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Performing numerical simulations and Abelian projection in SU(2) QCD, we find that Wilson

loops composed of a residual U(1) gauge field alone show a strong enhancement when the Abeli-

an projection is done in a U(1)-covariant gauge. Remarkably, the Creutz ratios determined from

the Abelian Wilson loops approach the scaling curve with Je-58AL. Nonrenormalizable unitary

gauges do not show such interesting types of behavior.

It is crucial in QCD to understand the mechanism of
quark confinement. 't Hooft' and Mandelstam have con-
jectured that the dual Meissner effect due to color-
magnetic-monopole condensation is responsible for color-
charge confinement. Especially interesting is 't Hooft's
idea of Abelian projection. When one fixes the gauge de-
grees of freedom in such a way that the maximal torus

group remains unbroken, QCD can be regarded as an
Abelian theory with color charges and color magnetic
monopoles. If the monopoles make Bose condensation,
color charges and then quarks are confined. 4 In this
scheme, however, there seems a difficult problem concern-
ing how to choose the Abelian group, i.e., a gauge choice
problem.

Using numerical simulations, Kronfeld et al. 5 have test-
ed the picture in SU(2) gauge theory in comparison with

compact U(1) lattice gauge theory. The latter is known
to realize confinement due to monopole condensation.
Evaluating Abelian monopole currents directly, they have
shown that the monopole condensation also occurs in

SU(2) gauge theory and that the deconfinement mecha-
nism may be understood in terms of color magnetic mono-
poles. However the effect of the monopole condensation
seems to depend on the gauge choice. A U(1)-covariant
gauge (specified later) looks more favorable than non-

renormalizable unitary gauges.
In this Rapid Communication we report another in-

teresting Monte Carlo test of the Abelian confinement
mechanism, evaluating various Wilson loops in four-
dimensional SU(2) gauge theory. If the Abelian degrees
of freedom would play the dominant role in color
confinement after the Abelian projection as suggested in

Ref. 3, one could expect some significant effects in Wilson
loops which are composed of a residual Abelian gauge
field. We find possible evidence for Abelian dominance in

the quark confinement mechanism.
We adopt the usual Wilson action expressed in terms of

the product of link gauge variables U(s, P) around a pla-

+U (s —P,P)oqU(s —P,P)l (2)

is diagonalized. This corresponds to D A+" (cl +iga )
0, where a„(A —") are (off) diagonal gluons.

As nonrenormalizable unitary gauges, we choose two
(composite) adjoint fields X;(s) (i 2, 3) which are made
diagonal. They are

X2(s) U(s, 1 )U(s+1,2)U (s+2, 1)Ut(s, 2) (3)
and

L4 —]

X3(s) - g U(s+t4, 4)
0

where L4 is the extent of the lattice in the fourth direction.
Since X~(s) is a functional of U(s, P), a gauge function

V(s) which diagonalizes X~(s) is also a functional of
U(s, p). It is important to see the transformation proper-
ty of V(s) under any SU(2) transformatiori IV(s). Let us
fix the U(1) ambiguity of V(s) in some way. Then we see

V(s) V (s) =d(s) V(s) W '(s),
where d(s) [ E U(1)] is determined uniquely by V(s) and
IV(s).

Using the definition U(s, P) = V(s)U(s, P) V (s+p)
and (5), we get

[U(s,p)] =d(s)U(s, P)d (s+p) (6)

quette. We consider two types of gauge fixings. The
U(1)-covariant gauge in the lattice theory is given in the
manner of Kronfeld et al. by performing a local gauge
transformation V(s) such that

R QTr[o3U(s P)03U (s,p)l (1)
S,iti

is maximized. Here U(s, P) V(s)U(s, p) V '(s+ p).
In this gauge,

Xl (s) -g [U(s,P)oiUt(s, P)
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for any SU(2) W(s). Hence all U(1)-invariant quantities
composed of U(s, P) are automatically SU(2) invariant
after the Abelian projection.

