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A method for calculating the production of direct photons beyond the leading-logarithm approxi-
mation has been developed, utilizing a combination of analytic and Monte Carlo integration
methods. The method is described and examples are given, including a comparison with experimen-
tal results for the inclusive single-photon invariant cross section and the photon-plus-jet cross sec-
tion. The flexibility of the Monte Carlo technique makes it straightforward to calculate a variety of
observables and to take into account experimental cuts while still retaining the next-to-leading-
logarithm terms.

I. INTRODUCTION

The production of large-transverse-momentum pho-
tons has long been recognized as an excellent process for
studying the dynamics of hard-scattering processes. '
The advantages of studying such direct photons are both
numerous and well known. Briefly, the process is simple.
To first order only two subprocesses contribute: gq ~yq
and qq ~yg. Experimentally, photons are easier to
reconstruct in a detector than are jets. Theoretically, the
photon's simple coupling makes it much easier to per-
form next-to-leading-order calculations which are neces-
sary for precise tests of @CD. Finally, the dominance of
the gq~yq subprocess in many kinematical regions is
useful for determining the gluon distribution within the
proton.

This paper presents a Monte Carlo method for per-
forming a next-to-leading-logarithm calculation of direct
photon production. Similar methods have been used to
perform next-to-leading-logarithm calculations for the
photoproduction of jets. In order to illustrate the utility
of this approach, results for the inclusive invariant cross
section are compared to data taken at center-of-mass en-
ergies ranging from 23 GeV to 1.8 TeV. Results for the
photon-plus-jet cross section are also presented and com-
pared with existing data.

The leading-logarithm approximation lies at the heart
of most hard-scattering calculations. One of the weak
points in such a calculation is that one has only an
order-of-magnitude estimate for the renormalization and
factorization scales. Typically, these scales are expected
to be of the order of the square of the hard-scattering
momentum transfer, e.g., pz, of the observed photon in a
single-photon inclusive calculation. Variations in these
quantities can lead to significant changes in the normali-
zation and, to a lesser extent shapes, of the resu1ting pre-
dictions. Thus, predictions of absolute normalizations
are subject to large theoretical uncertainties when the
leading-logarithm approximation is used. Relative nor-
malizations, however, are less subject to these uncertain-
ties. Representative examples of such calculations are re-
viewed in Ref. 1.

In order to achieve a higher level of theoretical pre-
cision, it is necessary to go beyond the leading-logarithm
approximation; one must at least include the next-to-
leading logarithms. In many instances such calculations
show a 1ess dramatic dependence on the renormalization
and factorization scale choices than in the case where
only the leading logarithms are used. However, retaining
subleading logarithms leads, in general, to more complex
calculations. Furthermore, it is often difBcult to calculate
the quantities which are observable in a given experi-
ment, taking into account the acceptances of the detec-
tor, dim'erent jet definitions, etc. In addition, each new
observable requires a new calculation. For this reason,
we have utilized a Monte Carlo technique for performing
the next-to-leading-logarithm calculations. This tech-
nique is straightforward to implement and does not re-
quire an inordinate amount of computer time. Further-
more, new observables can be calculated by simply modi-
fying the histog rammed quantities. The additional
theoretical expressions are neither long nor complicated.

The remainder of this paper is organized as follows.
The basic techniques used in the Monte Carlo next-to-
leading-logarithm calculation are presented in Sec. II.
Section III contains a discussion of the results obtained
using the techniques presented in the previous section
and Sec. IV contains summary remarks. Finally, there is
an appendix which contains the expressions used in the
construction of the Monte Carlo program. A preliminary
report of some of these results was given in Ref. 3.

