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Radiation patterns from vortex-antivortex annihilation
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We simulate vortex-antivortex annihilation in (2+ 1)-dimensional O(2) scalar field theory, under a
variety of initial conditions. In all cases the energy density of Goldstone-boson radiation shows a
sin a dependence on the angle o. from the final approach due to emission from linear acceleration
during the approach and from the overlap of the vortex cores. In collisions at a nonzero impact pa-
rameter, there is additional radiation due to circular acceleration. We explore the usefulness of an
electromagnetic analogy which uses the vortex world lines as dynamic variables. Our calculations
are relevant to the annihilation of antiparallel cosmic strings.

I. INTRODUCTION

One-dimensional topological defects (strings) may exist
in field theories which possess global or local symmetries.
If field theories which can support string degrees of free-
dom are relevant for the description of the early
Universe, cosmic strings could have arisen as the
Universe cooled through a phase transition via the Kib-
ble' mechanism, and have been suggested to explain a
variety of cosmological features. Oscillating string loops
may have been the seeds of the large-scale structure
which is seen in the Universe today. ' Long strings
which cross the horizon could have survived until the
present age, existing as highly massive relics of a time
when the Universe was incredibly hot and dense.

In studies of string dynamics in the early Universe the
most important problem has been the elucidation of
string intercommutation. One is interested in finding the
distribution of string matter as a function of time.
Among others, Shellard has investigated the dynamics of
global cosmic strings, while Matzner, and Moriarty,
Myers, and Rebbi have considered the scattering of
cosmic strings possessing a local gauge invariance. Al-
brecht and Turok and Bennett and Bouchet have re-
cently studied the evolution of string networks in ap-
proaches which deal directly with the string world lines
rather than with an underlying field theory.

In this paper we focus on the physics of annihilation of
topological degrees of freedom in classical O(2) scalar
field theory. Because the number of possible degrees of
freedom which can be varied for systems in three spatial
dimensions is very large, we have elected to work in two
spatial dimensions. Thus, the topological defects are
point defects, vortices, and antivortices. In cosmic-string
language, this paper is concerned with the Goldstone-
boson-radiation pattern produced when a pair of antipar-
allel cosmic strings annihilate. We believe our investiga-
tions have an interest beyond early Universe studies. Our
results have applications to other physical systems, such
as two-dimensional films of liquid crystals, ' or generally,
to the kinetics of X-F models. (Vortices in liquid helium
are more complicated. ") Many of the gross features we

observe have been previously reported but we believe that
a number of our observations are new.

Finally, it has been known for some time that an ana-
log Lagrangian can be derived for complex scalar field
theories which involves only point interactions. ' ' In
two spatial dimensions this point interaction takes on the
familiar form of electromagnetism. We find that many of
the qualitative features of vortex-antivortex annihilation
are reproduced by a model containing electromagnetic
point sources. However, the electrodynamic analogy ap-
pears not to be useful for detailed studies of annihilation
dynamics.

Numerical simulation of vortex annihilation in a com-
plex scalar field is treated in Sec. II. Section III covers
the analogous model, with point electromagnetic parti-
cles replacing the vortices. The last section contains our
conclusions. The derivation of the equivalence of the
effective, electromagnetic Lagrangian to the Lagrangian
for the complex scalar field is outlined in the Appendix.

II. VORTEX-ANTIVORTEX ANNIHILATION IN
A COMPLEX SCALAR FIELD

A. Field variables

We will study the complex scalar field theory whose
Lagrange density is

(2.1)

i 0(x,y, t)
P (2.2)

Three types of excitations occur. Two are local: a
massless Goldstone excitation corresponding roughly to
excitations of 0 modes; and a Higgs boson or massive
mode, corresponding roughly to excitations of p modes.
Additionally, the field supports vortex and antivortex ex-
citations.

The two components of 4 can be taken to be P& and Pz,
or p and I9, where

W(x, y, t)=P, (x,y, t)+i/2(x, y, t)
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The vorticity of any region may be defined by

gy'dx =2~q, (2.3)

where g is the vorticity, taking on values

g =0,+1,+2, . . . . Objects of vorticity of magnitude
greater than one may be constructed, but are known to be
unstable against decay into multiple ~q~ =1 objects, and
are not considered in this paper.

