weak coupling region as well

as the crossover phenomenon in the intermediate cou-
pling region.

the P function (Gell-Mann —Low function), and ( —gg)
show the chiral phase transition. In the broken phase,
the four-Fermi coupling increases rapidly, whereas in the
symmetric one, it is, although induced, eventually at-
tracted by an infrared stable fixed point at G =0. The
anomalous dimension y of gg turns out to be large
along the critical line in (13&,G) plane, and monotonically
decreases as the gauge and/or the four-Fermi coupling
become weak in the chiral-symmetry-unbroken phase.

Some remarks are in order.
A critical line runs in the phase diagram of the funda-

mental and the adjoint representations of the gauge cou-
plings in the compact QED with dynamical fermions. In
Monte Carlo (MC) calculations, the order of the phase
transition is of the first order on most of the critical line,
and turns to second order like near its end point in the
negative region of the adjoint representation. Also the
noncompact QED seems to show a continuous transi-
tion. ' The MKRG also exhibits the qualitatively good
phase structure. This approach, however, appears to be
poor in its quantitative predictions. For example, away
from the Wilson axis in the positive region of the adjoint
representation, we found a stepwise transition in the

P, tG pl—ot. ' lt becomes continuous as one ap-
proaches the axis from above and becomes milder in the
negative region. So the turning location from the sharp
to milder transition seems to be shifted upward compared
to the result of MC simulations, and thus the critical
point on the Wilson axis looks second order, as shown in
Fig. 8. We consider, therefore, that the results shown in
this paper reflect the physics of the region closer to the
second-order critical point obtained by MC simulations.

Our numerical computations become poor in precision
at large number of RG steps because of the rapid move-
ment of some parameters, particularly A. So the result of
the RG flow in the figures shown in this paper are trun-
cated within the reliable steps. We have therefore an an-
alytic look at the recursion equations in the Appendix in
order to make sure that there is an infrared stable fixed
point in the strong four-Fermi coupling phase. In the in-
termediate region of the domain III, however, one cannot
exclude a possibility that there might be other fixed
points locating beyond our truncated region. This may
be an interesting issue which is worth attacking by
some other approaches such as the Monte Carlo
renormalization-group method.

The renormalization-group approach provides the best
understanding of the phase structure of field theory regu-
larized on the lattice. It is therefore important to go
beyond the qualitative step of the approximated RG ap-
proach such as MK in order to obtain more accurate
knowledge. There is some way to improve MKRG (Ref.
28). Also some attempts based upon real-space or
momentum-space RG approaches have been made in
gauge-fermion systems, ' although these are of a
different context from the present paper.
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CG
GG=

2
AG

and

O'"I —[1 (—F, /F ) ]e e

(F /F )2A
(A3)

APPENDIX ~G (Fi/Fo)
(A4)

and

6'"=—(6+1) +1,
6"'=(6+1)'—1,
6'"= —(6+1)'+1,
6' '=(G+1) —1,

(Al)

M"'=2M +6+1,
(1)2 (I)

M =M M M +G —1

2M

(3) (2) 2M' 'M(6 + 1 )+(G' '+ 1 )

M( )+2M2

(4) i3) M' '(M' "+2M )(G + 1 )+(6' ' —1 )

4M")M

(A2)

Convolutions with the gauge field (2.13) yield

The recursion equations (2.11) are rather intricate. By
using normalized couplings M and 6, however, they be-
come quite simple. In this appendix we present analytic
forms for the fermionic recursion equations, and show
that there exist infrared stable fixed points in the strong
(6~ ae ) four-Fermi coupling limit.

Let the four-Fermi coupling before each RG transfor-
mation be 6 and the mass parameter be M. Consider a
transformation (G,M}~(6',M'), which consists of de-
cimations, convolution with the plaquettes, and bond
moving. It is convenient to define normalized quantities
G" and M "(i = 1, . . . , 4) at each stage of decimations in
(2.11) by G ':—C ' /A ' and M ' =8 ' /A '. They are
successively given by

These are further multiplied by a constant factor a due to
the bond-moving procedure, yielding

G'=aGG, M'=aMG . (AS)

When the four-Fermi coupling is large as in the case of
the RG flow in the domain I, 6" in (Al) become much
simpler

6(i) Gi +1 (i 1 4) (A6)

In the deeply stong-gauge-coupling region in the
domain I, we found that the renormalized trajectory is
given by G ~ M . So by letting 6 =cM in (A2) one has

M'"=(2+c)M
M' '=(4+3c)M
M' '=(c +8c+8)M
M' '=(Sc +20c+16)M

(A7)

6~
M~2

6(4)
M(4)2 (A8}

Thus in the domain I the renormalized trajectory is given
by

6' 6'
=CM' m" (A9)

where c =a(5c +20c+16) and c'=c /c. Therefore
one finds that the RG transformation keeps the relation
G ~M, but that its proportional constant changes. This
means that an infrared fixed point exists at
(G,M) =( co, ao }.

Although both the G and M are affected by the vacuum
polarization (A3) and (A4} its contribution cancels in the
ratio G/M:
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