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Fock-space representation of coupled Abelian Chem-Simons theory
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The theory in 2+1 dimensions described by the Abelian Chem-Simons gauge field minimally

coupled to a spinor field is given a Fock-space representation. The states which satisfy the con-
straint of Gauss's law are explicitly constructed for both the weak and strong implementation. The
charged states are shown to be coherent states of disallowed ghost operators. The S matrix for the
theory is explicitly constructed and the gauge field is shown to decouple from the theory. The
charged states are reduced to exhibit a manifestly gauge-invariant form. The angular momentum

operator for the theory is derived from Noether's theorem and given a decomposition in terms of
Fock-space operators. The charged eigenstates of the angular momentum are shown to have the in-

duced spin Q'/4ntr, where Q is the total charge operator of the theory and tr is the Chem-Simons
action strength, leading to the possibility of exotic statistics for the charged particles.

I. INTRODUCTION

Chem-Simons theory' in 2+ 1 dimensions has recently
become the object of extensive investigation. The interest
is threefold. First, the theory, despite the absence of the
metric from the measure of the action, is covariant under
general coordinate diffeomorphisms, and has been shown
to be related to conformal field theories in 1+1 dimen-
sions. Second, the generally covariant observables of
pure (uncoupled} Chem-Simons theories are Wilson
loops, and the expectation values of these have been
shown to give various topological properties of closed
paths and knots, such as linking numbers, in an arbitrary
three-manifold. Third, a relationship between coupled
Chem-Simons theory and high-T, superconductors has
been argued, and a relation to the statistical mechanics of
anyons has been developed.

The analyses of Chem-Simons theories to date have
been in terms of functional formalisms, path-integral
techniques, or holomorphic quantization. There are
many advantages to functional methods to field theories,
particularly when nonperturbative results are sought.
However, there are also some advantages to be gained
from an explicit construction of the Fock-space represen-
tation of a field theory. In order to formulate a scattering
matrix it is necessary to understand the structure of the
asymptotic states, and this is readily accomplished in a
Fock-space formulation of the problem. It is also possi-
ble to analyze arbitrary operator products in either the
physical or unphysical sector once the Fock space has
been identified. Although many calculations require only
the behavior of the fields and their equations of motion, a
Fock-space formulation allows actual construction of the
eigenstates of operators and an explicit representation of
the S matrix and evolution operator.

It is the intent of this paper to present such an analysis
for (2+ 1}-dimensional Abelian Chem-Simons gauge
fields coupled to a spinor field on the topologically trivial
spatial manifold R . Of course, adding a minimally cou-
pled spinor field to the theory immediately requires the

presence of the metric to maintain general covariance,
and thus this property of pure Chem-Simons theory is
lost. However, there are interesting aspects to be gained

by coupling spinors. It has been argued that Chern-
Simons theories with sources lead to Fermi-Bose
transmutation through the appearance of induced spin.
Such a property leads to the possibility of exotic statis-
tics, and may explain the nature of the high-T, super-
conductors. However, previous work has focused on c-
number external sources, and some calculations of the in-

duced spin have been done by either using definitions of
the angular momentum which are not derived from
Noether's theorem or by deducing the presence of in-

duced spin from Wilson loop arguments. In this paper
the sources will be quantized and the angular momentum
will be derived from Noether's theorem. This definition
of angular momentum will be shown to be gauge invari-
ant when applied to states which satisfy the strong im-

plementation of the constraint of Gauss's law. The expli-
cit form of such states will be developed and used to veri-

fy the presence and value of the induced spin by direct
application of the angular momentum operator. Addi-
tional assumptions regarding the form of the Green's
function are discussed. Mixtures of Chem-Simons and
Maxwell actions for the gauge field will not be con-
sidered.

The outline of the remainder of this paper is straight-
forward. In Sec. II the uncoupled Abelian Chem-Simons
theory for the manifold R XR is given a Fock-space rep-
resentation for the choice of the temporal gauge. It is
shown how the constraint of Gauss's law, or equivalently
gauge invariance, can be implemented both weakly and
strongly. It is shown that the physical states in the weak
implementation of the constraint are zero-norm gauge-
invariant ghosts. In the strong implementation the physi-
cal states are zero-norm gauge-invariant ghosts dressed
with gauge particle pairs. The operator version of
Stokes's theorem is demonstrated for the uncoupled
theory, showing that the Wilson loops for paths lying en-
tirely in the R manifold are trivial. In Sec. III the
Chem-Simons gauge field is minimally coupled to a
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II. UNCOUPLED CHKRN-SIMONS THEORY

The Abelian version of pure Chem-Simons theory in
2+ 1 dimensions is described by the action

(2.1)

where e"' is the standard Levi-Civita tensor density.
Unlike the non-Abelian case, the constant v is not re-
quired to be an integer to maintain gauge invariance.
The constant ~ can be related to other parameters in the
coupled theory if the Chem-Simons action is derived
from decoupling other fields or if the theory is to be in-
variant under large gauge transformations and quantized
on a genus one surface. ' In this paper x will be con-
sidered arbitrary. Varying the action (2.1) leads to the
equations of motion

«(a, A, —a, A, )=0,
«(a, A, —a, A, )=o,
«(a, A, —a, A, )=O.

