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Energy density of relic gravity waves from inflation
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We evaluate both the spectral energy density and the total energy density for relic gravity waves

produced during the transition from an early inflationary phase to a matter-dominated Friedmann-
Robertson-Walker-type expansion: a —t' (c & 1). We find that for power-law inflation the spectral
energy density for gravity waves has more power on larger scales than for purely exponential
inflation. Evaluating the energy density of created massless particles (both gravitons and massless
scalars) we find that in the case of exponential inflation the ratio of the density of created particles
to the total density of matter is a constant, if c —,. This unusual behavior is a consequence of the

fact that the equation of state for created particles mimics the equation of state for matter driving
the expansion of the Universe. As a result, self-consistent solutions of the Einstein equations can be
found, in which the expansion of the Universe is sustained solely by the ongoing production of
massless particles, so that G„„=SAG(T„„). In the case of power-law and quasiexponential
inflation we find that the ratio of the energy density of gravity waves to the background matter den-

sity increases with time, as gravity waves with longer wavelengths and larger amplitudes enter the
horizon at successively later epochs. This could lead to the energy density of gravity waves becom-
ing comparable to the energy density of matter at late times, if inflation commenced at Planckian
energies.

I. INTRODUCTION

A fundamental consequence of inflation, first investi-
gated by Starobinsky, ' is the production of relic gravity
waves, which in the case of exactly exponential inflation
have a scale-invariant spectrum and enter our horizon
with a dimensionless amplitude h -GHo (Ho being the
Hubble constant for de Sitter space). In the case of
power-law inflation, gravity waves are created with a
non-scale-invariant spectrum, and upon horizon crossing
have a time-dependent amplitude h —GH~„t( t, ), H;„t( t, )

being the Hubble parameter at a time t„when a wave
reentering the Friedmann-Robertson-Walker (FRW) hor-
izon today crossed the horizon during the inflationary
era. As shown in Refs. 2 and 3, interesting upper limits
on the dimensionless amplitude of gravity waves just
entering the FR% horizon can be obtained by evaluating
the distortion to the cosmic-microwave-background radi-
ation (MBR) caused by these waves via the Sachs-Wolfe
efFect, and comparing this distortion with the observed
upper limits on b T/T. As a result, a model-independent
bound on h can be obtained, h & 10, corresponding to
H;„t( t, ) ( 10 m for the Hubble parameter during
inflation.

We extend previous work on this subject by evaluating
the energy density of gravity waves created during the
transition from inflation to an almost arbitrary FR%' ex-
pansion. One of our main results is that the energy densi-

ty of gravity waves falls off slower than the corresponding
background energy density of matter driving the FR%
expansion. This is true both in the case of power-law
inflation and for quasiexponential inflation. In the ideal-
ized case of a purely exponential inflation, the ratio of the

resulting graviton energy density to that of the back-
ground matter density remains fixed during the course of
expansion, if the equation of state of matter is weaker
than that of radiation: p (e/3, confirming earlier results
by Allen' and Starobinsky.

II. THE ENERGY DENSITY AND SPECTRUM
OF GRAVITONS FROM GENERALIZED INFLATION

The quantum gravitational creation of gravitons in ex-
panding FRW cosmologies was first demonstrated by
Grishchuk who also showed that in the linearized ap-
proximation, the behavior of gravity waves propagating
in a FRW universe becomes identical to that of a mass-
less, minimally coupled scalar field, with each of the two
polarization states of the metric tensor satisfying the
Klein-Gordon equation: h,:I,'. , =0. The quantization of
gravity waves and that of minimally coupled massless
scalar fields also proceeds along identical lines as was
demonstrated by Ford and Parker.

In order to study the production of gravitons from
inflation we shall assume the background space-time
geometry to be described by a spatially flat FRW metric

ds =dt a(t)dx =a (g—)(dr) —dx ),
where dt =a d g. For t & to the expansion of the Universe
is assumed to be inflationary, so that a ~ e ' in the case of
exponential inflation, or a ~ t', c ) 1 in the case of
power-law inflation. As demonstrated by Ford, towards
the end of inflation, during the epoch of reheating, the
equation of state of the Universe is very model depen-
dent, and can vary all the way from p =0 (dust) to p =@
(stiff matter). After reheating, the Universe enters a
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radiation-dominated epoch, and later still, the present
dust-dominated epoch. Since the effective equation of
state of matter in the Universe varies considerably from
epoch to epoch after inflation, we shall not specialize to
any particular expansion law during the FR%' stage, but
shall work instead with the flexible assumption: a ~ t' for
t ) t0, with c (1.