A simple expression for the 4 field which describes an
isolated vortex at the origin of coordinate space is

x +I'y
4„=p(x,y)e' '"'«'=p(x, y)

T
(2.4)

where the phase is now given by the particular solution
tan8(x, y)=y/x. An isolated antivortex is described by
the complex conjugate of (2.4). The coordinates may be
boosted to give 4 for a moving vortex.

The Euler-Lagrange equation in the static limit,

p"+~—~—Ap(p —
rl )=0, (2.5)

can be integrated to give p(r). The choice of coupling
and vacuum expectation value defines the core radius r„
below which p deviates significantly from g. In terms of
the vacuum expectation value and the coupling.

' 1/'2
1 2

p (2.6)

4=4, (x„)4„(x„). (2.9)

If the initial velocity is non zero, then
P(t =0)=(d@/dt), o. We replace the time derivative

by a finite difference over a small time step (using
b t =0.05), which is a reasonably stable method of initial-
izing the velocity.

simulations are performed at the particular choice of cou-
pling and vacuum expectation value A. = 1 and q = 1,
which sets the core radius at about &2. The time evolu-
tion of the system is integrated using a leapfrog algo-
rithm, which is accurate to second order in the time step.
We use steps of ht =0. 1 and a =0.5. For vortex veloci-
ties less than 0.9c we do not see lattice effects in our simu-
lations with these parameters.

Typical simulation areas are squares of length L =60
on a side (120 lattice sites}. We use open boundary con-
ditions. To minimize reflections, a damping term is add-
ed to Eq. (2.7), for all sites which lie on the boundary.
The extra term is proportional to the momentum; the
constant of proportionality is chosen to minimize the
reflected energy.

To set a vortex-antivortex pair down on a lattice at po-
sitions x„and x, we take 4 to be the product of the

0 Uo

solutions for an isolated vortex and for an isolated an-
tivortex, as

We will measure all distances and times in units of
I/gv I/A, , and energies in units of rl&A, .

For r ((r„p(r) is approximately linear in r, while for
r))r, the solution has the form p(r)=g O(r '). In-
the intermediate region, the differential equation can be
integrated numerically. A graph of p(r) is given by Shel-
lard. '

B. The numerical simulation

1 g [P&(r) P&(nn)], —
nn

dip(r)
dt

=Pp(r },

(2.7)

(2.8)

where the sum on nn runs over nearest neighbors. Our

We have carried out an extensive program of numeri-
cal simulations of vortex-antivortex annihilation. The
simulation is begun at t =0 by specifying a set of values
of field variables 4 and time derivatives corresponding to
locating a vortex and an antivortex at some initial coordi-
nates with some initial velocities. The pair attract each
other through a logarithmic potential. We evolve the mi-

croscopic equations of motion forward in time, through
annihilation, until the radiation pattern is seen. In order
to perform the simulation, the continuum equations of
motion are discretized in space, with a lattice spacing a.
The resulting pair of simultaneous, first-order differential
equations are

dPp(r) = —~4p(r }[4.(r}4.(r) —n']
dt

C. Features at zero impact parameter

We begin by showing, in Fig. 1, a series of plots of the
energy density at several time steps, from a simple initial
configuration with the vortex and antivortex separated 20
spatial units apart with zero velocity. The energy density
is symmetric with respect to reflections across either axis,
or across the origin, so in this figure we show only the
x )O,y &0 quadrant. In the final snapshot, one can see
that the energy has been radiated primarily in a direction
transverse to the path of approach, at 90', in fact, there
are nodes at 0' and 180'. A more subtle feature of the
pattern is that there is a radial node as well, separating
the major, inner peak in the energy density from a small-
er, outer peak. The inner peak carries off the energy
from the annihilation, while the outer peak was radiated
during the approach. The amount of energy within the
inner and outer peaks is nearly equal for this set of initial
conditions [plotted in Fig. 1(a)].

At the late stages of a simulation, the energy is almost
entirely in the 0 modes, so that the Lagrangian, can be re-
duced to L = —,'B„@*3"4.This leads to an energy density
u =—,'g (8"8)~. When the final plot of Fig. 1 was taken,
95% of the energy was in 0 modes.