It is possible to separate the diagonal U(1) gauge field
uniquely from U(s, p ):

U(s, p) -A(s, P)u(s, P) . (7)

These transform as A (s,P) =d(s)A (s,P)d (s) and
u (s,P) d(s)u(s, p)d (s+p), that is, u(s, P) trans-
forms as a U(1) gauge field, whereas A(s, p) as a matter
field.

The Abelian Wilson loop W3(c) is defined as a path-
ordered product of u(s, P) around some loop c. This is
U(1) invariant and then also SU(2) invariant. Define
8(s,P) V (s)A (s,P) V(s) and U(s, P) 8(s,p)
XU(s,P). One finds from (7) that W3(c) can be ex-
pressed also as a path-ordered product of U(s, p) around
the same loop. Since 8(s,p) transforms as the adjoint
representation, U(s, P) transforms like U(s, p). This also
shows the SU(2) invariance of Wi(c). It is to be em-
phasized that the Abelian Wilson loops defined in

different gauges correspond to different SU(2)-invariant
quantities. Using the Stokes theorem, we find W3(c)
measures a flux expressed in terms of an SU(2) gauge-
invariant Abelian field strength first introduced by 't Hoo-
fts in connection with a classical monopole solution.

We perform Monte Carlo simulations on 8, 10, and
12 lattices at various values of p( 4/g ) and on a 16
lattice from p 2.4 to p 3.0 using HITAC S820/80 at
the National Laboratory for High-Energy Physics (KEK)
and at Tokyo University and FACOM VP400 at Kyoto
University. We apply a vectorized heat-bath algorithm to
generate gauge configurations, and then, in the covariant
gauge, choose appropriate ones by maximizing R in (1).
The covariant gauge fixing is done such that quantity cor-
responding to (~D„A+"( ) in the continuum becomes less
than 10, which needs an additional several hundred
iterations for the gauge fixing. Some data are calculated
under a more severe condition ((~D„A+"( ) &10 ) in
order to see whether or not gauge fixing is satisfactory. In
the unitary gauges, gauge functions are fixed analytically.
All measurements are done typically every ten sweeps
after a thermalization of 1000 sweeps. We use the so
called "jackknife method"' which is well suited to es-
timating statistical errors reliably. We obtain the Creutz
ratios whose statistical errors are always less than 10%,
which needs about 3000 Monte Carlo sweeps on the 16
lattice. The Monte Carlo link update of a 16 lattice can
be done in 0.27 sec and the gauge-fixing time is typically
10.5 sec on an HITAC S820/80 computer.

Let us show our results of various Wilson loops. An
Abelian Wilson loop W3(c) composed of the Abelian link
variable u(s, P) shows interesting behavior after the
Abelian projection using the U(1)-covariant gauge. Be-
fore the gauge fixing, the 1X1 Wilson loop behaves like
8p/81 as derived by the strong-coupling expansion. After
the covariant gauge fixing, however, the Wilson loop
enhances considerably as shown in Fig. 1. It is totally
unexpected that 1 x I W&(c) obeys p/4 in the strong-
coupling region which is given by the strong-coupling ex-
pansion of the full non-Abelian 1X1 Wilson loop. Also
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FIG. 1. Abelian Wilson loops before (solid squares and solid
triangles) and after (other symbols) Abelian projection in the
U(1)-covariant gauge. The upper and the lower solid lines
denote the curves in the strong-coupling expansion of the 1 x 1

and the 2&2 full Wilson loops. The middle solid line denotes the
curve 8P/81 in the strong-coupling expansion before the Abelian
projection.
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2&2 W3(c) lies on the curve (p/4)4 for small p. We
check that the full Wilson loops are really similar to
W3(c) for small p up to around p- 1.5. It should be no-
ticed that the Abelian and the full Wilson loops are
different SU(2)-invariant quantities. If the system would
reduce simply to the compact U(1) theory after the Abeli-
an projection, 1 x 1 W3(c) should behave like p/2 for small
p. Our results deny such a simple scenario.