(2.2a)

(2.2b)

(2.2c)

At this point the temporal gauge is chosen, and Ao is set
to zero. The equations of motion reduce to

A) = A2=0, (2.3)

(2+1)-dimensional spinor field. The spinor field is quan-
tized such that, in the absence of coupling, its basis states
would obey Fermi-Dirac statistics. The constraint of
Gauss's law for the coupled theory is met by dressing the
charged states with ghosts which are not gauge invariant.
In effect the charged states of the coupled theory are
coherent states. Again, the constraint is realized both
weakly and strongly in a manner similar to the uncoupled
case. The Wilson loops for the coupled theory are shown
to satisfy the operator version of Stokes's theorem when
applied to the physically allowed states. The charged
states develop a nontrivial holonomy which depends on
the charge distribution of the state and the path chosen
for the Wilson loop. In Sec. IV the scattering matrix for
the charged particles is developed. The states weakly
satisfying the constraint are used, and the evolution
operator or S matrix is shown to be trivial for the allowed
ghost states of the coupled theory. The gauge field
decouples from the theory and leaves behind a velocity-
dependent potential for the spinor field, which, in the
classical limit, affects the angular momentum of the
charged particles. In Sec. V the angular momentum
operator, derived from Noether's theorem, is analyzed
for a charged state. Given a particular choice of repre-
sentation for the Green's functions of the theory, the
charged states which satisfy the strong form of the con-
straint are gauge-invariant eigenstates of this total angu-
lar momentum operator with an anomalous eigenvalue.
It is shown that a state containing a pair of identical spi-
nor particles picks up an induced phase when rotated
through m radians using the angular momentum opera-
tor, indicating the presence of anyon statistics in the
charged sector in agreement with results obtained by oth-
er methods and definitions.

and

G=«(a, A, —a, A, )=O. (2.4)

Equation (2.4) is the equivalent of Gauss's law for the
Chem-Simons theory. In the temporal gauge the theory
still possesses an invariance under the time-independent
gauge transformations given by

A, ~A; —8;A, A=O . (2.5)

The momenta canonically conjugate to A, and A 2,
denoted H& and II2, respectively, are given by

H)=~A2 (2.6a)

and

H2= —xA) .

The Hamiltonian density of the theory is given by

(2.6b)

%=—(A A, —A, A )
—«A (B,A —8 A, ) . (2.7)

=«[A&(x), Az(y)]=i5 (x—y) . (2.8)

The Dirac delta appearing on the right-hand side of (2.8)
is understood to possess the test function space consisting
of all piecewise integrable functions defined on the mani-
fold R, hence the previous statement regarding the
space-time manifold being R XR . The commutators of
(2.8) are therefore satisfied by the decompositions

A, (x)= [k&a~(k)e'"'"+k&at(k)e '"'*]d k
(2.9a)

and

A2(x)= i —[k2a2(k)e'"'" —k2az(k)e '"'"],d k

(2.9b)

along with the algebra

[a, (k), az(p)]=[a&(p), at(k)]

=(2«p, p2) '5 (k —p),
[a, (k),a, (p)]=[a&(k),az(p)]=0 .

(2.10a)

(2.10b)

The reason for the presence of the k, factors in the ex-
pansions of (2.9) will become apparent shortly.

A Fock-state representation for the theory is obtained
by interpreting a; as a creation operator and introducing
a state, denoted ~0), which is cylic under the operators

Using the equations of motion (2.3) and (2.4) shows that
the Hamiltonian vanishes in the temporal gauge, a stan-
dard feature of all generally covariant theories. This is,
in turn, consistent with the equations of motion (2.3)
when they are expressed as a commutator with the Ham-
iltonian. Therefore, the remaining fields A, and Az are
time independent.

The canonical quantization of the theory requires that
the equal-tine commutators satisfy

[A (x),&~(y)]=[A2(y), &~(x)]
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a,-. It is easy to show that only states with equal numbers
of both type of particle, i.e., equal numbers of the opera-
tors a, and az, have a nonzero norm, all others having
zero norm. Thus, the single-particle states of either type
are ghosts.

The physical states are selected by implementing
Gauss's law (2.4) as a constraint. That this is equivalent
to the demand of gauge invariance is easy to show. Using
the commutation relations (2.8) it follows that the unitary
operator defined by

the vacuum, all have the property that

(2.20)

b(k} =a2(k)+ia, (k) .