II. MONTE CARLO FORMALISM

The basic Monte Carlo technique has been discussed in
both Refs. 3 and 4. However, a brief review of both the
motivation and the notation will be of use in understand-
ing the applications to be discussed in the next section.
The lowest-order subprocesses which give rise to high-pz
photons are the 0 (aa, ) subprocesses gq ~yq and
qq~yg. The characteristic signature of both of these is
that the photon is isolated from the other hadrons in the
event and it recoils against a balancing high-pz jet which
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appears on the opposite side of the event. In a leading-
logarithm calculation, the effects of higher-order process-
es show up via the use of the strong-running coupling and
scale-violating parton distributions. These latter func-
tions are calculated using collinear kinematics so that the
underlying event structure is expected to be similar to
that given by the lowest-order subprocesses. %hen the
O(aa, ) subprocesses are considered, the situation be-
comes more complex. There exist regions of phase space
where the photon can be emitted collinear with a quark,
corning from such subprocesses as qq~qqy. Here the
photon will be accompanied by hadrons fragmenting
from the collinear quark so that it is no longer isolated.
Such contributions collectively constitute the bremsstrah-
lung component of the photon signal. In an inclusive cal-
culation, the unobserved quanta are integrated over. In
the case of the bremsstrahlung contributions the integra-
tion over the angle between the photon and the quark
from which it was emitted builds up a logarithm whose

argument is of the order of the transverse momentum of
the photon. Since the bremsstrahlung photons are emit-
ted predominantly along the direction of motion of the
parent parton, it is convenient to define a fragmentation
function which gives the probability for the parton to
emit a photon. Because of the pointlike nature of the
photon-quark interaction, it is possible to compute the
leading-logarithmic behavior of the photon fragmenta-
tion function, including the corrections due to additional
parton branchings. The resulting fragmentation func-
tions are O(a/a, ) since they possess a logarithmic
growth coming from the integration mentioned above. In
the leading-logarithm approximation the bremsstrahlung
contribution consists of the O(a/a, ) fragmentation func-
tions convoluted with the various O(a, ) two-body sub-
processes, resulting in a contribution of 0 (aa, ). The sig-
nature of the bremsstrahlung contribution is that the
photon is balanced by a jet on the opposite side of the
event and it is accompanied by nearly collinear hadrons
on the same side of the event.

The leading-logarithm approximation, with the corre-
sponding collinear kinematics, gives a good qualitative
description of the event structure observed in the produc-
tion of high-pT photons. ' However, in order to provide
a more quantitative description, it is necessary to go
beyond this level of approximation. The next step in a
systematic program for increasing the level of precision
of the calculations would be to treat the kinematics of the
O(aa, ) 2—+3 subprocesses exactly. In so doing, various
collinear singularities will be encountered and a method
for handling these must be employed. In addition to the
three-body contributions there are one-loop corrections
to the two-body subprocesses, as we11. A conventional
higher-order calculation of the inclusive photon cross
section would proceed along the following lines. First,
the singularities would be regularized using an appropri-
ate method such as dimensional regularization. The ul-
traviolet singularities would be subtracted after specify-
ing a renormalization scheme such as the modified
minimal-subtraction (MS) scheme. The collinear singu-
larities would be factorized and absorbed into the corre-
sponding distribution and fragmentation functions. Fi-

nally, the divergences occurring when one of the final-
state partons becomes soft would be canceled by corre-
sponding infrared singularities coming from the loop
graphs. The result is a singularity-free prediction for the
inclusive photon cross section. Suppose, however, that
one was interested in an observable which involved simul-
taneously observing the photon and another particle or,
perhaps, a jet. This would involve limiting the region of
integration for the three-body final states. However, the
collinear and soft singularities must still be treated so as
to arrive at a singularity-free result. It is here that the
fiexibility of Monte Carlo techniques can be profitably
employed. The basic idea is to partition the three-body
phase space into regions which contain soft singularities,
collinear singularities, or are singularity-free. The singu-
lar regions are integrated by hand in the standard
fashion, thereby allowing the singularity cancellation and
factorization to occur, as usual. The remaining phase-
space integrations are performed using Monte Carlo tech-
niques. In this way, one can change the calculation easily
to re6ect different experimental cuts, jet definitions, etc.
Of course, the precise boundary between the regions
where analytic or Monte Carlo integration techniques are
utilized should not affect the ultimate result.

