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Self-energy of a thin charged shell in general relativity
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The self-energy of a thin charged shell is calculated within general relativity with the help of the
Gauss-Codazzi and Lanczos equations. For the special case of a dust shell, our result agrees with
that of Arnowitt, Deser, and Misner, but we find a different value for the lower bound on the radius

of the shell and thus also for the total mass.

It has long been suggested that gravity in both its clas-
sical and quantized forms might play the role of a regula-
tor for infinite self-energies of other interactions (see, e.g.,
Refs. 1 and 2). Within the context of general relativity, it
has been demonstrated long ago by Arnowitt, Deser, and
Misner® that a charged dust shell possesses a finite self-
energy. Their result agreed with the naive computation
within the Newtonian framework where the ad hoc im-
plementation of the strong equivalence principle leads to
a finite result, even in the limit of a point particle. In the
relativistic calculation, this was achieved through the ex-
istence of a lower bound on the size of the shell. The pur-
pose of this Brief Report is to generalize and simplify the
derivation of these results. Firstly, not only the con-
straints are used, but also the dynamical equations of
motion for the thin shell. Secondly, the equation of state
is left unspecified as long as possible, obtaining in this
way a more general result. Finally, the value of the
minimally allowed radius of the shell is examined more
carefully and is found to differ by a factor 2 from the re-
sult in Ref. 3. Technically, the formalism developed by
Israel* using the Gauss-Codazzi and Lanczos equations
will be applied to the case of a charged shell. This ap-
proach has also been proven fruitful in the discussion of
domain walls,” and we will keep our notation close to
Ref. 5.

Let us consider a three-dimensional timelike hypersur-
face = embedded in spacetime (see Fig. 1). The Gauss-
Codazzi equations (constraint equations) for this hyper-
surface read

—2G,,6°€"=""R+K,K?®—K?*=—16rGT,£%€", (1)
Gy hE=h,yD.K¥*—D,K=87GT, h® £ . )

Here *’R denotes the Ricci scalar with respect to the
three-metric h,,, D the corresponding covariant deriva-
tive, K,, the extrinsic curvature of =, K its trace, £ a
spacelike normal vector field, and G, the Einstein ten-
sor. T,b, denotes the energy-momentum tensor which has
a & singularity on =. While the four-metric is continuous
across 2, K, exhibits a jump discontinuity. One thus in-
troduces the integral of T, normally to =:

Su=[dI T, 3)

and

Yar=Kapo—Kgz) @)
Kyp=XK5+Kg,), (5)
where * refers to the two sides of the shell. From the

remaining Einstein equations one can derive the Lanczos
equation for S,, (see, e.g., Ref. 6):

1
87G

Taking (1) and (2) on opposite sides of 2 and using (6) one
finds

hyyD S*=87G[T,. 1h,&, (7)
K., S®=[T,1£" . (8)

Sabz (Yab_haby) . (6)

Here [ T] denotes the difference of the energy-momentum
tensor on both sides of the hypersurface.

The surface stress-energy tensor is now taken to be of
the general form

Sabzauaub_T(hab+uaub) ’ (9)

where o and 7 are the surface energy density and tension,
respectively, as measured by an observer whose world
line lies within £ and who has four-velocity . With this
choice for S, one finds, from (7),

D,(cu®)—71D,u’=—87G [T, lu’€® . (10)

Consider now the accelerations of observers on both sides
of 2. Their normal components (§,V,u), can be found
with the help of (8) to be (V denotes the four-dimensional

— 8~ function singularity
of Ty, (surface tension)

FIG. 1. Timelike hypersurface = embedded in spacetime.
Depicted are also members of the normal vector field &.
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covariant derivative)

(& V,u)4 +HET,u) == 2L(h+u )R,
~211,,)6%" (1
g
and
(EV,u), —(£,Y,u)_=47G(o—27) . 12)