The Klein-Gordon equation in a FRW universe yields
to a separation of variables so that solutions of h "„.I =0
in metric (1) satisfy h „=Pt,(ri)e ' "e „, where e „ is
the polarization tensor, and Pi, (g) satisfies the second-
order differential equation

4't +2 01 +—k'&i =0
a

(2)

where the difFerentiation is carried out with respect to the
conformal time coordinate g. k is the comoving wave
number k=2ma/A, , iL being the physical wavelength of
the gravitational wave. For power-law expansion
a =(t Ito)'—= (ri/go)" "'~, [v=(1 3c )/—2(1 —c)], Eq.
(2) can be solved exactly, resulting in the following solu-
tion for the adiabatic vacuum state:
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For de Sitter space, v= —', so that A =i+rtol2(kyoto)
and 8=+go/2(krto) . Likewise, for modes in the
"out" region defined by (5),

after using the small-argument limit of the Hankel func-
tions:
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(v& —,'if c) 1). It may be noted that the fairly narrow
range —', v ~

—,
' reflects a broad range of powers: c & =2.

For v= —', (c = co ) we recover the adiabatic vacuum in de
Sitter space'

where
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At early times rt & rio & 0, Eqs. (3) and (4) define the scalar
field in its vacuum state. At late times ri & jrtoj, the scalar
field will no longer be in its vacuum state and will in gen-
eral be described by a linear superposition of positive-
and negative-frequency solutions of (2):

As a result

d (rt /rio)
(()(rt) —(cz+c, ) A +(cz —c, )Bfk 0 a

(It, &0) .
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where
1/2

ci and ci can now be determined by matching P+ and P
on wavelength scales greater than that of the horizon:
lim„of+=/, so that, for p, &0,
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' &c &1, (HEI ~go~, aoj I ).

P(q) satisfies the Wronskian normalization condition
W„(P,P')=i/a, so that ~c, ~

—
~cz~ =l. In order to

determine the Bogoliubov coefficients c1 and c2 we follow
Starobinsky' and Grishchuk and note that for wave-
lengths greater than the horizon scale (k urt~ &2m. ) at any
given time, Eq. (2) has the simple solution
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where A and 8 are constants. For modes in the "in" re-
gion defined by (3) and (4), we may determine A and B

for k7)0 & 2m, where y =m. 'I (v)I (1+~p~ ), and
~c, ~

—~cz~'=1. For ki)0) 2m. the adiabatic theorem"
gives c, = 1,c2 ——0. For p =0, corresponding to matter
with a stiff equation of state p =e,
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Setting v= —', in (10) defines the Bogoliubov coefficients

corresponding to the transition from de Sitter space to a
FRW-type expansion.

From (10a) and (5) we finally obtain, for modes defined
in the "out" region,
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where J~&~(kit) and Y„~(kg) are Bessel functions of the
first and second kind, respectively.

The energy density of the created gravitons is given
b 8, 12

e, =&T,'&
—1
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27/ Q 27TQ

where we have included contributions arising from both
polarization states of the graviton.

There are physical reasons for the momentum cutoffs
at high and low k in (11),which have been previously dis-
cussed in a similar context by Allen. ' The low-frequency
cutoff corresponds to the scale of the horizon today
(krt=2n },and appears because gravity waves with wave-
lengths longer than the horizon scale appear locally to be
a gauge transformation and so do not contribute to the
local energy density. The high-frequency cutoff in (11)
arises because particle creation is adiabatically

I

suppressed on small scales. '" For gravitons created dur-
ing the transition of the Universe from an inflationary re-
gime to a FRW-style expansion, a natural high-frequency
cutoff exists, and is set by the value of the Hubble param-
eter at the time of transition: H =go '. The exact value
of the high-frequency cutoff is in fact somewhat ambigu-
ous, depending among other things on the duration of the
reheating phase after inflation. For this reason previous
authors have sometimes assumed slightly different values
for the high-frequency cutoff scale. However, this ambi-
guity in the choice of the high-frequency cutoff does not
affect the results of the present calculation since the main
contribution to eg comes from the lower frequency cutoff'
in (11)which is well defined.

Substituting Pk from (10c) into (11) we obtain' (for
p, &0)
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where y=a 'I (v)I (1+ ~p~ ).
For the range of interest v+

~ p ~

~ 2, the main contribu-
tion to e comes from E'g which after the transformation
x =kg can be recast in the form

the range of interest ~p~
&

—,', corresponding to physically
realistic equations of state for ordinary matter: p =ac,
0 a(1. Since the main contribution to the integral in
(13) comes from the lower limit x =2m we obtain
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where H;„f is the Hubble parameter during inflation:
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~ p, ~

=2 [as, for instance, in the case of exponen-
tial inflation (v==,') followed by a radiation-dominated
FRW expansion (p= —
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The integral in (13}can be evaluated exactly if we note
that Z[„~(x)+Z~„~+,(x)=2/nx, (Z~„~=J~„,Y~„~), for