To study gauge dependence, we evaluate the same
quantity in the unitary gauges using X2(s) and X3(s).
Figure 2 is the case with X2(s). Since the gauge condition
breaks rotational invariance, the Wilson loops depend on
the plane they lie on. In Fig. 2 is the data when the Wil-
son loop is on the 3-4 plane. Other types of Wilson loops
are smaller in the scaling region, although they are about
the same for small p. Similar results are obtained for
Xi(s). No large enhancement is observed. It is much the
same as that without the gauge fixing especially in the
strong-coupling region. Such a clear distinction between
two types of gauges is also unexpected.

Data of the Creutz ratios are more surprising. They are
presented in Fig. 3 for the Abelian Wilson loop in the co-
variant gauge. We also measure the quantity for the full
SU(2) Wilson loops. Comparison of the two data indi-
cates that they agree with each other in the strong-
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FIG. 2. Abelian Wilson loops after Abelian projection in the
unitary gauge. The solid line shows the curve in the strong-
coupling expansion before the Abelian projection.

FIG. 3. Creutz ratios from the Abelian Wilson loops. The
solid line shows the scaling curves with Je 58AL for reference.

coupling region. In the weak-coupling region, the Abelian
Creutz ratios approach the scaling curve with Wo-58At.
in the scaling region. The S/N ratio is better in the
Wi(c) case than in the full case when compared in the
same CPU time. We have obtained the clear data of
Abelian g3(7, 7), whereas full g(7, 7) cannot have been
determined due to large noises. See the recent data gath-
ered by Campostrini et al. " On the 16 lattice they per-
form a total of 15500 sweeps. Nevertheless, they could
not get sensible data of g(7,7) before cooling. After
several cooling steps, the noises are drastically reduced
and they obtain the string tension Jo-58AL. Also we
note that the finite-size effects are smaller in the Abelian
case.

We have also tried to evaluate the Creutz ratios in the
unitary gauges. Even more sweeps than those in the co-
variant case makes meaningful only the small-size ratios
which are, however, much contaminated with large finite-
size effects. To derive the scaling limit of the string ten-
sion seems impossible in the unitary gauges.

In conclusion, we have carried out Monte Carlo simula-
tions and the Abelian projection. We have observed very
interesting results of the Abelian Wilson loops when we
adopt the U(1)-covariant gauge. Then the Abelian Wil-
son loops show large enhancement after the Abelian pro-
jection. The strong-coupling types of behavior coincide
with those of the full SU(2) Wilson loops. QCD is not re-
duced simply to the compact U(1) theory after the Abeli-

an projection. Such behaviors critically depend on the
gauge choice. The Abelian Wilson loop corresponding to
nonrenormalizable unitary gauges do not give rise to such
an enhancement. The Creutz ratios derived from the
Abelian Wilson loops in the covariant gauge approach the
scaling curve in agreement with that of the full Wilson
loop which is obtained after several cooling steps.

It is interesting to study, in the strong-coupling expan-
sion, why the Abelian Wilson loops corresponding to
different gauge choice show such a clear distinction. The
property of the quantity 8(s,P) defined above is impor-
tant. It is possible to show that the same area law as that
of the full Wilson loop is obtained when the Abelian Wil-
son loop with large enough size is considered in a local
gauge like one with X2(s). In such a gauge, V(s) and
8(s,P) are determined only by near-link variables around
U(s,j). However, the U(1)-covariant gauge is very non-
local. We need informations of all link variables to fix
V(s). Hence it is impossible analytically to prove such
area-law behavior in the covariant gauge in strong-
coupling expansion. Nevertheless, the Monte Carlo data
show the area law from small p to large p in the nonlocal
U(1)-covariant gauge.

Smit and van der Sijs' have recently proposed that a
classical solution (the so-called dyon solution) may be re-
sponsible for quark confinement. It is interesting to study
whether the monopole found in Ref. 5 is a lattice artifact
as in compact QED or is an object corresponding to the
classical solution.
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The details and other data will be published else-
where. '
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