At this stage we restrict ourselves to spherical charged
shells, so that (according to Birkhoff’s theorem) the
metric outside the shell is given by the Reissner-
Nordstrom solution

g+ =—e""dt?+e 220G+ r d P +sin’3dp?)  (13)
with
2
eZaU):l_M_}__G_QZ_ (14)
r r

(where Q is the electric charge) and inside the shell by the
flat metric

g_=—dt*+dr’+rid#+sin*dd¢?) . (15)

The radius of the shell is given by R (#). For the energy-
momentum tensor [T,,] one has, with respect to the nat-
ural orthonormal frame e, etc., defined by (13)
(remembering that there is vacuum inside the shell),

2

(T 1= 8Q diag(1, —1,1,1). (16)

mrt
The components of u and £ in this basis are

u,=e %B,R,0,0), u_=(a,R,0,0),

£.=e “R,B,0,0), £_=(R,a,0,0), )

where the overdot denotes the derivative with respect to
proper time and a and S8 are given, respectively, by

a=V1+R? (18)
1/2

_ 2GM | GQ* | .,

B= 1~T+?+R (19)

One can now evaluate (11) and (12) with these expressions
and eventually finds the following equations of motion for
the radius of the shell R (¢):

. M Q?
(a—B)R=—aG R, &° +4rGaflc—27), (20)
5 | M Q| 2raBatB)  _aBQ®
(a+PBIR aG R: R R +4#UR4

(21)

Elimination of R leads to

(o —27)

%——2760(a+ﬁ) ,

2 2
GO" _(a—p-2

=(oc—7) R

which through the use of the identity
2 2_ 2
GM _ GQ Lo B

23
R?* 2R 2R 23
can be transformed into a quadratic equation for 3:
2 2
B+ |47GoR + —2 +—GQ%
47R (0 —27) R0 —21)
2
~a+4rGoRa——22 =0, (4
47R (0 —27)

One of the roots is always negative, while the other one
reads

B=a—4mGoR . (25)
Using (23) one finds the result for the total energy:
2
M=%+4WUR2(a—2TrGaR). (26)

It is interesting to note that this expression is independent
of the value of the tension 7, on which it depends only
implicitly through (10). If one specializes to dust (r=0)
one finds from (10) that

47oR*=const=M,, , 27)

where M, is the rest mass of the shell. In Ref. 3, M, was
artifically set equal to zero, which does not seem to be al-
lowed.

An external value R,, for the radius is obtained by set-
ting R=0 in (26) (i.e., @=1), thus leading to the final ex-
pression for the total energy:

2
M, . 0*

M=M,— ,
Mo 2R,, 2R,

(28)

which agrees with the naive Newtonian expression for
the self-energy. This result is in accordance with Ref. 3.
We disagree, however, with the value for the lower bound
on R, . The demand for 3 to be positive implies that

R,=2GM,, (29)
as can be seen from (25). Using (28) this is equivalent to
R, >GM+V G*M*—GQ? . (30)

The right-hand side is the well-known expression for the
horizon in the Reissner-Nordstrom solution. This is only
consistent, if all quantities are real positive, so that
|Ql £V'G M, and a singularity is avoided. For Q —0, one
obtains the well-known result that R,, >2GM.’ Thus
(28) is bounded by

AMO Q2
M>—"4
2 2GM,

=M . (31)

The lowest possible value for M is obtained for
M,=|Q|/V'G. In this case

M=M0=‘i/—%| , (32)

which also follows within the Newtonian framework, if in
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(28) GM} is replaced by GM? (strong equivalence princi-
ple) and the limit R —O0 is taken. Here the finiteness of
the self-energy is achieved through the existence of a
lower bound for R,, according to (29).
The binding energy of the shell, defined by the value of
M, — M, satisfies
M, Q2
— < 7
Mo—M=— 2GM, (33)
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and thus can at most reach half of the rest mass M, (in
the limit where Q2 vanishes). This is in contrast with
Ref. 3, where it was stated that the binding energy could
even compensate the rest mass to yield vanishing total en-
ergy.
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