Figure 2 shows a phase plot of the same radiated wave
as Fig. 1. The derivatives of the phase go to zero at the
peak of the outgoing ripple; this is where the radial node
occurs in the energy density. The electromagnetic analog
to the 4 problem, which is developed in the next section,
casts additional light upon the radial structure of the
Goldstone-boson radiation.

We performed a partial-wave analysis to probe the an-
gular structure. We decompose the amplitude 8"4 into
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above which the pair emerge some short distance and
then crash back into extinction (this threshold was first
noted by Shellard, in Ref. 5). For the particular lattice
size, initial positions, and field parameters which we use,
the threshold is at an energy of about 21 units, corre-
sponding to an initial velocity of 0.2 with an initial sepa-
ration of 20 spatial units.

The path of a vortex is monitored in a coarse manner
by evaluating the change in the phase of the field around
a plaquette; we implement fine tracking by assuming a
linear zero in the p field. The particle world lines are
displayed in Fig. 4 for a variety of initial energies above
the inelastic threshold.

In these collisions the vortex and antivortex pass
through each other (scatter at 0'). This would not be too
remarkable (after all, the outer regions of the colliding
pair do not know that the annihilation has occurred, and
their inertia can cause the v-V pair to reform after annihi-
lation), were it not for the fact that local strings behave
differently. Moriarty, Myers, and Rebbi report 180', in-
elastic scattering of local v-v pairs.

While the pair scatter at 0', they emerge with their
phases rotated by 180'. At large distances the field points
in one predominant direction. If that orientation is in the
positive x direction, and the vortex, is placed along the
negative x axis, then it must be that, for points close to

the vortex, the field points inward. After the pair pass
through one another the field must point out from the
vortex, since the field at large distances maintains the
same orientation. A similar analysis of the field around
the antivortex leads to the conclusion that the pair must
emerge phase shifted by 180', as we observe.

A series of energy plots from a representative run at a
higher energy appears in Fig. 5. Quadruple rings are visi-
ble in the final picture; the outermost rings from the ap-
proach, the next from passing through one another, and
the inner two rings from the final approach and then an-
nihilation. Again the radiation pattern from both rings
shows a dipole pattern with little discernible energy vari-
ation.

The maximum separation that the pair reach, as a
function of energy, appears in Fig. 6. If the fraction of
energy lost was independent of initial energy, we would
see a maximum separation with an exponential depen-
dence on the energy, due to the logarithmic potential be-
tween the v-v pair; a much slower rise with energy is ob-
served. Clearly the fraction of the initial energy, which is
lost in the approach and pass through, rises with energy.

It is less clear whether or not a resonant state is
formed. Tracking the pair is difficult when they are very
close; the data is consistent with either the formation of a
resonant state whose lifetime is roughly independent of
the initial energy, or with the lack of a resonance but
with very slow motion immediately after the pair pass
through each other. Resolution of this issue requires a
much finer lattice spacing and more computer capacity
than we currently possess.
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FIG. 4. Vortex world lines for six different initial energies.
The data is consistent with either the formation of a resonant
state whose lifetime is roughly independent of the initial energy,
or with the lack of a resonance but with very slow, low-energy
motion after passing through. Initial velocities were
0.0,0. 1, . . . , 0.5, with an initial separation of 20 units.

We have also carried out vortex-antivortex collisions in
which the pair is set down with some initial velocity in
the x direction, at some nonzero impact parameter.
Simulations at several different impact parameters are
recorded in Fig. 7. For these simulations the energy is
symmetric with respect to reAection across the origin, so
we show the y &0 half of the pattern only. Some of the
qualitative features of the annihilation pattern resemble
the zero-impact-parameter case, but overall the pattern is
much richer. Again there is a radial node in the energy
density. The energy inside the node was radiated during
the annihilation, and looks much like the dipole radiation
from zero-impact-parameter runs. The final approach of
the v-v pair lies at some angle to the x axis, as illustrated
in Fig. 8. The orientation of the dipole radiation clearly
is rotated by this same angle.