For the purpose of this section, the four-vectors of the
two-body and three-body subprocesses will be labeled by
p, +p2 ~p3+p4 and p, +p2~p3+p4+p5, respectively.
Lorentz scalars s; = (p; +p ) and t j = (p; —

pj ) will be
used. The division of the three-body phase space into
singularity-free and singular regions is implemented by
the introduction of two theoretical cutoff parameters 5,
and 5, . For the three-body subprocesses, the soft singu-
larities are associated with the phase-space region where
one final-state gluon becomes soft. The soft region is
defined to be that where the relevant parton energy in the
subprocess rest frame becomes less than 5,+s&z/2. If 5,
is chosen to be suSciently small, then the relevant three-
body subprocesses can be evaluated using the soft-gluon
approximation wherein the the gluon energy is set to zero
in the numerator of the expression. The resulting expres-
sion is then easily integrated over the soft region of phase
space. At this stage, this integrated soft piece contributes
to the two-body part which contains the one-loop terms.
The soft and infrared singularities can then be canceled
explicitly. Next, the collinear regions of phase space are
defined to be those where any invariant (s;, or t, )be-.
comes smaller in magnitude than 5,s&2. If 5, is chosen
suSciently small, then in each collinear region the
relevant subprocess can be evaluated using the leading-
pole approximation. The result is easily integrated in n

dimensions, thereby explicitly displaying the collinear
singularities. These are then factorized and included in
the relevant structure functions or canceled with corre-
sponding singularities in the two-body expressions. At
this point, the remainder of the three-body phase space
contains no singularities and the subprocesses can be
evaluated in four dimensions.

The calculation now consists of two pieces —a set of
two-body contributions and a set of three-body contribu-
tions. Each set consists of finite parts, all singularities
having been canceled, subtracted, or factorized. Howev-
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er, each part depends separately on the two theoretical
cutoffs 5, and 5, . Each by itself has no intrinsic meaning.
In fact, for very small values of 5, we shall see that loga-
rithms of the cutoff will force the two-body contribution
to become negative. However, when the two- and three-
body contributions are combined to form a suitably in-
clusive observable, e.g., an inclusive single-photon invari-
ant cross section, all dependence on the cutoffs will can-
cel. It will turn out that the answers are stable against
variations of these cutoffs over quite a wide range. Physi-
cally, this is as it should be. The cutoffs merely serve to
distinguish the regions where the phase-space integra-
tions are done by hand from those where they are done
by Monte Carlo techniques. When the results are added
together, the precise location of the boundary between
the two regions is not relevant. Thus, the answer be-
comes independent of the cutoffs. Of course, this is valid
only over a certain range of cutoffs values. The cutoffs
must be sufficiently small that the soft-gluon and
leading-pole approximations are valid in the regions near
the edge of phase space where they are used. Further-
more, when these regions are integrated over, terms
which vanish in the limit of zero cutoff are discarded.
This provides an additional reason for requiring small
cutoffs. Finally, the cutoffs must be chosen so that the
experimental cuts placed on an observable do not inter-
fere with the cancellation referred to above. In general,
this also requires small values of the cutoffs. The results
reported below are stable to variations in the cutoffs, thus
providing a check on the calculation. Calculating a
different observable simply requires forming the ap-
propriate histogram. This flexibility is the major advan-
tage of the technique. The price paid for this ease of use
is that two sets of Monte Carlo "events" must be generat-
ed and added together. In practice, this is not a major
imposition.

From a theoretical standpoint, it is often desirable to
suppress the bremsstrahlung contribution. For example,
in determinations of the initial-gluon distribution one
seeks to maximize the relative contribution of the
gq~yq subprocess. In addition, it is often necessary to
apply an "isolation" cut on the electromagnetic signal in
order to aid in separating the true high-pz photon signal
from signals from other sources. At the leading-log level
the effect is to essentially remove the photon-
fragmentation-function contribution. Alternatively, the
fragmentation-function logarithm can be modified by
changing the argument to one which depends on the
photon-isolation angle. ' However, an angle cut alone is
not sufficient when higher-order processes are considered.
Suppose, for example, that an isolated photon was
defined as one which had no accompanying hadrons
within a cone of half-angle 5&. There is the possibility
that a very soft gluon could be inside the cone, but with
an energy below the threshold for detection. But such
soft gluons give rise to infrared singular contributions
which must be treated properly in order to obtain sensi-
ble predictions. Therefore, the operational definition of
an isolated photon must take this into account. One
method is to define an isolated photon as one for which
the associated hadronic energy in a cone of half-angle 5z