This result can be rewritten in terms of the cosmolog-
ical parameter Og E'g /E' where e =3H /8~6
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Ag =CGH;„t(ri), (14c)

=3(~p~+ —,') (8mGa il )
' is the background matter den-

sity (0 =1 is assumed). We obtain, for v+ ~p~ & 2,

From (14) we find that for exponential infiation

H;„t= ~i)0~
' =const, so that the ratio of the gravity wave

density to that of the background matter is a fixed quanti-
ty whose value (for a given background equation of state)
is determined solely by the Hubble constant for de Sitter
space. For a dust-dominated universe,

2 —2k —
1
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16~
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This result is both interesting and unusual since it indi-
cates that Qg E'g /6' can increase with time. (A similar
growth in 0 arises even in the absence of inflation, if the
equation of state for the background matter is stiffer than
that of radiation: p & e/3, as first noted by Grishchuk .)

The origin of this behavior lies in the fact that for
v+

~ p ~
& 2, the dominant contribution in e"' arises from

the vicinity of the lower limit k =2m' ', corresponding
to those modes which are entering the horizon today. It
is well known that once a given gravitational-wave mode
leaves the inflationary horizon at some time q=q„c(0,
its amplitude freezes out to a constant value determined
by the Hubble parameter at the time of horizon crossing,
so that

h '=16~G /e /'=16~G
g

= 16m 6A H;„t( i)Hc ), (15)

where 3 =I (v)vr "(v —,') .—h is the dimensionless am-

plitude for gravity waves, and following Ref. (3), i)„c
denotes the time of horizon crossing: k li)Hcl =2~ [(15)
is readily derived from (4), (6), and (8)].

Later, after undergoing superadiabatic amplification,
this mode reenters the horizon at a time i)= i)Hc~, and
contributes to the energy density an amount
Ei ~ co h /16nG where co=k/a =2ir(ai)) ' is the associ-
ated frequency at horizon crossing. This establishes the
origin of the H;„t(r))la ri term in (13) and (14).

As pointed out in Refs. 2 and 3 present observational
constraints on the anisotropy of the microwave-
background radiation indicate that H;„t(rtHC) &10 mz
thereby constraining the gravity wave energy density:
Os=ex/e & 10 . However, since H;„t(rt) grows with
time as newer waves reenter the cosmological particle
horizon after undergoing superadiabatic amplification, it
follows that 0 too will grow giving rise to the possibility
that eventually, E'g E' when waves which left the
inflationary horizon during the Planck era, reenter the
FRW horizon with Planckian amplitudes: h =const
Xm 'H;„'f=1. The net effect of Qg growing, will be to
speed up the rate of expansion of the Universe at late
times. It is easy to see that if inflation commences in the
Planck domain, then the FRW scale factor will approach
the stable asymptotic form a ~ t at late times, for which
no new waves enter the horizon, signaling the end of fur-
ther graviton creation. (However, because of the small
value of 0 today, it will be many Hubble times before
E'g E', and the back reaction of newly created gravitons
on the background space-time geometry becomes appre-
ciable. '

)
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and s =m~ 'H;„„(rIHc) is the dimensionless parameter
first introduced by Starobinsky, ' which is related to the

(Since H;„t & 10 m this indicates 0 & 10 .) 0 as
defined in (16) is in fact smaller by a factor of m than a
recent evaluation of 0 by Allen. This discrepancy
arises because the lower-frequency cutoff scale used by us
in Eq. (13) and that used by Allen are slightly different.
In Ref. 5 the value of the lower-frequency limit is taken
to be co=kla =H(rt). H(rt) being the present value of
the Hubble parameter. Since H(ri)=2/art in a dust-
dominated universe, this corresponds to a cutoff scale
k =2/i) which is smaller by a factor of n than the wave
number corresponding to the present-day horizons scale
k =2m/ri, a. t which we impose our long-wavelength
cutoff. Since the spectral energy density of gravitons for
a dust-dominated universe —kde's ldk —goes as 1 lk for
small k, this results is an overall enhancement of n for
the energy density of gravitons obtained in Ref. 5.

The result that 0, is independent of time is however
strictly true only for exponential inflation when the
inflating space-time geometry is exactly described by de
Sitter space. For the more realistic case of quasiexponen-
tial inflation when

a(t) ~ exp JH;„t(t)dt

and H;„t(t) decreases slowly with time, one should ex-

pect, in keeping with our preceding analysis,

Eg /6 ~ H;„t(ri) to be a monotonically increasing func-
tion of time as in the case of power-law inflation, so that
as in that case, e =e eventually, when waves originat-
ing during Planck-epoch inflation begin reentering the
horizon.