Like the operator (2.17},the b operator satisfies

[b(k), b (p)]=0 .

(2.21)

(2.22}

In order to satisfy the strong version of the constraint,
(2.14), it is first necessary to introduce the ghost operator

iQAU=e

where

Q, =fd'x A(x)G(x), A=O,

generates the gauge transformations given by

(2 11} However, it follows from (2.10) that

[b(k),g (p)]=i(irpipz) '5 (p —k)

(2.12) and

[g(k), b (p))= i(—imp, p, ) '5'(k —p) .

(2.23a)

(2.23b)

UA U '=A —BJA . (2.13)

Thus, instituting Gauss's law G =0 is equivalent to
demanding that states or transition amplitudes be gauge
invariant. This is quite similar to manifestly covariant
formulations of quantum electrodynamics. "

There are several ways to implement a constraint in
quantum field theory. In the first method it is implement-
ed strongly. If ~P), is a physically allowed state in the
strong implementation, then

D =exp —i~ d p p&p2b p g —
p (2.24)

In order to demonstrate that the strong form of the con-
straint is satisfied by applying D to the states of the form
(2.19) the constraint is first rewritten as

The states satisfying the strong form of the constraint
can now be derived from the physical states ~P)„,i.e.,
those states of the form (2.19), by dressing them with the
transformation

G~P), =0. (2.14) d kG= f k, k2[g(k)+g ( —k)]e'"'" . (2.25)

In the second approach the constraint is implemented
weakly. For this case, if ~P) and ~P') are any two
physically allowed states in the weak implementation,
then

It is straightforward to show that

[g(k)+g (
—k)]D =Dg(k) . (2.26)

(2.15)

(2.16)

It is critical to verify that a state selected by either pro-
cedure has nonvanishing S matrix amplitudes to other
physically allowed states only if the state has a nonzero
positive norm. In standard quantum electrodynamics
this ensures that unitarity is preserved. This will be
verified in the next section.

Substituting the expansions of (2.9) into (2.4) gives

G(x)=a f k, k2[g(k)e'""+g (k)e '"'"],d k

It follows that the states which satisfy the strong version
of the constraint, denoted ~P )„aregiven by

/P&, =D/P&. . (2.27)

(2.28)

It is to be noted that D is not a unitary transformation
and for this reason the dressed vacuum D~O) has an
infinite norm. This is tedious but straightforward to veri-
fy by expanding the exponential (2.24} in a formal power
series to obtain

where

g (k) =a, (k) —ia, (k) .

It follows from (2.10) that

(2.17) P = ', fd'x f d'p . (2.29)

where P is the dirnensionless and divergent volume of
phase space:

(2.19)

where f is some function of the momenta. Physical states
of the form (2.19) will be denoted ~P ), and, apart from

[g(k),g (p)]=0, (2.18)

so that g is the creation operator for a ghost state. It is
apparent from the algebra (2.18) that the weak version of
the constraint, i.e., (2.15), is satisfied by states composed
solely of g-type ghosts, i.e., states of the form

~P)=f(pi, . . . , p„)g(pi) . . g (p„)~0),
a, (k)~a, (k) —iA(k),

a2(k)~a2(k)+k{k),

(2.30a)

(2.30b)

Expression (2.28) is obtained in the large but finite P lim-
it. Using a similar argument it can be shown that all the
physically allowed gauge field strong states, apart from
the dressed vacuum, are still ghosts in the finite P case.

It follows from the form of the fields (2.9) that gauge
transformations of the form (2.5) are generated by the re-
placements
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where the corresponding gauge transformation function
is given by

A(x)= [A(k)e'"'"+A, *(k)e '""] .
d k
2K

(2.31)

This shows that the physically allowed ghost g(k) is in-
variant under gauge transformations, while the disal-
lowed ghost b(k) transforms as

b(k) —+b(k)+2k(k) . (2.32)

Property (2.32) will be used to verify the form of the spa-
tial part of the gauge field angular momentum in Sec. V.