about the photon direction is less than a fraction ez of
the photon energy. This definition allows for the possibil-
ity of some soft partons accompanying the photon within
the cone. To see why this is important, consider the fact
that there will be some infrared singular terms from the
one-loop graphs contributing to the subprocess gq~yq.
These singularities cancel against corresponding soft
singularities generated by integrating the soft gluon in the
subprocess gq ~yqg over aB of the allowed phase space.
If that phase space is limited by putting an absolute veto
on accompanying hadronic energy in some region of
phase space, then the cancellation will be incomplete.
Therefore, the modified isolation definition, which allows
accompanying soft hadronic energy, must be used. Addi-
tional comments concerning the implementation of this
isolation criterion are given in the Appendix.

III. RESULTS

At this point, a survey of some typical results will serve
to outline the versatility and convenience of this ap-
proach. The detailed expressions utilized in the calcula-
tional scheme outlined above are given in the Appendix.
For all subsequent calculations, the set-1 parton distribu-
tions of Ref. 11 will be used with A=200 MeV. This cor-
responds to adopting the "physical" parton distribution
definition wherein the distributions are defined by the
deep-inelastic structure function F2. (The set-I parame-
trizations were obtained in the leading-logarithm approx-
imation. Accordingly, only the one-loop anomalous di-
mensions and running coupling were used. However, for
the purpose of this comparison, the results can be con-
sidered as a parametrization of the data. In addition,
AMs=200 MeV has been used. ) For the photon fragmen-

tation functions, the parametrizations of Ref. 12 will be
used. A single-scale Q =pr will be used for the renor-
malization and factorization scales. In addition, the
next-to-leading-logarithm predictions have been obtained
using the two-loop expression for a, with four flavors.

For the first example, consider the single-photon in-
variant cross section. In Fig. 1 the results for proton-
proton collisions at g =0, p&=6 GeV, and &s =23 GeV
are shown versus the soft cutoff 5, for a fixed value of the
collinear cutoff 5, . The two-body and three-body contri-
butions are shown separately and summed. Note that as
5, is decreased the two-body contribution becomes nega-
tive. This is a result of the explicit logarithmic depen-
dence of the two-body part on 5, and does not corre-
spond to the behavior of a physical cross section. On the
other hand, the three-body part shows an increase as 5,
decreases. The net result, for the sum of the two terms is
constant, within the Monte Carlo statistics, over the
range of 5, shown. Figure 2 is a similar set of plots, this
time as a function of 5, with 5, fixed. Again, the cancel-
lation takes place, leaving a result independent of the
cutoffs. This cutofF independence is a necessary, though
not sufficient, check on the calculation.

The dependence of the inclusive single-photon invari-
ant cross section on the scale Q is illustrated in Fig. 3.
The invariant cross section at q =0 is plotted for several
values of p~ versus the parameter n, where both the re-
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FIG. 1. The inclusive single-photon invariant cross section at pT(y)=6 GeV and g~=0 for pp collisions at &s =23 GeV. The
two-body and three-body contributions together with their sum are shown vs the soft cutoff 5, at 5, =0.001.

normalization and factorization scales have been
parametrized as Q =npT Bot.h the O(aa, ) and the full