From (14a) we also find that, for a particular choice of
p and v, v+p=3, the energy density of gravity waves
does not depend upon time, thereby behaving like an
effective cosmological constant. For a dust-dominated
universe (p= ——', ) this arises if v= —,', which corresponds
to very weak power-law inflation: a ~ t . Reheating
constraints, however, seem to rule out this rather intrigu-
ing possibility.

From (13) we obtain the following spectral energy den-
sity for gravity waves (in units of erg/cm ):
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amplitude of gravity waves entering our horizon today

(rIHc stands for horizon crossing time as in Ref. 3),
co=krI/2n is the dimensionless wave number expressed
in units of the horizon scale: co=co/coh =A), /A, (A. being
the physical wavelength and kz being the present scale of
the horizon), so that co~ l. (A,&-—2X10 h ' cm, where
h =H/50, H being the present value of the Hubble pa-
rameter expressed in units of km sec 'Mpc '.) This re-
sult may be rewritten in terms of the spectral cosmologi-
cal parameter: 0 (ro) =e($)/e„, so that

b 2 2fi —4 —2( v+(P()
g co — s m co

where 0 =e /e« is the ratio of the energy density of
matter to its critical value. For exponential inflation fol-
lowed by a radiation-dominated universe (v= —'„(M= —

—,
' ),

we recover the scale-invariant spectrum first obtained by
Starobinsky

III. THE GRAVITON SPECTRAL ENERGY DENSITY
IN A MULTICOMPONENT FRW UNIVERSE

In general, if the expansion of the Universe is governed
by different components at different times, then the spec-
trum for gravity waves will show a characteristic change
in slope at a frequency determined by the horizon scale at
the time when the equation of state for matter changes.
To treat the problem most generally, we use the methods
developed earlier in this paper to evaluate the Bogoliubov
coefficients for a universe undergoing successive
inflationary stages, as well as for multicomponent FRW-
style expansion.

In the case of double inflation, let us assume that the
Universe underwent two successive stages of inflation
characterized, respectively, by the expansion indices A,

and v. The solutions to the wave equation (2) are then,
for g & F1&0,

-=2 2
E(CO) = S E„3' (18)

1/2
7T g 1 H' '(kit), k)0,

4
(21)

where e„ is the total energy density in massless particles
(excluding gravitons).

We see from (17) that for power-law inflation (v) —,
' ),

the resulting gravity-wave spectrum has greater power at
lower frequencies than if the inflation was exponential.
For both exponential and for power-law inflation, the
long-wavelength power in the graviton spectrum is
directly related to the equation of state for matter during
the epoch following inflation, with the spectrum display-
ing greater power at longer wavelengths for matter hav-
ing softer equations of state. In particular for exponen-
tial inflation followed by a dust-dominated epoch of ex-
pansion: a ~ t [v= —,', (M= ——', in (17)],we obtain

3 S E'm

&(9)=
8K Q

A similar spectrum is also produced
driven inflation" a ~ t, is followed
dominated FRW expansion: a ~ V t, in

p = —
—,
' in (17) and once again

(19)

if "domain-wall-
by a radiation-
which case v= —,',

3 s E'„
e(co) =

87T Q
(20)

So far we have confined our attention to the simplest
possible case of simple inflation followed by single-
component FRW expansion. We do not, however, expect
any of our main conclusions (such as the slow growth in

eg /e ) to change if one considers more complex
scenarios, such as double inflation followed by a mul-
ticomponent FRW expansion. ' In this case, one would
expect the spectrum of created particles to be somewhat
modified due to the presence of additional particles creat-
ed during the change in the equation of state of the
Universe, as its expansion is now governed by different
components at different times.

We evaluate in the next section the spectral energy
density for gravitons in a multicornponent FRW
universe. Some work in this direction has previously
been reported in Refs. 5 and 16.

corresponding to the adiabatic vacuum state, and, for
g1&g&0,

where

y
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c2 and c1 can once more be determined by requiring that
both P and P have the same asymptotic behavior given by
(6). As a result we obtain, using limk 0(()=P and the
low-frequency limits of (t) and (1) given in (8a),

kg1 91k
+r

2

V A,

(23)

(5/2) k
2, 1 (24)

If, for g & go the Universe undergoes conventional FRW-
type expansion characterized by the expansion index p:
p&0, then the final Bogoliubov coefficients correspond-
ing to the overall transition A, ~v~p will be

Cl C2 C1 C2 C1 C2

C2 C1 fina)
V4 V4 (25)

C2 C1 A~V C2 C1 v P

where c,(2) are given by (23). The Bogoliubov coefficients
describing the transition from inflation to a FRW expan-
sion, (c2,c() „, have been previously evaluated in (10a)
and (10b). [For the noninflationary range 0&v& —,', Eq.
(23) also gives the Bogoliubov coefficients corresponding
to the transition from an inflationary expansion (21},with
A. ~ —,', to a FRW expansion Eq. (22), with 0(v & —,

' (corre-

for krt) (2m. , where y=I (v)/f'(A, ) and ~c;~ —
~c2~ =1.

