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On predicting correlations from Wigner functions
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A proposal for obtaining predictions of correlations between positions and momenta from the
peaks of the Wigner function is studied. An implementation of this proposal based on approximate
Wigner functions of a special form obtained from semiclassical wave functions is shown to be un-

reliable because the exact Wigner functions do not have this form. This approach has been used to
argue that classical general relativity is predicted from the semiclassical wave function of the
Universe, and this must now be reconsidered. A new measure of correlation, involving projection
onto coherent states, is proposed for predicting classical correlations from a general Wigner func-
tion. In the harmonic oscillator, it predicts a correlation of position and momentum given by the
Hamiltonian equated to the classical energy.

Halliwell' has made the proposal that correlations of
coordinates and momenta can be predicted from the
peaks of the Wigner function of an isolated quantum sys-
tem. This proposal is valuable because a prediction of a
classical correlation could be used to recover classical be-
havior from a quantum system. Several authors' have
considered the application of Wigner functions to quan-
tum cosmology, and Halliwell' has argued that classical
general relativity can be recovered from the Wigner func-
tion of the semiclassical wave function for the Universe.
This result is very important. Indeed, one of the criteria
proposed for defining the wave function of the Universe
is that classical correlations are predicted when the
Universe is large (and therefore, by presumption, semi-
classical).

This paper examines the problem of predicting correla-
tions from Wigner functions. Results in quantum
cosmology are not subject to experimental verification, so
their only test is mathematical consistency. It is especial-
ly important to check approximations of unknown accu-
racy against exact results to verify their validity, as a bad
approximation may corrupt otherwise good mathematics.
The exactly soluble example of the harmonic oscillator is
used to show that the prediction in Ref. 1 of classical
correlations from semiclassical wave functions is
unjustified. The difficulty is that a measure of correlation
applicable to general Wigner functions is not proposed,
but instead a crude approximation is used to produce
Wigner functions in a highly peaked (5-function) form.
Since these approximate Wigner functions bear no resem-
blance to the exact Wigner functions, the reliability of
their predictions is in doubt. In particular, the con-
clusion that classical general relativity is predicted from
the Wigner function of the semiclassical wave function of
the Universe is not justified by the argument of Ref. 1.

Halliwell's suggestion of predicting correlations from
the peaks of the Wigner function is a good one. To im-
plement it, a measure of the correlation of coordinates
and momenta is proposed. As motivation, the meaning
of a correlation between conjugate variables in a Wigner

function is considered. The correlation coeScient, fa-
miliar from probability and statistical mechanics, is
behind the prescription for correlation in Ref. 1, but it is
shown not to be the desired measure of correlation. A
measure is needed which is sensitive to the localization of
the Wigner function and which approximates the classi-
cal ideal of interchangeable measurements of conjugate
variables. To meet these criteria, the overlap integral be-
tween a Gaussian (coherent-state) Wigner function and
the Wigner function under consideration is offered as a
measure of correlation.

This measure of correlation is applied to interpret the
exact Wigner functions of the harmonic-oscillator energy
eigenstates. It is found that, with a decreasing probabili-
ty at higher energy, the position and momentum are
correlated by the Hamiltonian equated to the classical en-
ergy. This differs from the result predicted in Ref. 1.

The Wigner function ' is a joint quasiprobability dis-
tribution on phase space obtained from the wave function
by the transformation

F(x,p, t)= I du 0 (x —u/2, t)
2m.R

X e '~" "g(x + u /2, t ) .

It carries information about both the coordinate and
momentum probability distributions as shown from the
properties

f dp F(x,p, t)= ~g(x, t)~',
(2)

dxF xp, I, = p, I;

where g(p, t) is the wave function in momentum space.
The Wigner function is positive definite for Gaussian
wave functions, but is not in general and is therefore not
a true joint probability distribution. The prefix "quasi" is
used to reflect this. Furthermore, the coordinate and
momentum wave functions are related by the Fourier
transform, so not all joint (quasi)probability distributions
are Wigner functions. This indicates that interpretation
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q( r) C(x t)er s(x, ()/'fi (3)

Evaluating (1) after expanding S in a Taylor series about
x to first order in u, the approximate Wigner function'

F, (x,p, t) = iC(x, t) i 5(p —BS/Bx)

is found. The 5-function peak predicts the correlation

p=BS/Bx .

(4)

This equation describes a family of classical trajectories,
and Ref. 1 concludes that the semiclassical wave function
(3) predicts a classical correlation of position and momen-
tum.