O(aa, ) results are shown for three values of pT. Note
that the two-loop running coupling has been used for
both results, thereby providing a consistent expansion pa-
rameter so that one can judge the degree of convergence
represented by the results. The O(aa, ) result is a mono-
tonically decreasing function of n for all values of pT,
whereas the O(aa, ) result exhibits a parabolic shape
which is most evident for large values of xT (xT ~ 0.25),
where xT=2pT/~s. For small values of xT (xr &0.25)
the two results are nearly parallel and the parabolic turn-
over of the 0 (aa, ) result is realized only for very small
values of n. On the contrary, for larger values of xT the
parabolic turnover of the O(aa, ) result occurs near
n = 1. This behavior is further illustrated in Figs. 4 and 5
which show results for pp collisions at ~s =630 GeV and
g&=0. The curves correspond to xT=0.064, 0.095, 0.13,

0.51, and 0.70. The full O(aa, ) results are nearly flat
over the calculated Q range for most of these values of
xT. The fact that the next-to-leading-logarithm results
are less sensitive to variations of the scale Q over a large
range of xT is one of the motivating factors for perform-
ing such a calculation. However, the sensitivity to the
scale choice is still significant for small values of xT.

Note that the ratio of next-to-leading-logarithm and
leading-logarithm results is what is commonly referred to
as the "Efactor. " Figures 3—5 show that this ratio is not
just a simple multiplicative factor, but instead is in gen-
eral scale dependent. The K factor also varies between
different observables for the same values of Q, as was
shown in Ref. 3. This illustrates the need for complete
next-to-leading-order calculations, as opposed to approxi-
mate methods for estimating E factors, in processes in-
volving initial-state quarks and gluons.

Next we compare the Monte Carlo results with data
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FIG. 2. Same as Fig. 1 except the results are shown vs the collinear cutoff 5, at 5, =0.05.
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8 GeV vs n, where Q'=npr~ has been used for both the factori-
zation and renormalization scales. Both the leading-logarithm
and next-to-leading-logarithm results are shown.

from experiments with center-of-mass energies ranging
from 23 GeV to 1.8 TeV. Some of the experiments have
photon-isolation cuts whereas others do not. The
photon-isolation cuts and other acceptance cuts are easily
incorporated in the Monte Carlo approach illustrating

FIG. 5. Same as Fig. 3 except for pT(y)=80, 160, and 220
GeV.

the versatility and power of the method.
Figures 6 and 7 compare the next-to-leading-logarithm

results for the single-photon invariant cross section at
~s =23 GeV with the WA70 data of Ref. 13. Figure 6
shows the data for the invariant cross section as a func-
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FIG. 6. Comparison between the predictions for the inclusive
single-photon invariant cross section vs pT(y ) for
—0.35 & xF &0.45 and the WA70 data from Ref. 13. The upper
and lower curves correspond to Q =—'pr and pr, respectively.
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tion ofpT(y) for —0.35 (xF (0.45 and Fig. 7 shows the
data as a function of xF (x~=2pI/v s ) for three pT in-
tervals. In both figures, the upper and lower curves cor-
respond to Q =

—,'pT and pT, respectively.
Figures 8 and 9 compare the next-to-leading-logarithm

results for the single-photon invariant cross section at
&s =630 GeV with UA1 and UA2 data from Refs. 6 and
7, respectively. Figure 8 shows the data as a function of
pT(y) for pe=0 and g„=1.4 and Fig. 9 shows the data
as a function of gr for three values ofpT(y ). The pairs of
curves again correspond to Q =

—,'pT and pT. Photon-
isolation cuts have been simulated by excluding any event
having hadronic energy EH )0. 1E~ in a cone of angle 30'
about the photon momentum vector in the hadron-
hadron center-of-momentum frame.

Figure 10 compares the next-to-leading-logarithm re-
sults for the single-photon invariant cross section versus

pT at &s = 1.8 TeV with the Collider Detector at Fermi-
lab (CDF) data of Ref. 14. The two curves correspond to
the Q choices used in the preceding figures. It is in-

teresting to note that the width of the band correspond-
ing to the results for Q =

—,'pT and pT shrinks in size as
the center-of-mass energy increases. At fixed target ener-
gies the range of x T covered is such that the scaling viola-
tions in the parton distribution functions gives a
significant decrease in the cross section as the value of n

is increased, i.e., when Q is increased at fixed pT. In ad-

dition, the running coupling also decreases, thereby add-
ing to the e6ect. However, at collider energies the typical
values of x T are smaller, and the scaling violations do not
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cause the parton distributions to decrease as rapidly with
increasing Q . Indeed, for sufficiently small values of xz,
the distributions actually increase. Thus, even when the
running coupling is taken into account, there is less varia-
tion with Q in the small-xz region.