For kg1) 2m, c", =1, c2-—0. For exponential inflation
(2, =—,') followed by domain-wall-driven driven inflation
(v= —,'}we get
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kg] 11
+y

where y=&1+~v~)/P 1+~A~), and ~c",
~

—~cP =1.
For k pl ) 2m the adiabatic theorem gives c; = 1,c 2

=0.
If a period of inAation preceded the FRW expansion

then the final Bogoliubov coefficients corresponding to
the overall transition v~k, ~v will be given by

(26)

Cl C2

C2 C
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Cl C2 Cl C2

(27)
C2 Cl V, g C2 Cl

where c2 and c", are defined in (26), and the Bogoliubov
coefficients for the transition from inflation to FRW ex-
pansion (cz,c, ) z are given in (10a) and (10b) with v

and p in those equations being replaced, respectively, by
v and A, . For the important case of a two-component
universe consisting of radiation and dust, we obtain, from
(27) noting that A, = —

—,
' for radiation and v= ——,'for

dust,

sponding to 0 & c & —,
' in a ~ r')].

Similarly, the case of a multicornponent FR% universe
is important to consider, if only for the reason that the
Universe we live in has at least two components —dust
and radiation. Furthermore, the equation of state of the
Universe during reheating is very model dependent and
must also be taken into account in order to obtain the
correct behavior of the spectral energy density at small
wavelengths. '

In order to evaluate the Bogoliubov coefficients in this
case, we assume as before that the adiabatic vacuum at a
time ri & g& is described by (21) but with A, & 0, since the
expansion of the Universe is assumed to be
noninflationary. Similarly, for g) g] solutions to the
wave equation are described by (22), again with v&0.
Once more using limk oP=P, and (6) and (8b) for the
low-frequency behavior of P and P we obtain (for

kryo, & 2n.)

(co) =b2@ 3- 2~~2'

where
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' )2 16m
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H;„f and H„,d are the values of the Hubble parameter at
the end of the inflationary epoch and at the end of the
radiation-dominated epoch, respectively. e and e„are
the energy densities of matter and radiation, respectively;
E Ec„—4.2. 10 h ergs/cm, fl„=c„/e = 10 h

where h =H/50, H being the present value of the Hubble
parameter (expressed in units of km sec 'Mpc ').
s =m~ H;„r(gHc) is related to the dimensionless ampli-
tude of gravity waves entering the cosmological horizon
today; s ( 10 is indicated by the present bounds on the
anisotropy of the cosmic-microwave-background radia-
tion ' (see Fig. 1).

As before co = k g/2m =k& /1, , is the dimensionless
wave number expressed in units of the horizon scale (I,
being the physical wavelength and A. h being the present
scale of the horizon, /(,

&
-2X 10 h

' cm), so that co ~ l.
For exponential inflation (V =

=,
'

), Eq. (27b) agrees with
the spectrum of gravitons obtained in Ref. 5 [Eq. (4.8)], if
we note that co=co/nH(t ) in terms of notations used in
that paper. The upper threshold frequency in (27b) has
been assigned assuming that the transition from inAation
to a radiation-dominated epoch was instantaneous. As
pointed out by Ford, however, the equation of state of
matter during reheating may differ from that of radiation,
in which case the duration of the reheating phase will
have to be taken into account in assigning the upper limit
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' (v+]/2)

+ I ] 90

3y . 2
(27a)

and

e(co)=b~G' "s e for 1&co& 0„'
4n.

where y =Dv)/2&sr [a =(r /to )'.—:(g/71o)' ' "', so
that V=(1—3c )/2(1 —c); for exponential inflation v= —,

'

and y = —,'.]
Knowing the value of c2, the corresponding value of

the spectral energy density for gravitons can be easily ob-
CO

tained from the relation e(co)=codeg/den=
2 ~c2~ .

Combining the value of c2 obtained in (27a) for long
wavelengths with the intermediate wavelength value
given in (10a) we obtain

-Zo I—

—25 I—

I—

—30 I—

—35 I—

10 15
)og„X[om]

20 25

FIG. 1. The spectral energy density of gravity waves (in units
of the critical energy density) is shown as a function of the
wavelength, for exponential inflation (solid line}, and for
power-law inflation with a ~ t' {dashed line}, and a ~ t' (dotted
line). The spectral energy density has been evaluated under the
assumption that s =m~ 'H;„f{g«)=10 . A lower value of s
will result in a smaller amplitude for gravity waves.
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u (g) =v'cos,'~ 4~(co, x )
kg~ oo

lTQ1

4g
Ht3q'~(kg), (28)

where co =kg, /2, x = 1+2'/g„and S," '(co, x ) is the ra-
dial prolate spheroidal function. ' If at early times q &'gp

the Universe underwent a period of inflation, then, the
"out" modes in Eq. (28) will be modified to