This result is attractive, but it is cast into doubt by the
realization that approximate Wigner function (4) bears no
resemblance to the exact Wigner function for the system.
Consider the harmonic oscillator as an example. The
semiclassical wave function is

of the Wigner function is not simply the interpretation of
a classical joint probability distribution.

Reference 1 does not give a precise criterion for deter-
mining correlation of coordinates and momenta. Rather,
the general remarks are made that if the Wigner function
F is separable as a function of x and p, then it predicts no
correlation while if F is strongly peaked around p =g (x),
then it predicts this as a correlation. This prescription
has apparent success because only Wigner functions
which are highly peaked on a single hypersurface in
phase space are considered. In general, such Wigner
functions are obtained from an approximation. The fact
that these approximate Wigner functions do not agree
qualitatively with the exact Wigner functions, together
with the inability to interpret a general Wigner function,
seriously undermines this approach.

In addition, the examples in Ref. 1 are atypical because
several involve Wigner functions which are not normaliz-
able: The integral of F over all phase space diverges.
Strictly, these are not true Wigner functions. This hap-
pens even in the harmonic-oscillator example because the
wave function considered is essentially the Green's func-
tion (without the Heaviside function in time) and not the
normalizable energy eigenstates. The failure of normal-
izability is symptomatic of this approach, but it is not the
main difficulty.

The central result of Ref. 1 is the prediction obtained
from semiclassical (WKB) wave functions of the form

Xe —rex /20 ( )e
—((n+)/2)cutKx e

where a=(co/fi)' and H„ is the nth Hermite polynomi-
al. The exact Wigner function is

(xpr)e2H(x, p)lsco( —1)"
ex

X L„(4H(x,p)/fico), (1O)

where H(x,p)=p /2+co x /2 is the Hamiltonian and

L„ is the nth Laguerre polynomial.
It is instructive to look at a particular example. The

Wigner function for n = 5 is shown in Fig. 1. The
Wigner function has its maximum absolute value at
H =0. This is generally true: For the nth energy eigen-
function, the Wigner function at zero has the value
( —I)"/nfi. As H increases, the Wigner function oscil-
lates with a decreasing amplitude but with increasingly
broad peaks. For n =5, after H=4. 5, it dies off ex-
ponentially. The approximate Wigner function (7) is a 5
function at H = 5 ~ 5.

Clearly the approximate result does not agree with the
exact result and does not even capture the qualitative
flavor. What has gone wrong? One's first suspicion is
that the trouble lies with the semiclassical wave function.
It might not be surprising that the prediction p =OS/Bx
is made. In constructing the WKB wave function (3), the
ansatz /=exp(iS/))1) is made, and 4 is computed as a
power series in A. The leading term of this series is found
by solving the classical Hamilton-Jacobi equation. In the
semiclassical approximation as Pi~0, 4 becomes
S+filnC, where S is a solution of the Hamilton-Jacobi

0.20-

The position and momentum have a classical correlation,
given by the Hamiltonian equated to the quantum energy
E =(n +1/2)fico

The exact Wigner function for the harmonic oscillator
is known, and it can be used to check the approximate
Wigner function (7). The exact harmonic-oscillator ener-

gy eigenfunctions are well known to be
1/2

K

2n 1/2

2 2) —)/4 0.10-

Xexp i f (2E —co x )' dx/A'
0.00

From the above analysis, this gives the approximate
Wigner function

F,p (x,p, t)= i2E —co x

X5(p —(2E —co x )' ) .

This Wigner function makes the prediction

-0.10-

-0.20-

E=—'p +—'~ x
2 2

(8)
FIG. 1. The Wigner function F for the n =5 harmonic-

oscillator energy eigenstate, where H =p /2+co x /2.
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equation. The prediction p =OS/Bx made by the approx-
imate Wigner function is not surprising because S is a
solution of the Hamilton-Jacobi equation by construc-
tion. This may be cause for future concern, but it is not
the trouble here.

Berry has also calculated an approximate Wigner
function using the semiclassical wave function (3), but he
evaluates the transform (1) with a uniform approxima-
tion. His result in the harmonic-oscillator example is

2/3 '

[ —,
' A (H)]' Ai A (H)

3

Fs„(x,p, t) =
772) /~$»3 [H ( E —H ) ] ) /4

where

A (H) = — [H(E—H)]'/—

2E
arcsin[(H /E) ' ] (12)

and H =p /2+co x /2 is the Hamiltonian. For H near-
ly equal to or greater than E, this expression takes the
simpler form

FB„(x,p, t)= Ai(2 / (H E)H ' —) . (13)
1

~(2E))/3

The difference between Berry's approximation and the
exact Wigner function for E =5.5 is less than 3X10
except near the origin where it diverges like H ' . This
shows that the approximate Wigner function (7) is an ar-
tifact of the approximation of the transform (1).