Whereas the energy contained in the inner wave is
weakly dependent on impact parameter, the outer wave is
strongly dependent on it. With rising impact parameter,
the outer wave becomes more substantial, as the vortices
lose energy and angular momentum. The outer wave also
shows more structure. In the head-on collisions, the vor-
tices only undergo linear acceleration. In the more gen-
eral case of nonzero impact parameter, the motion at any
time can be decomposed into a linear and a circular com-
ponent. While the energy loss due to linear acceleration
is radiated most strongly transverse to the motion, that
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FIG. 5. Annihilatio fation from an initial velocity of 0.5, initial separation of 20 spatial units: (a) at t =0; (b) pair has passed through
one another at t =17.5; (c) radiated wave at t =30; and (dj at t =40. The energy density is symmetric with respect to reflections
across either axis, or across the origin, so we show only the x )O,y & 0 quadrant.

due to circular acceleration is radiated primarily at a
tangent to the path. Both mechanisms of energy loss are
identifiable in the plots of Fig. 7, where A labels the wave
from annihilation, B labels the wave radiated due to
linear acceleration, and C labels the wave from circular
acceleration.

If the annihilation were from zero impact parameter,
one would expect to see a node in the angular momentum
at 90' to the line along which the approach took place,
where the energy flow is purely radial. If the angular

2.0-

momentum at angle 90' —5 is positive, then the symmetry
of the problem requires that the angular momentum at
angle 90'+5 be negative. In addition to this symmetry
about the 90' line, the angular momentum will vary in in-

tensity and sign with radial distance, as the field oscillates
with the passing of the radiated wave.

The angular momentum density for a typical set of ini-
tial conditions at nonzero impact parameter is shown in

Fig. 9. The reduced symmetry of the initial configuration
results in a more complex angular momentum pattern,
yet the reader may identify both the node in the angular
momentum at the radial peak of the radiated wave [as
seen in the energy plot of Fig. 7(b)], indicating a point
which lies at 90' to the final line of approach of the v-v

pair, as well as the variation in intensity and sign with ra-
dial distance which reflects the oscillation of the field.

III. THE ELECTROMAGNETIC ANALOGY
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I
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FIG. 6. Maximum U-v separation after passing through one
another for six different sets of initial conditions.

A. Equivalence to the electromagnetic Lagrangian

The interaction of global cosmic strings with the
Goldstone-boson field is hard to analyze. However, the
string core size is typically small in comparison to the
separation between strings, and a number of authors have
shown that this topological problem can be translated to
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FIG. 9. Angular momentum at t =35. Initial velocity of 0.5,
from initial positions of x,, =( —10, —6), x„=(10,6) which cor-
responds to Fig. 7(b). Solid lines are contours at
0.0125,0.0375, . . . ; dotted lines at —0.0125, —0.0375, . . . .

done in three spatial dimensions, down to the two-
dimensional case. In the (2+ 1)-dimensional case the an-
tisymmetric tensor becomes the electromagnetic field ten-
sor, and the problem of the vortex coupled to Goldstone
bosons is found to be equivalent to that of a point charge
interacting 1ocally with an electromagnetic field. %e
present a derivation of this equivalence, which parallels
that of Vilenkin and Vachaspati, ' in the Appendix. The
result is that

—20 0
X

20 L eff

where

F pF ~—J (3.1)

FIG. 7. Energy contours at t =35, for runs at nonzero im-

pact parameter, all with initial velocities of 0.5. (a) Initial posi-
tions of x„=(—10, —3), x„=(10,3); (b) initial positions of
x„=( —10, —6), x„=(10,6); and (c) initial positions of
x„=(—10, —9), x„=(10,9). A labels wave from annihilation; 8
from linear acceleration; C from circular acceleration. Con-
tours are drawn at energy levels of 0.01,0.02, . . . . The energy
density is symmetric with respect to reflection across the origin,
so we show the y )0 half of the antennae pattern only.

one of a string source interacting with an antisymmetric
tensor field produced by other strings. ' ' ' The interac-
tion of the string with the Goldstone-boson fie1d radiated
by other strings reduces to a problem of local interac-
tions.