Q =C10 +C2Q (29)

Once again, for kgo(2m. , c, and e2 can be evaluated us-

ing (6) and the well-known asymptotic form for prolate
spheroidal functions

S,""(co,x) ——P', (x)— ', gI(x),~0 3 2N
(30)

where Pi(x) and QI(x) are Legendre functions of the
first and second kind, respectively. Once more requiring
limk of+ =4, with P+ defined in (3), and (Sa), we obtain
(for krio & 2~)

v+ 3/2' —
( v+ 3/2)

90k
+y

kno

2

l

where y=3r(v)/4v'm, and ~e, ~

—
~c2~ =1.

corresponding to exponential inflation,

(31)

For v= —'
2

to co. A more realistic upper threshold frequency may
therefore be co & (3/4m. )Q„' (H„h„,/H„d ), where

H„„„,is the Hubble parameter just after reheating. The
related question of graviton production during the
reheating phase has recently been addressed by Ressell
and Turner. '

For the important case of a spatially flat universe con-
taining both radiation and dust, the Klein-Gordon equa-
tion (2) can be solved exactly, with the adiabatic vacuum
at g= ~ being described by'

4 =[aori, a(ri)] "u(ri),

where a(g) =aori(g+g, ), and
1/2

Knowing the low-frequency behavior of So(co,x )

So' '(co,x) —1+—Qo(x }
m~0 6)

(34)

allows one to once more determine c2 and c1 by matchingt and P+ at small k. So that, for kqo & 2m. ,
' —( v+ 1/2) v+ 1/2

kgo

2

gok
+y

2

l
C 2, 1 (35)

where y=I (v)/2V nFo. .r krio) 2n, c, =I,cz -—0.
Finally, if a radiation-dominated stage existed pri r to

inflation, the corresponding scalar field modes during
inflation will be modified. In the absence of such a radia-
tion stage, the state defined by the massless limit of the
adiabatic vacuum state is unphysical, because the two-
point function, and in some cases the energy-momentum
tensor, have infrared divergences. An initial radiation
stage (and its corresponding adiabatic vacuum) gives rise
to an acceptable, physical, and finite quantum state in the
subsequent de Sitter phase. Of course, different choices
of quantum state (other than the m ~0 limit of the adia-
batic vacuum) for the de Sitter phase could be invoked to
permit an infinite period of inflation with no initial radia-
tion phase. It has been shown that any such quantum
state would have to break de Sitter invariance. '

The state corresponding to the conformal vacuum dur-
ing the radiation-dominated stage is given by

1 1y+ exp( —ikri )v'2k a(g)
(36)

so that A =riov k/2, and B= i /v 2k,—where A and B
are defined by the low-frequency limit of (36) using (6).
During inflation the resulting quantum state will once
more be a linear superposition of positive- and negative-
frequency solutions of (2), so that

y„(q)=c,y I„'+c,y'„

where, just as in (22),
' 1/2

i 3 (k rio)'

(kgo)
y

(+, —)(~)— ~90
4

HI„"(kg), v) 0 .
go

(37)

The Klein-Gordon equation can also be exactly solved
in a FRW universe consisting of stiff matter (E ~ A /a )

and radiation (e„~B /a ). In this case
a(q)=V a, q(g+g, ), where a, =B/3 and

r1, =2v'3A /B. The adiabatic and the conformal vacuua
being identical are described by'

1/2

V(q)= S~+ '(co,x }

Matching $+ and P, for low frequencies, using the low-
frequency limit of (37) given in (6) and (Sa), we obtain

8c+c=— c —c=—
1 2 g& 1 (38)

90

—v —1/2
kelp

J„(kg)

where A and B are defined in (Sa). From (37) and (38) we
finally get

1 1
exp( —ikq),V'2k a(g)

(32) kgo—b
2

v+ 1/2

Y (k71), (39)

+=C, %+c2% * . (33)

where co=kg, /2. As in the previous case, if the expan-
sion of the Universe was inflationary at early times, then
the late time behavior of 4' will be given by

where

oI (1+v) ir 1/ '1)oa= —i b=
4v ' r(v) (40)
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From (39) we see that limk Olgl k dk cck dk~0, so
that infrared divergences in (P ) =1/2m Jdk k I(()l are

indeed absent in this case. Infrared divergences are also
absent in ( T„„).