The exact Wigner function of the harmonic oscillator
for n =5 does not have a single peak which is obviously
more dominant than the rest. The prescription of Ref. 1

for determining the correlation fails, and one might con-
clude that no prediction is made. Before doing so, how-
ever, a more serious effort to find a measure of correlation
should be made. After all, the harmonic oscillator is
among the most classical of quantum systems, and if one
cannot predict correlations from its Wigner function,
what hope would there be for more complex systems like
those in quantum cosmology?

The first step toward finding a measure of correlation is
to clarify what is meant by "correlation. " From the
prescription of Ref. 1 for determining correlation, it is
evident that two variables are taken to be correlated if
they bear a functional relation. The correlation
coefficient familiar from classical probability is tacitly in
mind as a measure of this correlation. The correlation
coefficient is intended as a measure of dependence, and it
vanishes if two random variables are independent, as they
are when the joint probability distribution separates.
This is the origin of the prescription that a separable
Wigner function makes no prediction.

There are two difficulties with this approach to correla-
tion. First, the correlation coefficient is not a general
measure of dependence, but only of linear dependence.
In particular, the correlation coefficient can vanish even
if one variable is a function of the other. Second, "corre-

lation" as it is intended to apply to quantum mechanics is
not a consequence of dependence of random variables.

In a (classical) experimental context, two variables x
and p are said to be correlated if, knowing the result of a
measurement of x, the result of a measurement of p can
be predicted and vice versa. A separable joint probability
distribution that is localized predicts this form of correla-
tion. From the standpoint of probability, a related notion
is that x and p are correlated if the most probable out-
come (x,p) chosen from their joint probability distribu-
tion consists of the most probable x and the most prob-
able p chosen from their separate distributions. The
strength of the correlation depends on the various proba-
bilities. Again, the central feature is localization of the
joint probability distribution. The proposal that a
sufficiently strong peak in the Wigner function makes a
prediction springs from this conception of correlation.

There are two difficulties which complicate the
identification of classical correlations in quantum
mechanics. First, the uncertainty principle restricts the
amount of localization that a Wigner function can have.
This limits the strength a correlation in quantum
mechanics can have. Second, the measurement of one
variable collapses the wave function thereby affecting the
measurement of the conjugate variable. Classically, the
predictions which follow from correlation are indepen-
dent of the order of measurement. So, if the measure-
ment x =x predicts p =p, then correlation requires that
p =p predicts x =x. This condition cannot be perfectly
realized in quantum mechanics, so an approximate ver-
sion of it must be found.

The most classical of quantum-mechanical wave func-
tions is the Gaussian wave packet, or coherent state

( ) ( rr))1 )
—) /4 —( x —x ) /2 fr + iPX /i)

Wc (14)

and is the most localized of Wigner functions. Treated as
a classical joint probability distribution, it makes the'
strongest possible prediction of a correlation between the
measurement outcomes x and p compatible with the un-
certainty principle.

A quantum measurement by projection onto position

[In conventional notation for coherent states,
a=2' (x+ip ) ]This is th. e most classical of wave func-
tions because it is equally localized in coordinate and
momentum space (Ax =hp) to the minimum allowed by
the Heisenberg uncertainty principle:

fi
AxAp =—.

2
'

Measurements of x or p will return the outcome of x or p
to within the same uncertainty. The localization in one
variable cannot be improved without losing localization
in the other. All Gaussians are minimum uncertainty
wave packets, but an inequality between Ax and hp
departs from the classical ideal that x and p are on equal
footing and equally knowable.

The Wigner function of the coherent state is

( X p X p ) e ( x x ) /fl (P P ) /fl1
c
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or momentum eigenstates would destroy the correlation
between X and p before it could be verified. This is inevit-
able with quantum measurements. The attempt to 1ocal-
ize one variable (to obtain a measurement result) neces-
sarily delocalizes the conjugate variable. The classical
ideal that coordinates and momenta are equally known is
most closely achieved when they are equally localized.
For this reason, it is proposed that a measurement which
is to return a classical result be defined as a projection
onto a coherent state. The prediction made by the
Wigner function of the coherent state is then the most
classical prediction possible from a quantum wave func-
tion.