The full power of the Monte Carlo method is best illus-
trated by considering observables which depend on corre-
lations between the photon and another parton. For ex-
ample, consider the photon-plus-jet cross section as mea-

FIG. 10. Comparison between the predictions for the in-
clusive single-photon invariant cross section vs pT(y) for g~=0
and the CDF data from Ref. 14. The upper and lower curves
correspond to Q'= 4pr and pr, respectively.

sured by the Axial Field Spectrometer (AFS) Collabora-
tion and presented in Ref. 15. The use of Monte Carlo
integrations allows the next-to-leading-logarithm calcula-
tion of the photon-plus-jet cross section to be easily per-
formed. ' The inclusive photon cross-section results cor-
respond to ~rlr~ ~0.7 and they have been corrected for
the effects of the isolation cut used in defining the photon
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from Ref. 15. Part (a) is the single-inclusive photon invariant cross section at g~=0 and part (b) is the photon-plus-jet double-
inclusive cross section. The upper and lower curves correspond to Q =—'pz and pz, respectively.
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signal. Accordingly, the full bremsstrahlung contribution
has been included in the calculation. The photon-plus-jet
experimental results were obtained using a clustering al-
gorithm to reconstruct the jets. The present calculation
was designed to duplicate this procedure at the parton
level. For the two-body contributions the requirements
were simply ~g~~ ~0.7 and ~7},«~ ~0.3. For the three-
body final states ~rtr~ ~0.7 was first required. Then, par-
tons in the region b,/~ 120' and ~ri, «~ ~0.9 were com-
bined to form a single jet. Here b,p is the azimuthal angle
between the photon and the relevant parton. Events
which had a parton combination in the smaller region
defined by b,$~120' and ~rij«~ ~0.3 were then used to
calculate the cross section, provided that they satisfied
S»-0.3~& .

y

In Fig. 11(a) predictions for the single-photon invariant
cross section are compared to the AFS data. ' The two
curves shown in Fig. 11(a) correspond to Q =

—,'pz.

(upper) and pr (lower). The band described by these two
curves can be seen to yield a good description of the data.

In Fig. 11(b) predictions for the photon-plus-jet cross
section der/dry dg, «dpr are compared to the experi-

y

mental results from Ref. 15. The upper and lower curves
correspond to the two choices used in Fig. 11(a). Again,
the band formed by the theoretical curves coincides rath-
er well with the experimental results. In particular, note
that in neither figure was it necessary to introduce an ar-
bitrary multiplicative E factor.

It is a straightforward procedure to calculate other
types of observables, such as the away-side-jet rapidity
distribution for fixed-photon rapidity and transverse
momentum. Different jet definitions or photon-isolation
criteria are also easily incorporated.

IV. SUMMARY AND CONCLUSIONS

Continued progress in our understanding of large-
momentum-transfer processes depends on our ability to
increase the level of precision of the theoretical predic-
tions. The qualitative understanding provided by
leading-logarithm calculations, while valuable, is
insufficient for some purposes such as improved deter-
minations of parton distributions and detailed tests of the
underlying dynamics. Increasingly, the need for next-to-
leading-logarithm calculations has become apparent. Ad-
ditionally, a method for performing such calculations

I

which possessed the capability of being adapted to
differing experimental situations also became clear. With
conventional analytic techniques each observable requires
a new calculation and it becomes difficult to match
different jets definitions, experimental cuts, etc. In this
paper we have shown how a Monte Carlo —based tech-
nique can be used to develop a flexible and easy-to-use
program for calculating observables with next-to-
leading-logarithm accuracy in direct photon production.
The methods can easily be extended to other reactions as
well.