—2lpl

16a go
—

1

x f dk k'(IF,„+,I' ——,'IF,„,I') . (43)

IV. PRODUCTION OF MASSLESS SCALAR
PARTICLES FROM INFLATION

(41b)

Where Pk is defined in (10c) for arbitrary values of v. For
exponential inflation v= —,', and

' ]/2 —
I pl

7T gp

4
7l

9Q
F „i(keg), (42)

where
—3/2 —lpl

kgo
F),~(kr)) =iy

2
Ji„i(key)

It is also interesting to evaluate the energy density and
pressure for massless scalar field quanta created during
the transition from exponential inflation to a FRW
universe containing matter with the equation of state

p =ac with —
—,
' & a & 1. [Since a =(t/to)'—= (q/r)0)'

this range in a corresponds to —,
' &c &1 and p &0. The

parameters a, c, and p being related as follows:
a =(1+—', p)(1 —2p) ' =(2/3c )

—1].
As pointed out by Wise, an axion field with a small

mass may play the role of an effectively massless
minimally coupled scalar field, especially if the Peccei-
Quinn symmetry is spontaneously broken during the
inflationary era, in which case the axion field is essentially
massless during inflation. Other possibilities for the ex-
istence of extremely light, effectively massless, scalars and
their influence on cosmology, have been recently dis-
cussed by Weiss 2o

For a minimally coupled massless scalar field, '

—
1

~p= & Too & =, , f dk k'(leak I'+k'leak I'), (41a)

As in the case of gravitons, the main contribution to (43)
for equations of state p & e/3, (p & —

—,'), comes from the
vicinity k =2m' ', corresponding to those modes which
are entering the horizon today. The integrals in (43) may
be evaluated exactly so that we finally obtain (for

p & —
—,
'

) (Ref. 21)

where

B
8~2a 2~2~2

' ~ 8~2a 2~2~2
(44)

1 —2p 1+ 3&

1+2@ ' 1+2p
and H, „r= I r)ol is the Hubble constant during inflation.

Integrating (41a) for a radiation-dominated expansion

p =e/3, (p = —
—,
'

) we obtain

1
~ ln ci 2

4n (ar)0) 'gp 'qo
+C. , (45)

where ci(2r)/go) is the integral cosine function, and C is a
constant, C=

—,', +ln2 —
y

—
—,
' (y being Euler's constant).

From (45) we see that e& drops off more slowly in time
than H (rj)=1/(ago) . This is due to the fact that the
spectral energy density is scale invariant in this case, with
all wave numbers contributing equally to e&. [This was

also true for gravitons as shown in (18)]. The high-
frequency cutoff in (41) is an absolute cutoff in this case
since no massless particle production can occur in a
metric which is conformally flat. " (R =0 for p =e/3, so
that minimally and conformally coupled massless scalar
field equations are equivalent in this case. )

As we have pointed out earlier, the dominant contribu-
tion in (43) for p & —

—,
' arises from modes just entering

the horizon for whom kg=2m. This accounts for the
presence of the term H;„ra q =Hmr[(1 c)/2] t in—
(44), and also explains the close similarity between e& and
e for exponential inflation.

From (44) we see that

X/Qk
+y

- 3/2+ Ipl

Yi„(kvg)

1+ p
1 —2p

(46)

and y=I (1+ lpl)/2v'~.
Then, noting that'

1/2
7T gp

4

we obtain
' —2lpl

f dk k'(IF)„+) I'+ I+„(I')
16a gp Q

and

where p =de is the equation of state of the background
matter. We thus see that the created particles possess ex-
actly the same equation of state as the background matter
driving the expansion of the Universe.

The fact that ( T„,} for created massless scalar parti-
c'es rnimics the behavior of ordinary matter driving the
expansion of the Universe, leads to the interesting possi-
bility that, perhaps, self-consistent solutions of the Ein-
stein equations can be constructed in which the expan-
sion of the Universe is sustained solely by the ongoing
creation of massless scalar quanta (or equivalently of
gravitons, since as shown in the previous section, gravi-
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tons created as a result of exponential inflation also have
the property eg ~ e ), so that 6„„=8nG ( T„).

Solving for the trace of the Einstein equations

where

8irG (T)
C4

(47)

6(p —
—,
'

)

and

p= —
—,'(b++1+b ) . (49)

From Eqs. (47)—(49) we see that, given an a priori value of
the Hubble parameter during inflation H;„f, the corre-
sponding self-consistent FRW expansion of the Universe,
a =(rtlrto)" (iM &0), can always be determined from the
relation (49) linking ju with H;„t. To reexpress the expan-
sion of the Universe in terms of the real-time coordinate
a ~ t', we may use the relation

1 2pC=
3 2p

(50)

linking the expansion index c with p.
It is worthwhile to recall that quantum gravitational

effects usually play a prominant role only very near the
initial big-bang singularity, when the space-time curva-
ture becomes comparable to its Planckian value. " The
results of this and the previous section, however, indicate
that it is possible for quantum gravitationa1 effects to be
significant even during the late stages of the Universe's
expansion provided the Universe underwent an initial
inflationary stage. The fact that most known solutions of
6„„=8m 6 ( T„) are almost exclusively sustained by the
quantum vacuum polarization makes the solutions to
G„,=8irG ( T„) obtained above rather unique, since in
this case, the self-consistent expansion of the Universe is
sustained solely by the ongoing creation of massless parti-
cles.