It is straightforward to reduce the string calculations,

J„(x)=g f V„(x')5"'(x—x')dxo (3.2)

is the current of a pointlike vortex core ( V is its velocity
three-vector). The coupling is proportional to the vacu-
um expectation value, as

g =&~tl, (3.3)

2&mgi3„0= —'e F ~ (3.4)

B. Applying the electromagnetic analogy

The tool with which to do electrodynamics is the
(2+ 1)-dimensional Green's function

G(r, t;0,0)=— e(t —~r~) .
2

&t' r'—(3.&)

and the vector potential is related to the phase of the 4
field by

—6=

FIG. 8. Vortex path. Initial velocity was 0.5, initial positions
of x„=(—10, —6), x,, =(10,6). See Fig. 7(b) for corresponding

energy plot.

Calculations in (2+ 1) dimensions are more difficult than
in (3+1),because the Green's function is dispersive. The
physical basis for this dispersion is easy to understand if
one remembers that the {2+1)-dimensional case can be
thought of as (3+1)-dimensional, with z independence.
This is the physics of long straight charged rods. When
the rod is accelerated, an observer first sees the eff'ect due
to the closest point on the rod (the 0 function turns on),
but then sees a continuing signal which grows ever
fainter, emitted from segments of the rod which are fur-
ther and further distant.

As always, the vector potential is calculated by in-

tegrating over the source, weighted by the Green's func-
tion:
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A„(r, t)= JG(r, t;r', t')J„(r', t')d x'. (3.6) D. Qualitative features of the radiation pattern from
the electromagnetic analogy

Closed forms for the Lienard-Wiechert potentials do not
exist, except for particularly simple source functions.
For instance, for simple harmonic motion the A field is

ikr
A( r, t ) ~ x sin(cot )Ho( kr) ~ x sin(cot )

&kr
(3.7)

which results in a dipolar radiation pattern. The dipole
pattern of simple harmonic string motion was first given
by Davis' without using the language of the antisym-
metric tensor field. Other examples are described by
Davis and Shellard. ' In more complicated cases such as
ours, the potentials can be found numerically.

C. Calculating the energy density numerically

We are interested in computing the energy antenna
pattern in head-on vortex-antivortex annihilation using
the electromagnetic analogy. Any source function may
be used in the calculation of the vector potential. In prin-
ciple, one can calculate an analytic form for the vortex
path by integrating the equations of motion for a vortex
in the potential of another vortex. In fact the motion is
relativistic, and the calculation requires the inclusion of
radiative back reactions since we know that the vortex
radiates a large fraction of its energy during infall.
Dabholkar and Qaushnock' have calculated the evolu-
tion of loops of global string for which the loop radius is
much larger than the string core radius, including the
effects of radiative back reactions in their treatment. We
short cut this tedious process, using the vortex world line
as the source (which automatically includes the back re-
action), as recorded in simulations using the original La-
grangian.

There is one region which poses a dilemma, and that is
where the cores of the vortices overlap. Classical field
theories do not accommodate particle annihilation.
Furthermore, the derivation of the equivalence of the 4
and electromagnetic Lagrangians becomes unsound as
the pair overlaps, at annihilation. This happens to be the
region where most of the Goldstone-boson radiation is
produced.

One apparent solution is to extrapolate the motion of
the vortex and antivortex assuming a linearly increasing
velocity over the final distance and cutting off the
currents at the annihilation point. There is a serious
difficulty inherent to this approach, which is that the
source vanishes in an instant, which neither reflects the
more gradual dissolution of the vortex and antivortex,
nor does it lead to a well-behaved vector potential.
(Discontinuous derivatives in the current create cusps in
the radiated energy density. ) A better solution, which we
pursued, is to mimic the final throes of annihilation by
linearly extrapolating the velocity to zero as the vortex
cores overlap. The test of the method will be made by
comparison to the 4 data.

In passing, we note that the integrand from which the
vector potential is calculated contains a square-root
singularity. It is treated with appropriate care.

Much of the behavior of the energy density can be
found without doing any calculations. Let us assume we
are modeling a head-on collision, so the motion of the
vortex is always in the x direction. An examination of
the form of the integral for the vector potential will con-
vince the reader that it is somewhat bowl shaped, such
that a plot of A versus radius will have a single max-
imum. The energy density will, of course, be found from
the vector potential as

u= (E+B )
1

8~
(3.8)

B=B z=—
2

J(t') BD(t')Za dt'
By [D (t')]'~2 By

J(t')~r sine e

[ D(
l}t]3/2

(3.9)

Thus the B field's leading-order contribution to the ener-
gy density is proportional to sin o..