For a classical field configuration which satisfies the
equations of motion it follows that, for a closed loop L in

the R space, Stokes's theorem predicts

g, dx'A, =~ 'f -d'x G=0. (2.33)
S(I-)

The operator version of this statement can be demon-
strated by use of expansions (2.9) and integrating around
a rectangular path whose x1 and x2 limits are +L, and

L2, respectively. Direct substitution yields

f~dx'A, =4f [g(k)+g "( —k)]d k

Equation (3.2b) has two solutions corresponding to posi-
tive and negative energy. The positive-energy solutions
take the form

These solutions satisfy the standard normalizations

uu =1 vv= —1
p u ' s p

(3.4)

pp
Q Q —v v

P P m

For the massive case the free spinor field is given the
Fock decomposition

' 1/2

g(x) = f (c u e '~"+d v e'~") . (3.5)

pp+ )7k

u e '~'=[2m(m+p )] ' . e '~", (3.3a)
P1 V2

while the negative-energy solutions take the form

P1 V2
vie'~"= [2m(m+@0)] ' e'~" . (3.3b)

pp m

Xsin(k&L~)sin(k2L2) . (2.34)
Using the properties of (3.4) and the anticommutation re-
lations

Using the identity

e(x+L )
—e(x L)= —f—dk e' "1;k„sin(kL )

k
(2.35)

jc~,c„)+=5(k —p),

I dp dl'1+ =&'(p —k»
(3.6)

where e(x) is the standard step function given by
T

it is straightforward to show that the equal-time anticom-
mutation relation

1 if x)0,
0 if 0 (2.36} [P, (x, t), gt, (y, t)]+=5,s5 (x—y) (3.7)

III. COUPLED ABELIAN CHERN-SIMONS THEORY

The Abelian gauge field of Sec. II can be coupled to a
spinor field. The Lagrangian density of such a theory
takes the form'

e"" A„—B„A&+W[iy"(8„ieA„)]O—m%'I—, l

which has the Abelian gauge invariance

e "'0 ,

A„~A„—()„A.

(3.1a)

(3.1b)

For 2+1 dimensions the algebra of the y matrices is
satisfied by the Pauli spin matrices,

yP 3 y1 - 2 2 . 1

and the uncoupled spinor field, denoted g, solves

(iy"8„—m }/=0 .

(3.2al

(3.2b)

immediately shows that (2.34) is the operator version of
(2.33). When evaluated in the physical sector of states it
follows that the Wilson loop is trivial for the uncoupled
theory defined over this spatial manifold.

G, =~(B,A —8 A, )+e% %'=0 . (3.8)

Clearly, the equations of motion (2.2a) and (2.2b) are also
altered in form for the coupled theory, but in the tem-
poral gauge these equations of motion need not be im-
posed as constraints. The coupled equations for the time
development of A, and A2 will be enforced dynamically.
Equation (3.8) then constitutes the constraint placed on
the interacting theory and, as in the case of the free gauge
field, may be implemented in either the weak or strong
sense.

In the weak sense two physical states ~P) and ~P')
must satisfy (2.15) with G replaced by G, . If the theory
was uncoupled, the states of the theory would be given by
the tensor product Fock space of the free physical states
of both the gauge theory and the spinor theory. Howev-
er, because of the presence of the spinor charge density in
(3.8), such simple tensor product states will fail to obey
Gauss*s law for the coupled theory if there are charged

is satisfied.
The Fock states associated with the algebra (3.6) are

the charged particle states of the uncoupled theory. In
the coupled theory these states must be dressed in order
to satisfy Gauss's law. In the coupled theory described
by the Lagrangian density (3.1a) Gauss's law takes the
form
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+ b (p)jo(p, t )], (3.9)

where

d x
jo(k, t)= f e'"'"p (x, t)g(x, t)2'

=jo( —k, t) . (3.10)

It is straightforward to show that

V(t)[«'(8& A2 —82A
&
)+eg p] V '(t) =z(8~ A2 —BzA

~
)

particles present. The solution is to take the tensor prod-
uct states and dress them with a unitary transformation
involving the charge density and the disallowed ghosts.
Since the goal is to create asymptotic or interaction pic-
ture states, the fields appearing in (3.8) will be replaced by
the respective free fields. For the states satisfying the
weak form of the constraint, the unitary transformation
is then given by

V '(t)=exp ,'—ie—fd~p[b(p)jo( p,—t)

demonstrated for the coupled case. Clearly, a loop in-
tegral for a classical solution of Gauss's law should satis-
fy

«f dx'A;=«f 1 x(i3, A —8 A, )

e d x
S(L)

so that the loop integral should give the charge enclosed
by the loop. It is easy to see from (2.34), (2.35), and (3.14)
that the expectation value of the loop integral between
physical states is given by

.(Pl g, dx'A, ~P').= ' —f—d'x. (P~q'q~P'). .

(3.18)

Thus, charged states develop a nontrivial Abelian holono-
my. Since the gauge field is a connection for the spinor
field it is possible to interpret the Wilson loop around a
charge as the gauge field contribution to dragging a simi-
lar charge around a loop enclosing the first charge.
Therefore the additional phase factor

(3.11} 2

exp —ie L dx'A; =exp i (3.19}
if the decompositions (2.9) for the gauge field are used.
As a result, in the interaction picture, the physical states
of the coupled theory can be constructed from the physi-
cal states of the uncoupled theory by applying the V
transformation. The physical states of the coupled
theory in the weak sense are denoted ~P), and, in the
interaction picture, are given at time t by

should appear on the state containing two particles. This
indicates that a phase of half that amount should appear
on a single-particle state when rotated through 2m. radi-
ans. This will be verified in Sec. V by the standard
methods of quantum mechanics.