In order to demonstrate the fiexibility of this tech-
nique, results for various single- and double-inclusive ob-
servables have been presented, some of which include
cuts to eliminate the photon bremsstrahlung contribution
in favor of the pointlike contribution. The observables
are insensitive to the values chosen for the theoretical
soft and collinear cutoffs used in intermediate stages of
the calculation, a necessary though not sufficient con-
straint on the validity of the results. It has also been
shown that the sensitivity to the factorization and renor-
malization scales depends on the observable and on the
kinematic region in question. In particular, the variation
with Q

~ in the region covered by available collider data is
rather small.
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APPENDIX

The expressions used in the next-to-leading-logarithm
Monte Carlo calculation of direct photon production are
summarized in this appendix. The treatment of the two-

body, three-body, and bremsstrahlung contributions is
given separately.

1. Two-body contributions

In this section the Mandelstam variables s, t, and u are
the same as s,z, t», and tz3. In addition, it is convenient
to scale t in order to obtain a variable u =1+t /s which
ranges from 0 to 1. In terms of these variables the full
contribution has the form

NLL dCT do do NLL

cr2b z (AB 7'+I)= g du dx, dxb (gq Yq)+ (qq~1'g)+Gg/A(x M )Gq/B(xb, M ) (gq 1'q)2 body dU dv

NLL

+Gq/~(x„M )G /~(xb, M ) (qq~yg}

In addition to the terms shown in Eq. (Al), those with the beam and target interchanged must be included, as well. The
two contributions labeled do " /du include both the two-body subprocesses calculated to 0 (aa, ), the soft contribu-
tions from the O(aa, ) three-body processes, and the contributions from the hard collinear singularities in the final

state. The singularities associated with the initial-state parton distributions have been factorized and absorbed into the
initial parton distributions. The terms denoted by do /du are the remnants of the hard collinear singularities after the
factorization process has been performed.



42 NEXT-TO-LEADING-LOGARITHM CALCULATION OF DIRECT. . . 69

The individual terms in Eq. (Al) are

do NLL C a, (P')
(gq~yq)= a—,(p )TP+ — (TPAO+80),

dv 8 ' 8 2m

with

Ao= —
—,'(11NC 2—N+)ln +Nc[ —,', (11NC 2N+—)+2ln5, ]ln +Nc 41n 5, + —,

' in~ +Li&
p

+2ln5, ln

Nc+ CF— +41n 5, + ln + ln —+2Li2 +41n5, 1n
s Q S s

5,M—CF —', +ln 5, +(21n5, +—', )ln +A,FcCF +—', +—,
' ln5, —ln'5,

Nc
B = — C—0 F 2+ — 7r +ln —+ 2+ —ln +21nu 2 2t S 2

—t QS

$ Q Q $ 2

$ Q—3CF—ln
Q $

TP= — —+—$ Q

Q s

and

C eqCF .
s

Here 5, and 5, are the soft and collinear cutoff parameters introduced in Sec. II, Liz(x) is the dilogarithm function, M
is the factorization scale, and p is the renormalization point. In addition, e is the quark fractional charge, CF =

—, is
the quark-gluon vertex color factor, Nc is the number of colors, and NF is the number of active quark flavors. The pa-
rameter k„cdepends on the factorization convention chosen. For this calculation, A,FC= 1 has been used, as is discussed
later in this section.

The terms for qq ~yg are similar:

with

der C — C &s(P )
(qq yg)= a, (p, )TP—+— (TPAO+80),

dU 3 3 2m'

Ao= —
—,'(11Nc 2') ln +— (ln5, ——', ) —Nc( —,'+21n5, )ln5,

s NF

p

(A3)