The measure of the correlation of x and p predicted by
a Wigner function F is given by the overlap integral

PF(x,p)=2~6 f dx dp F, (x,p;x,p)F(x,p) (16)

in which the Wigner function of interest is projected onto
the Wigner function of the coherent state (15). This mea-
sure gives the probability that a measurement will pro-
duce a classical correlation of X and p. The most classical
correlation predicted from the Wigner function F is
found by varying x and p to maximize the overlap with
the Wigner function of the coherent state. By working
with the overlap integral, one is able to compare the
probabilities of different correlations. This would not be
possible if one tried to use expectation values to define
the measure of correlation.

The physical (positive-definite) nature of the probabili-
ty obtained from (16) can be understood by reducing the
overlap integral to one in coordinate space. Using the
definition of the Wigner function (1), one has

PF=(2vrR) ' f du du dx dp P;(x —u/2)e

X P, (x +u/2)g*(x —U/2)

P„(x,p ) = dx dp exp[ —(x —x ) —x2( —1)" —2 2

XL„[2(p +x )], (20)

X exp[ 2r +—2r (x sin 8+p cos8) ]

XL„(2r ) . (21)

The 8 integration may be done using the identity"

f d8exp[2r(x sin8+p cos8)]
0

=2mIO(2r(p +x )'~ ), (22)

where I0 is a modified Bessel function. The r integration
may now be done using"

f re " L„(r )Jo(ry)dr = 2n —1

2n —
y /4

pg!
(23)

The result is
n—2 —2

p (
——

)
— 1 p ~x —(p +x )/2x,p e

n! 2
(24)

Letting H = (p +x ) /2, this may be more simply writ-
ten as

where L„ is the nth Laguerre polynomial. The result (25)
is well known from the right-hand side of (19),' but the
overlap integral of Wigner functions may be computed
directly. Changing variables to polar coordinates in the
phase-space plane, one has

P„( xp)= f r dr d82( —1 )"

Xe '~' g(x +v/2) . (17)

PF =f du dx 1(,"(x —u/2)1((x —u/2)g, (x +u/2)

XP'(x+u/2) .

After changing variables, this reduces to

2

PF(x,p)= f dx P,*(x)P(x) (19)

Thus, the overlap integral (16) gives the familiar probabil-
ity of quantum mechanics for a transition from the state

g to the coherent state g, .
This procedure may be applied to interpret the Wigner

function for the harmonic-oscillator energy eigenstates.
Let co=1 for convenience. The probability of obtaining a
coherent state located at x,p from a harmonic-oscillator
energy eigenstate is given by

Performing the p integration gives a 5 function which al-
lows the U integration to be done. This gives

To find the predicted classical correlation, one maxim-
izes (25). One finds that H =n with probability
P„=n "e n/n!. This is an interesting result because it
says that the most probable classical measurement will
find the position and momentum correlated by the classi-
cal Hamiltonian equated to the classical energy. The
probability that a classical result is obtained falls rapidly
with increasing energy. Note that this is a different result
from that of Ref. 1 that the position and momentum are
correlated by the classical Hamiltonian equated to the
quantum energy.

In this paper it has been shown that the prediction of
correlations from semiclassical wave functions in Ref. 1 is
unreliable because the approximate Wigner functions
used bear no resemblance to the exact Wigner functions.
The trouble was traced to a crude approximation of the
transform (1) producing the Wigner functions. When
faced with analyzing exact Wigner functions which do
not have obviously dominant peaks, the prescription for
predicting correlations given in Ref. 1 fails.

The prescription of Ref. 1 for making predictions is
based on a definition of the correlation between two ran-
dom variables in terms of dependence while a more phys-
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ical definition would be in terms of localization of the
joint probability distribution. The Wigner function of the
coherent state was observed to be the most localized of
Wigner functions. It is also the most classical in the
sense that position and momenta are equally well known.

Since quantum measurement involves projection onto a
basis of eigenstates and the uncertainty principle prevents
conjugate variables from being specified with arbitrary
accuracy, it is proposed that a classical measurement be
defined as a projection onto a coherent state because this
gives the result with the position and momenta most
equally known. The overlap integral between the Wigner
function of a coherent state and the Wigner function of

interest is then a natural measure of correlation. By max-
imizing the overlap with respect to the location of the
coherent state, the most classical correlation predicted by
the Wigner function is found. In the harmonic oscillator,
the Hamiltonian equated to the classical energy is
recovered as the predicted correlation. This result en-
courages the hope that this new method will reliably pre-
dict the classical correlations of general relativity from
the semiclassical wave function of the Universe.
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