It is interesting to note that one cannot rule out large
values of 0& today, purely on the basis of primordial nu-

cleosynthesis constraints which are usually invoked to
limit the number density of other massless particles. This
is so because massless scalar particles (and gravitons),
created during an early inflationary epoch do not have
the same equation of state as radiation, so that e ~ a is

true only at early times when the Universe was radiation
dominated. ' " The main constraint to 04, comes, as in

the case of 0, from the observed upper limits on the
isotropy of the cosmic-microwave-background radiation,
which as in the case of gravitons, provides the con-

we obtain the following algebraic equation for p:

p +bp 4
—0,

where b =s /3m, and s=mz 'H;„t is the dimensionless
parameter introduced earlier. Solving for LM we get

straint ' 0& & 10 ", ruling out the possibility that mass-
less scalar particles may play an important role in the dy-
namics of the present-day Universe.

So far in our treatment of particle production due to
inflation we have restricted ourselves to soft equations of
states for the matter driving the expansion of the
Universe: p ~ e/3. For stiffer equations of state,
e/3&p e, we find that, in addition to contributions to
the energy density and pressure given by (44), there also
exist terms in the energy-momentum tensor proportional
to a, which arise due to the production of high-
frequency massless scalars. (The existence of such a con-
tribution to the energy density of created massless parti-
cles was first noted by Grishchuk .) Since, for p &e/3,
the background energy density e ( ~ a "+ ') drops off
faster than e& ( ~a ), this will result in the energy den-

sity of created massless scalars rapidly overtaking the
background energy density, thereby making the Universe
effectively radiation dominated very soon ' (so that
a ~v't generically). The resulting energy density of
created particles at late times wi11 then be generically de-
scribed by (45) for the case when the background equa-
tion of state for matter is stiffer than that of radiation.
This argument is also applicable to the case of gravi-
tons. '

V. CONCLUSIONS

We have evaluated both the spectral energy density
and the total density for gravitational radiation produced
during the transition from generalized inflation to a
FRW-type expansion. We have shown that for power-
law inflation, the spectral energy density for gravity
waves has more power on larger scales than for purely ex-
ponential inflation. For the total density we find the
surprising result that for both power-law inflation, and
for quasiexponential inflation, the ratio of the energy
density of gravity waves to the total matter density,

Qg =as/e, grows slowly with time, as waves with larger
amplitudes, originating earlier on during inflation,
reenter the FRW horizon and contribute to the energy
density an amount e -co h /16mG, where h is the di-
mensionless amplitude of the gravity wave:
h 0-16rrGH;„t(rt), and co=2m/art is the associated fre-

quency at horizon crossing. H;„t(rt) is the value of the
inflationary Hubble parameter at a time when the wave
crossed the inflationary horizon. In the case of primordi-
al Planck-scale inflation, this behavior of 0 has led us to
speculate that e =e eventually, when gravity waves
which left the inflationary horizon during the Planckian
era, begin to reenter the FRW horizon with a dimension-
less amplitude of order unity. Because of the steady
growth in 0, and the accompanying increasing back re-
action of gravity waves, the expansion of the Universe
will be modified at late times, ' causing the Universe to
enter into a period of "coasting expansion" during
which its scale factor grows linearly with time: a ~t.
The expansion law a o- t, describes a stable asymptotic re-
gime of expansion for which no new waves enter the hor-
izon, signaling the absence of further graviton creation.
This expansion law prevents all correlations which oc-



462 VARUN SAHNI

curred during the pre-Planck era from reentering the
FRW horizon, thereby restricting our knowledge of the
epoch immediately following the initial big-bang singu-
larity. This behavior resembles the operation of a princi-
ple of cosmic censorship. (All other quantum gravita-
tional effects are absent as well, and ( T„„)=0 if a ~ t, as
was demonstrated in Ref. 29.)

In the idealized case of exactly exponential inflation,
our treatment has been extended to include both
minimally coupled massless scalar fields as well as gravi-
tons. We have shown that both for gravitons and for
massless scalars the effective equation of state for created
particles mimics the background equation of state for
matter driving the expansion of the Universe. This has
led us to construct self-consistent solutions of the Ein-
stein equations, which originate in an inflationary stage,

and in which the subsequent postinflationary expansion
of the Universe is sustained solely by the ongoing particle
creation, so that 6„=8m.G ( T„„).(This effect remains a
unique feature of massless scalar and spin-2 fields, since
there is no production of massless spin- —,

' and spin-1 par-
ticles in a FRW cosmology. " )
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