67
18

2+ln 5, —21n ln +21n5, ln-—t —u ut

3 s s S

+Cz ln +ln +4ln 5, —7+ +(3+41n5, )ln +A,FcC+ 9+ +31n5, —21n 5,
s s 3

cB0= CF
2

21n
2

+ 2+ — ln + 2+ — ln +3CF —ln +—ln
tu Q 2 Q 2

—Q Q —t
t s Q s u s t s

and

t uTP= —+-
u t

The remnants of the factorization of the hard collinear singularities are given by

da C~(P) ' s*dz xb
(gq~yq)= — TP G ~„(x„M ) G ~s,M Pqq(z)+Gs)s

dv 8 2m. ~b Z Z
,M P» (z)

Z

1 —Sb

+Gq~s(xq, M ) Gs~q, M P~(z)+Gq)„,M Psq(z)x. z ~ z' Z

and
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(qq~yg)= — TP 6 z„(x„M ) 6~&&
',M' Pqg(z),M P (z)+6 is z

' 'dz
+G is(xb, M ) f 6 i„

0
,M P (z)+6 i„,M P (z)

z z
(A5)

where

P,,(z) =P,,(z)ln
1 —z s

5,
M

P(z—) A,Fc—FJ(z) .

1+zP (z, e)=Cb. —e(1 —z)
1 —z

Pqg(z, e}= [z +(1—z) —e],1

21—e

Pgg(z, e) =2Nc + +z(1—z)2 1 —z
1 —z z

1+(1—z)
Pgq(z, e) =C~ Ez

z

The Altarelli-Parisi splitting functions in 4—2e dimen-
sions are, for 0 & z & 1,

The kinematic invariants s;J and t;1 are first tested for soft
and collinear singularities. If an invariant for a subpro-
cess falls in a soft or collinear region of phase space, the
contribution from that subprocess is not included in the
cross section.

3. Photon-bremsstrahlung contributions.

The photon-bremsstrahlung contribution to direct pho-
ton production is calculated by convoluting the 2~2
QCD subprocesses with the photon fragmentation func-
tion and the appropriate parton distribution functions:

eb„= g f6„„(x.,M')
abed

X Gb &s (xb, M )Dr &, (z,M/)

(ab ~cd )dx, dxbdz dv .

and can be written

P/(z, e) =P, (z)+eP"(z),

which defines the P~ functions. The functions Fqq and

Fqs depend on the choice of factorization convention.
The choice A,Pc=0 is the universal convention and
A,„C=1 is the physical convention. We adopt the physi-
cal convention and use

The squared matrix elements for the 2~2 QCD sub-
processes can be found in Ref. 1.

At the next-to-leading-log level there are collinear
singularities associated with final-state bremsstrahlung
which must be factorized and absorbed into fragmenta-
tion functions. This will modify the leading-log quark
fragmentation functions as

DNLL( ) DLL (z)

F (z) ='CF ln
1+z 1 —z
1 —z z

+2z+33 1

2 1 —z + Prq(z)ln z(1 —z)5,
27T M

t

Prq(z)—

Fqg(z)=[z +(1—z) ]in
1 —z +Sz(1—z) —1 .

2. Three-body contributions

The cross section for this contribution is

( AB ~&+X)
= g f G, q„(x„M )Ghats(xb, M )

The functions F and Fgq are not uniquely determined in

deep-inelastic scattering; we set them to zero, although
other choices are possible. '

(the gluon fragmentation function is unchanged}. The
new term is the remnant of the colhnear singularity after
the factorization process has been performed. If a
photon-isolation cut of the type discussed in Sec. II is in-

cluded, then the range of z is reduced to
1/(1+eb ) &z & 1. For the leading-log fragmentation
functions we use the following parametrizations from
Ref. 12:

e (2.21 —1.28z+1.29z )z

+0.0020(1 —z} z

Xd&(ab~ycd )dx, dxb .

The squared matrix elements for the 2~3 photoproduc-
tion subprocesses can be found in Refs. 5 and 17. The in-
tegration over three-body phase space and dx, dx& is
done numerically by standard Monte Carlo techniques.

zD " (z Q )= F(1—z)' z
0. 194

P/g 7

8

where F =(a/2qr)ln(Q /A ) and A=200 MeV. The
functions Pz (z) and Prq(z) are given by the functions

Pgq(z) and Pgq(z) with CF replaced by e .
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