~p&. = v-'(t)~p, &. , (3.12) IV. S MATRIX AND EVOLUTION OPERATOR

where the state ~PO) is a physical state of the uncoupled
theory of the form (2.19), and thus contains only g-type
ghosts and possibly charged particles. Using (3.11) and
the properties of the uncoupled physical states immedi-
ately establishes that the states (3.12} satisfy the coupled
constraint weakly, i.e.,.(P~G, ~P'). =O, (3.13)

when 6, is written in terms of the free fields. In effect,
the unitary transformation shifts the allowed ghost
operator g(p) by the charge density in the manner

V(t)g(p)V '(t)=g(p) — jo(p, t) .
2Kp 1p 2

(3.14)

The disallowed b-type ghosts are unaffected.
It is straightforward to show that the same transforrna-

tion can be applied to the uncoupled physical states (2.27)
to obtain states which satisfy

V(t}g(x,t ) V '(t) =e "s'"'p(x, t ),
where

(4.1)

In this section the physical states satisfying the weak
form of the constraint, defined in the preceding two sec-
tions, will be used as asymptotic particles in formulating
a scattering matrix. This is similar to manifestly covari-
ant formulations of quantum electrodynamics where the
asymptotic particles, in addition to possessing nontrivial
infrared structure, must satisfy a Gupta-Bleuler condition
which is identical in effect to Gauss's law. "

In this section only the charged states will be reduced,
since it will be seen that the S-matrix elements of allowed
ghosts are zero. The charged states may be reduced in a
manner similar to the Lehmann-Symanzik-Zimmermann
(LSZ) construction' while taking into account the pres-
ence of the unitary transformation V necessary to define
the asymptotic states. The starting point is the observa-
tion that

G, ~p&, =o,
where

(3.15)
B(x)= —,

' [b(k}e'""+b (k)e '" "] .
d'k

(4.2)

~p&, =v '(t)~p, &, , (3.16)
The transformed spinor field of (4. 1) is manifestly invari-
ant under a gauge transformation, since (2.32) shows that

and the states ~PO), are the physical states defined by
(2.27) tensor producted with the charged states.

The equivalent form for Stokes's theorem may now be

8(x)~8(x)+A(x), (4.3)

thus canceling the phase induced on the spinor field by a
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gauge transformation. Thus, since reducing spinor parti-
cle states requires commuting P past V, the resulting
reduction formulas are manifestly gauge invariant. To
give an explicit form, reducing a c-type particle from the
in state and ignoring possible forward-scattering terms
gives the standard time-ordered product

=i fd x u e'~"( i—y"8 rn)—
P

X,„,(aiT[ %t(x)e " '"']iP);„, (4.4)

where the in and out states are assumed to coincide with
the physical states (3.12) in the interaction picture for the
weak implementation of the constraint at suitably remote
times in the past and future. Implicit in (4.4) is the as-
sumption that the interpolating field 4 approaches g, the
free field, at these asymptotic times, modulo a wave-
function renormalization factor.

A perturbative form for the reduced S matrix is
achieved by the standard assumption that'

g(x, t ) = U(t)% (x, t ) U '(t) .

It follows that

U(t) U '(t) =i(H, —H ) = iH—,„,(t),
(4.5)

(4.6)

where j„is the standard current density given by

(4.8}

and which satisfies

Bp"=0. (4.9)

The time-ordered product appearing in (4.4} can be
given a perturbative representation through the replace-
ment

where the interaction Hamiltonian is written in terms of
the free fields g and A, . It follows for this theory in the
temporal gauge that

H;„,= —efd xj A, (4.7)

,„,(aiT[ %(x)e" '*']iP);„= (ao~V(t+)U '(t+)V '(t+)

XT[V(t+)U(t+) XU '(t)V '(t)g(x)V(t)U(t)U '(t )V '(t )]

X V(t )U(t )V '(t )iP, ) (4.10)

where t+ and t are times in the remote future and past used to define the in and out states which are now explicitly
written in the form (3.12). Using the asymptotic properties of the fields it can be shown that the unitary operators out-
side the square brackets must reduce to simple factors. It follows that the evolution operator has the interaction picture
representation

E(t, t')=V(t)U(t)U '(t')V '(t') .

