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Self-energy of a thin charged shell in general relativity
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The self-energy of a thin charged shell is calculated within general relativity with the help of the
Gauss-Codazzi and Lanczos equations. For the special case of a dust shell, our result agrees with

that of Arnowitt, Deser, and Misner, but we find a dift'erent value for the lower bound on the radius
of the shell and thus also for the total mass.

It has long been suggested that gravity in both its clas-
sical and quantized forms might play the role of a regula-
tor for infinite self-energies of other interactions (see, e.g. ,
Refs. 1 and 2). Within the context of general relativity, it
has been demonstrated long ago by Arnowitt, Deser, and
Misner that a charged dust shell possesses a finite self-
energy. Their result agreed with the naive computation
within the Newtonian framework where the ad hoc im-
plementation of the strong equivalence principle leads to
a finite result, even in the limit of a point particle. In the
relativistic calculation, this was achieved through the ex-
istence of a lower bound on the size of the shell. The pur-
pose of this Brief Report is to generalize and simplify the
derivation of these results. Firstly, not only the con-
straints are used, but also the dynamical equations of
motion for the thin shell. Secondly, the equation of state
is left unspecified as long as possible, obtaining in this
way a more general result. Finally, the value of the
minimally allowed radius of the shell is examined more
carefully and is found to differ by a factor 2 from the re-
sult in Ref. 3. Technically, the formalism developed by
Israel using the Gauss-Codazzi and Lanczos equations
will be applied to the case of a charged shell. This ap-
proach has also been proven fruitful in the discussion of
domain walls, and we will keep our notation close to
Ref. 5.

Let us consider a three-dimensional timelike hypersur-
face X etnbedded in spacetime (see Fig. 1). The Gauss-
Codazzi equations (constraint equations) for this hyper-
surface read

2G,bing
=' 'R—+K bK' K= —16rrGT—,bing (1)

)'cb =«—c'b Ka—b»
K,b ,'(K——,+b—+K,b ),

(4)

where + refers to the two sides of the shell. From the
remaining Einstein equations one can derive the Lanczos
equation for S,b (see, e.g. , Ref. 6):
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Taking (1) and (2) on opposite sides of X and using (6) one
finds
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Consider now the accelerations of observers on both sides
of X. Their normal components ((,V„u)+ can be found
with the help of (8) to be (7 denotes the four-dimensional

Here [T] denotes the difference of the energy-momentum
tensor on both sides of the hypersurface.

The surface stress-energy tensor is now taken to be of
the general form

S,b cru, ub —r(h, b+u, u—
b ),

where o. and ~ are the surface energy density and tension,
respectively, as measured by an observer whose world
line lies within X and who has four-velocity u. With this
choice for S,b one finds, from (7),

Gb hb gc hbD K—bc D K=8mGTb hb gc' (2)

Here ' 'R. denotes the Ricci scalar with respect to the
three-metric h,b, D the corresponding covariant deriva-
tive, K,b the extrinsic curvature of X, K its trace, g a
spacelike normal vector field, and G,b the Einstein ten-
sor. T,b denotes the energy-momentum tensor which has
a 5 singularity on X. While the four-metric is continuous
across X, K,b exhibits a jump discontinuity. One thus in-
troduces the integral of T,b normally to X:

time

8- function singularity
of T+„{surface tension)

and

S.,:—J dl T., (3)
FIG. 1. Timelike hypersurface X embedded in spacetime.

Depicted are also members of the normal vector field (.
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covariant derivative)
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which through the use of the identity

GM GQ a —P+
R 2R ' 2R

can be transformed into a quadratic equation for p:

and

((,V„u)+ —((,V„u) =4~G(o —2r) . (12}

2 G
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At this stage we restrict ourselves to spherical charged
shells, so that (according to Birkhoff's theorem) the
metric outside the shell is given by the Reissner-
Nordstrom solution

—a +4+GoRa — =0 .2

4irR (o' —2r)
(24}

One of the roots is always negative, while the other one
reads

with

2a (r)dr 2+ e
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Using (23) one finds the result for the total energy:
2
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(25)

(26)

(where Q is the electric charge) and inside the shell by the
flat metric

g = dt +dr—+r (d8 +sin 8dy ) . (15)

The radius of the shell is given by R (t). For the energy
momentum tensor [T,b) one has, with respect to the nat-
ural orthonormal frame e'dt, etc., defined by (13)
(remembering that there is vacuum inside the shell),

[T,b) = diag(1, —1, 1, 1).
8m-r4

The components of u and g in this basis are

u+ =e '(P, R, O, O), u =(a,R, O, O),

g+ =e '(R,P, O, O), g =(R,a, 0,0),

(16)

(17)

a= +1+R
2GM GQ
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1/2

(18)

One can now evaluate (11) and (12) with these expressions
and eventually finds the following equations of motion for
the radius of the shell R (t):

(a —P)R = —aG
R2 R
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where the overdot denotes the derivative with respect to
proper time and a and p are given, respectively, by

It is interesting to note that this expression is independent
of the value of the tension ~, on which it depends only
implicitly through (10). If one specializes to dust (~=0)
one finds from (10) that

4mg R =const =Mo, (27)

where Mo is the rest mass of the shell. In Ref. 3, Mo was
artifically set equal to zero, which does not seem to be al-
lowed.

An external value R for the radius is obtained by set-
ting R =0 in (26) (i.e., a= 1), thus leading to the final ex-
pression for the total energy:

GM() Q~+
2R 2R

(28)

which agrees with the naive Newtonian expression for
the self-energy. This result is in accordance with Ref. 3.
We disagree, however, with the value for the lower bound
on R . The demand for p to be positive implies that

R ~ GMO, (29)

as can be seen from (25). Using (28) this is equivalent to

GM+ &G'M' —GQ' (30)

MoM- + "-' =-M.
2 2GMO

(31)

The right-hand side is the well-known expression for the
horizon in the Reissner-Nordstrom solution. This is only
consistent, if all quantities are real positive, so that

~ Q~
~ &G M, and a singularity is avoided. For Q ~0, one

obtains the well-known result that R ~26M. Thus
(28) is bounded by

Elimination of R leads to

((r —2~) —2irGo (a+P)GM

R

GQ' Q'=(o —~) —(a —p)
8~R4

(22)

The lowest~ossible value for M is obtained for
Mo= ~Q~/&G. In this case

M=M, = '~~,
v'G '

which also follows within the Newtonian framework, if in
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Q2

2GMD

(28) GMD is replaced by GM (strong equivalence princi-
ple) and the limit R ~0 is taken. Here the finiteness of
the self-energy is achieved through the existence of a
lower bound for R according to (29).

The binding energy of the shell, defined by the value of
Mo —M, satisfies

Mo
Mo —M( (33)

2

and thus can at most reach half of the rest mass Mo (in
the limit where Q vanishes). This is in contrast with
Ref. 3, where it was stated that the binding energy could
even compensate the rest mass to yield vanishing total en-
ergy.
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