E. The electromagnetic simulations

The dominant sin e nature of the radiation field is un-
mistakable in both the 4 simulations and in the full elec-
tromagnetic calculations. In Fig. 10, we show the energy
density arising from an electromagnetic source which is
taken to be the vortex world line from a simple, head-on
collision (see Fig. l). When the radiated magnetic field is
analyzed one finds that around 97% of the amplitude is
proportional to sino. .

As mentioned above, we use the vortex world line as
the source only until the particles are on the order of a

While the electric field would be found as
E= —Vy —BA/Bt, the first term does not contribute to
an outgoing radiation field.

There will always be a radial node in the energy densi-
ty. Where the A field peaks (at the rim of the bowl), both
its derivative in y and its time derivative will cross
through zero. The peak in A approximately corresponds
to those points in space which are on the light cone with
the annihilation of the pair. Thus, when one looks at the
region of A which is out past the peak, one is seeing the
region which is causally connected only with the infall;
the region inside of the peak is causally connected with
both the infall and the annihilation. If several simula-
tions are done in which the initial separation is gradually
decreased (decreasing the time of the approach), the outer
peak will decrease in width and increase in height. This
double-peaked structure is something that we did not
predict from looking at the 4 Lagrangian, though it was
observed in the ensuing simulations. It is clearly to be ex-
pected from consideration of the electromagnetic analo-
gy.

The leading-order dependence of the B term of the en-
ergy density on the angle can be found by rough calcula-
tion. Assume that the approach is taken along the x axis,
with a as the angle from the axis. The magnetic field
points in the z direction. With D = (t —t') —(x—x'),
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OO6- analogy most useful as a tool for qualitative understand-
ing of annihilation patterns.

p, 04- IV. CONCLUSIONS

CL

0.02-

0.

FIG. 10. Energy density at t =40, from electromagnetic anal-

ogy. Source taken from world line of simple head-on U-U col-
lision; see Fig. 1(a) for corresponding 4 simulation plots

core radius apart, where we switch over to a source
whose velocity falls linearly to zero. The height of the
inner peak is a very sensitive function of the duration of
time over which the deceleration takes place, with short
times corresponding to high peaks. This inner peak is
narrower than the peak observed in the 4 simulations.
When the deceleration time is adjusted such that the
height of the peaks are consistent, the electromagnetic
simulation contains only about —', as much energy as the
4 simulation.

The location of the radial node also differs slightly be-
tween the two models. In the electromagnetic analogy,
the node lies at a radius which sees the transition from
the free fall to deceleration with a lightlike separation. If
one extrapolates for the vortex world line in the 4 runs,
it is found that the node is at a lightlike interval from the
moment when the vortex and antivortex would have been
directly over top of one another. These radii are close to
each other, typically a distance of three spatial units from
one another.

The electromagnetic analogy reproduces the angular
dependence of the radiated field well. It reproduces the
qualitative features of the radial dependence; we should
expect no more than qualitative agreement here, consid-
ering that we have only an ad hoc method for mimicking
the very energetic final moments of annihilation.

The disappearance of the particles releases large
amounts of energy into the massive modes, as the magni-
tude of the field-changes dramatically at the annihilation
point; in contrast, the electromagnetic analogy was de-
rived assuming only massless Goldstone modes. We ex-
pect that the electromagnetic analogy could be put to
good use in modeling radiation from an oscillating string
or vortex-vortex scattering, ' where there is less excita-
tion of the massive modes.

From the point of view of numerical simulations there
is no advantage in using the electromagnetic analogy over
the original equations of motion. The number of degrees
of freedom per site is small (two components of 4 and
their conjugate momenta) and it is straightforward to
simulate large systems.

' We found the electromagnetic

We have identified several features in the radiation pat-
tern from vortex-antivortex annihilation. The final an-
nihilation emits a dipole radiation pattern, and linear ac-
celeration during the approach radiates primarily trans-
verse to the path as well. In collisions at nonzero impact
parameter, additional energy is radiated at a tangent to
the path, due to the circular component of acceleration.
The fractional loss of energy from infall grows with in-
creasing energy.