The evolution operator is most easily evaluated by noting that it solves the first-order differential equation

E(t, t ') = iH', tt(t)E(t, t—'),
where

H', ~(t)=i[V(t)U(t)U '(t)V '(t)+V(t)V '(t)].
Integrating and iterating (4.12) gives

(4.11)

(4.12)

(4.13)

E( t, t') = T exp i f 1r H,&(r)— (4.14)
t

H,z is the effective interaction due to the dressing and is easily evaluated. First, the interaction is written in terms of
ghost operators to give

Hg(t)= iU(t)U '(t—}=efd xj A

,'ie fd k[—kj( k, t)b (k—) —k j(k, t)b(k)]+ ,'ie f d k—[k,j, (k, t) —k2j2(k, t)][g(k)+g (
—k)], (4.15a)

where

j(p, t}=f j(x, t)ed x
2m'

(4. 15b)

iV(t)U(t—)U '(t)V '(t)

r e=H (t) f d x d y[j, (x, t)S—2(x —y)jo(y, t)

It follows directly from the properties of the V transfor-
mation that the unitary transform of (4.15) is given by

—j,(x, t )S,(x —y)j,(y, t )],
(4.16)
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where the Green's functions S- are given by

(xy) f e ik. (x —y)d k —i

4~' kJ
(4.17)

currents appearing in (4.23) as if they described two clas-
sical (spinless) point particles in relative motion. For
such a case the interaction (4.23) becomes, after subtract-
ing off'the self-energy of each particle,

Clearly, the function S satisfies

a S (x—y) =6 (x—y) .
()Xj

(4.18)

It is shown in the Appendix that the distribution defined

by (4.17) has the representation

e' vXr~
eff 7

~r
(4.24)

where v is the relative velocity of the two particles and r
is their relative separation in the plane. For the especial-
ly simple case that one of the particles is at rest at the ori-
gin expression (4.24) reduces to

x —yS (x—y)=-
+ /x —y/'

' (4.19)
'lTK

(4.25)

This is true when the distribution is restricted to a test
function space of symmetric functions, i.e., functions
which are invariant under x, x2 exchange symmetry
and when the integration of the distribution against the
space of test functions covers a square patch of R . Such
a test function space includes rotationally invariant func-
tions.

The eff'ective interaction can now be found by noting
that

V(t)V '(t)= —,'te f d k[b(k)BOjo( —k, t)

+b (k)BOJ (k, t)] . (4.20)

From the conservation of current (4.9) it follows that

X
BtJO(p, t ) = —f e 't' "Blj„(x,t ), (4.21)

which is easily integrated by parts to yield

aat, (p, r ) = —Ip )(p, r ) . (4.22)

H, s. = — fd'x d y e"'Pj (x, t)S,(x —y)j (y, r),
K

{4.23)

where So =0 is implicit. The interaction (4.23) has arisen
in much the same way the instantaneous Coulomb in-
teraction appears in quantum electrodynamics, by apply-
ing the constraint correctly and decoupling the unphysi-
cal ghosts from the S matrix. "

Interaction (4.23) is a velocity-dependent potential and
some insight into its nature may be gained by treating the

Upon substitution of (4.22) into (4.20) and subsequent
substitution of (4.20) into (4.13) along with forms (4.15a)
and (4.16) it follows that the terms in H, s proportional to
b-type ghosts, originally present in H, are canceled.
From the algebra (2.18) the effective interaction therefore
commutes with all g-types ghosts, and the S matrix for
ghost states is therefore zero. This is identical in out-
come to quantum electrodynamics when the constraint is
correctly implemented. " Furthermore, the part of H, ff

which contains the g-type ghosts gives a zero contribu-
tion to any physical process and can therefore simply be
dropped.

The sole remaining term which can contribute to phys-
ical scattering processes is given by

when expressed in polar coordinates. It follows that for
such a classical situation the angular momentum of the
moving particle is given by

BL 2 e
pg= . =mr 8+

38 7TK
(4.26)

which is the first indication that the angular momentum
and thus possibly the statistics of the particles, has been
altered by the gauge interaction. In the next section this
argument is extended to the quantized theory.

V. TOTAL ANGULAR MOMENTUM
AND STATISTICS

The intent of this section is quite simple. The total an-
gular momentum operator for the coupled theory will be
identified and evaluated for states which satisfy the
strong form of the constraint. It is necessary to use the
strong form of the constraint since the states must be
eigenstates of total angular momentum in order to evalu-
ate the effect of rotations. Two very minor subtleties
arise. The first is in identifying the total angular momen-
tum operator. This is done by using the Noether current
associated with rotations about the timelike direction in
the plane and demanding that this total angular momen-
tum operator be both conserved and gauge invariant, at
least when applied to a physically allowed state. It will
be seen that the demand for gauge invariance is
equivalent to demanding that the state satisfy the strong
version of the constraint. The second subtlety arises in
evaluating the angular momentum operator using the
Fock decompositions of the fields, since ambiguities asso-
ciated with integrating by parts can develop. These am-
biguities are removed by demanding that the final result
be gauge invariant over physical states. Using these rath-
er mild criteria and the Green's function (4.19) it will be
seen that physically allowed charged states develop the
induced angular momentum Q /4~jr, where Q is the total
charge operator.