We have shown that the point-interaction analog to
vortex dynamics, which is two-dimensional electro-
dynamics, reproduces the angular spectrum and much of
the radial dependence of the radiation from vortex-
antivortex annihilation, even though the derivation of the
analogy is invalid when the pair is close. The electromag-
netic analogy is not naturally capable of representing the
final disappearance of the particles, and even our ad hoc
method for mimicking the annihilation results in too lit-
tle radiation during annihilation.

The electromagnetic analogy would be better applied
to problems where much of the evolution occurs at a
greater separation between the particles, perhaps as in
the spiraling inward from large impact parameter of a
vortex-antivortex pair. The measurements of radiation
patterns which we have made are more easily done within
the fundamental, 4 field. While the electromagnetic
point-particle analog is useful for simple pencil and paper
calculations, the results of the numerical simulations in
this application do not justify the considerable effort of
implementation.

It would be interesting to know if the radiation pat-
terns we observe in our simulations could have astronom-
ical consequences, either as part of the direct observation
of a cosmic string, or as a contribution to galaxy forma-
tion. It seems more likely that one could observe these
features in vortex annihilation in films of liquid crystals.
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APPENDIX

With the assumption that the vortices are separated by
a distance larger than their core diameter, the interaction
of two vortices may be considered to be that of a point,
charged particle interacting with the electromagnetic
field produced by the other source. The electromagnetic
field tensor is related to the gradient of the phase of the N
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field, and the coupling is proportional to the 4 field's vac-
uum expectation value. We present a derivation which is
a simplified version of the one of Vilenkin and Vachaspa-
ti. ' Another, similar derivation can be done starting
from the Hamiltonian, and arriving at the same result via
a canonical transformation. '

When the vortices are well separated, the magnitude of
the field is nearly equal to its vacuum expectation value,
and the approximation may be made that

(A1)

F„=g8„6I, (A 10)

where 0 is the phase of the 4 field.
We relate g to the vacuum expectation value q by re-

quiring that the stress tensors derived from the 4 and
electromagnetic Lag rangians be identical. The sym-
metrized EM stress tensor is

The gradient of a scalar is another quantity which has no
curl, except for at a singular point. In the 4 field, the lo-
cation of the vortex is singular, so we write

(A2)

where

1

16m
(A3)

and

J (x)=g f V (x')5' I(x —x')dxo

We consider the proposed equivalent electromagnetic
Lagrangian. Working in the Gaussian system of units,
this Lagrangian is

e ~= (g'"F F ~+ 'g ~F—F" ),1

4 ALA, 4 pk

or, in terms of g and 0,
—2e.i'= " (a~ca.e —g.i'a~ca e) .
4m 2 P

The stress tensor for the Goldstone-boson field is

T ~=/'(a ea~e 'g i'a~—ea-e) .
2 P

Comparing the two stress tensors, it is seen that

F1
=2&my,

(A11)

(A12)

(A13}

(A14)

F"=a~~ —a.~ ~ . (A5) which means that

The electromagnetic field tensor is related to its source by F„=, e„„&F i —=2&nrIr}„e . . (A15)

8 F„„=4mJ„. (A6)

Our problem is independent of the z spatial dimension,
so the electromagnetic field tensor has only three nonzero
components. These three components are relabeled in
the more compact form

] oP (A7)

where the greek indices run over 0, 1,2. The components
of the vector F are

The phase of the field must wind through 2m around a
vortex. This additional constraint fixes the coupling in
the effective Lagrangian. Using Stoke's theorem, we find
that

2~= f cdx
"d"e=(r)) 'E,,of dX, ~B,F,

=4~(ri) ' f dX, 2J
S

=4m(ri) 'g f f dX, 2dxo5' '(x —x'),
S xo

(A16)
F=( —8„+E, E„) . —

The equation of motion for F" is

(Ag) where d X» is an element of surface area in the x-y plane.
The coupling is proportional to the vacuum expectation
value, as

e ~~8 F,= —'e I~a 0 F"'=—4vrJ
/3 ~~ 2 ypv P (A9} g =&rrrI . (A17)
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