The total angular momentum operator is defined as the
generator of rotations about the timelike direction in the
theory. The contribution to the total angular momentum
from the spinor fields is given by

L, = ifd x+(x, B —x B, )%,
(5.1)

S, = —
—,'fd x4yoO,
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where L~ and S~ are the orbital and spin angular momen-

ta, respectively. Again, for the uncoupled theory, the
sum L +S is trivially conserved.

For the coupled theory only the total angular momen-
tum J=L +S~+L, +S, is conserved. It is tedious but
straightforward to verify this using the equations of
motion in the temporal gauge

~ ie
A = ——0 y%,J K J (5.3a)

[iy"(r)„ieA„—) —m ]ALII =0,
and the property of the y matrices that (y~ ) = —yi.

It is also necessary to verify the invariance of J under
time-independent gauge transformations of the form
(3.1b). It is straightforward to show that a gauge trans-
formation on the total angular momentum J induces the
change

J~J+f d x(x,B,A x, B A2)—

where L, and S, are the orbital and spin angular momen-

ta, respectively, of the spinor field. For the uncoupled
theory the sum L, +S, is time independent, a fact which
follows directly from the equations of motion (3.2b) for
the free spinor field.

Likewise, the angular momentum for the gauge field,
defined from the usual Noether current, is given by

L =—f d x[A, ( xB —x B, )A —A (x, B —x B, )A, ],
(5.2)

S = —— d x A&+32

fields of the theory. This is done by using the free field
expansions for the fields. It follows that the gauge field
angular momentum Ls+Ss, when expanded using (2.9),
reduces to

L +S = ——f d p(p, +p, )

x[g( p)+g (p}][g(p}+g ( p}]

+
4 f d'p(pi —p2}[g(—P)+g'(P}]

x[b(p)+b (
—p)] . (5.5}

In evaluating (5.5) the following symmetrization conven-
tion has been used. If f(x) and g(x) have the Fourier
transforms f(p) and g(p), respectively, then the integral
of these functions against x is given by

X X X)g X

,'i f d—kf(k)
ak,

g( —k) . (5.6)
a

Bk,

The symmetrization condition (5.6) alleviates ambiguities
in evaluating the spatial integrals which can arise from
integration by parts. That (5.5} is indeed the correct form
in terms of the modes of the fields can be determined by
performing a gauge transformation on (5.5). Using (2.32)
it is straightforward to show that the resulting expression
is identical to the spatial form of the transformed gauge
field angular momentum. The second integral appearing
in (5.5) can be written as

4 f d p(pi pi)[g( p}+g'(p)][b(p}+b'( —p}]

X [~(a, A, —a, A, )+em'e], (5.4) f d—' (a, A, a, A,—)(,a,B ,a,B—),

so that J is gauge invariant only when applied to states
which satisfy the strong form of the constraint. Thus the
candidate eigenstates of J will be the states dressed with
the unitary transformation V ' and the transformation
D defined by (2.24), i.e., the physical states (3.16) of the
strong implementation.

The total angular momentum J will be evaluated in the
interaction picture or, equivalently, for the asymptotic

where B is the field operator (4.2) composed of b-type
ghosts.

Now these operators, as well as the spinor angular
momentum, must be commuted past both the V ' opera-
tor and the D operator before they reach the bare Fock
state. The action of the V dressing operator is presented
first. Using (3.14) the gauge field angular momentum be-
comes (suppressing the time arguments)

V(L +S )V '=L +S +e f d x f P[x, B B(x)—x B,B(x)]

e 2 P&+I'2
y . e 2 I[+F2.2 2 2 2 2

+ — dp g —p+g p j p, t — dp j p, t j —p, t
2 P&$2 4K P@2

(5.7)

Next the eS'ect of the V ' operator on the spinor field angular momentum is calculated. From property (4. 1) it follows
that the V ' operator is like a gauge transformation, so that

V(L, +S, )V '=L, +S,—e f d x[x,B B(x)—x B,B(x)]g P . (5.8)

Clearly, the third term on the right-hand side of (5.8} cancels the same term in (5.7). Since neither L, nor S, has any

reference to gauge field operators they both commute with the D operator. From Sec. II the action of the D operator is

simply to remove the presence of any creation operators in the combinations g( —p)+g (p) and b( —p)+b "(p). There-
fore, the form for J after commuting it through both V ' and D is given by
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D 'V(t}JI' '(t»=1., +S, ——fd'p(pi+p2)g(p)g( p—}+
4

fd'p(pi —p~}b(p)g( —p)

2 2 2 2 22»+p2. e 2»+».+ —fd'p jo(p t}g( P}— fd'p, , jo(p. t)jo( —P t) .
2 p&p2 4& p g2

(5.9)

It is clear that the terms which contain g-type annihilation operators will be zero over the physically allowed Fock
states. Therefore, after commuting the total angular momentum past the two dressing operators, only the spinor angu-
lar momentum L, and S„written in terms of the free field and acting on a Fock state, will contribute, along with the
last term in (5.9). Therefore, only charged states possess angular momentum. The last term in (5.9) is the angular
momentum induced by the gauge field necessary to dress a charged state. Denoted J;„d,it can be written in a more
transparent way as

J;„=— f d xd yj (x t)j (y, t) f + eIll 4 4
(5.10)

Using the identity

1 1

p ~pj pj
(5.1 1)

and integrating by parts, it follows that

ie . . d p (xi »} (x2 yz)J;„d= fd x d y jo(x, t)jo(y, t) f +
4v

'
4~2 p ) P2

e
—ip (x —y) (5.12)

Using (4.17) as the Fourier representation of the Green's
function it follows that

I

to take the second result and understand the role of con-
formal invariance in the structure of the states.

2

J,„d= d x d y jo(x, t)(x —y )S,(x y)j o(y, t)—,4v

(5.13)

so that, if the form (4.19}for the Green's function is used,
then the final result for the induced angular momentum is
given by

2 2

J;„d= fd'xd'yjo(x, t)jo(y, t)=, (5.14)4~~ 4m.x

which is the result obtained by other authors by various
means. ' It shows that a state with two similarly charged
particles, ( Q ) =2e, contains the additional angular
momentum e /n. a, in complete agreement with the classi-
cal result (4.26). The exchange of these particles, for the
case that the two particles are represented by plane-wave
states, is effected in two spatial dimensions by rotating
the state through m radians. This is accomplished by ap-
plying the operator exp(i wJ ). When this is done the state
of two similarly charged particles picks up the additional
phase e /~, which can give rise to fractional statistics.
The state of a single charged particle picks up the phase
e /2~ when rotated through 2' radians in agreement
with the Wilson loop argument of Sec. III.

It would be of interest to generalize these results in
three ways. The first would be to develop a Fock-space
representation of the non-Abelian version of the Chern-
Simons theory and verify the presence of induced spin.
The second would be to apply the uncoupled Abelian
case to nontrivial spatial manifolds. The third would be

( x y ) f e i k ( x y)—d2k —i

4~' kJ
(A 1)

This Fourier representation defines a distribution which
satisfies the defining differential equation

BJSJ(x—y)=5 (x —y) . (A2)

The goal of this appendix is to construct a Coulomb-like
distribution which satisfies this differential equation. The
form (Al) will be replaced by the Fourier representation

2lkj
1(" y'-f z4~2 k 2) +k 2

(A3)

Clearly, (A3) and (A 1) are formally different distributions
and can only coincide for a restricted class of test func-
tions. In effect, (A3) can be viewed as a regularization of
(Al) for this class of test functions by softening its singu-
larity structure. The class of test functions wi11 now be
made explicit. If f(x) is a member of the space of sym-
metric test functions, i.e., those functions with the prop-
erty that f(x, ,x2)=f(x2, x, ), then the function g (x),
defined as

g (x)= f d y S (x—y)f(y), (A4)

where the definition (A3} is used for S, satisfies the ex-
pression

APPENDIX

In this appendix the form (4.17) for the Green's func-
tion of the theory will be evaluated. The starting point is
the Fourier representation
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a gj(x)=f(x),
J

(A5)
is set to zero and the expression BzSz is integrated over a
square patch of side 2L centered on the origin. This
gives, by elementary results,

where there is no summation over the index j. The proof
is straightforward and uses the fact that the Fourier
transform of the function f must also be symmetric in its
arguments. For this class of test functions the two distri-
butions (Al) and (A3) coincide in the sense that both
satisfy the differential form (A2).

The evaluation of the function (A3) is elementary, giv-
ing

(A6)

As a final demonstration of the fact that (A6) is the prop-
erly normalized Green's function for 8, , the argument y

f ] &z L 1 2L
dx) 4&p ~x)~ ~~+~~ —L, ~ ~~+L~X) Xp X)

4=—arctan(l)=l .

(A7)

The result is independent of the size of the patch, demon-
strating the presence of the normalized Dirac delta at the
origin of the derivative. It is critical that a square patch
be used since any other shape will yield a result different
in value from (A7). Thus, given these restrictions, the
Green's function takes the form (A6).
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