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Analytic continuation of the Sudakov form factor in QCD
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We exhibit a solution to the evolution equation for the Sudakov form factor in QCD with mass-

less quarks, which exponentiates infrared poles in dimensional continuation as well as logarithms of
momentum transfer. We use this solution to construct an expression for the absolute value of the
ratio of timelike to spacelike form factors, in which the infrared finiteness of the ratio is manifest.

Finally, we compare this result to explicit calculations of the form factor available in the literature.
Most of the large two-loop corrections to the absolute value of the ratio come from the exponentia-
tion of one-loop corrections, including the effect of the running coupling.

I. INTRODUCTION
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Note that at leading power in q, I „(q ) has only a vector
structure, and that no scale is necessary in the LLA. The
exponentiation in Eq. (1.1) is directly related to the ex-
ponentiation of infrared divergences in QED. Using Eq.
(1.1), the ratio of the timelike to the spacelike form factor
1s
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=exp — (im lnq )+ sr
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The m. term is responsible for the bulk of the large one-
loop corrections in the Drell-Yan cross section men-

The high-energy behavior of the fermion electromag-
netic form factor in gauge theories has been the subject of
interest for a long time. ' The Sudakov form factor is the
simplest amplitude to exhibit the double-logarithmic in-
frared and collinear singularities characteristic of vector-
boson radiative corrections. ' It arises naturally in a
number of high-energy cross sections. Perhaps most
directly, it is relevant to the total Drell-Yan cross section
normalized to deeply inelastic scattering, which is
plagued by large perturbative corrections at both one '

and two loops.
It was observed some time ago ' ' that much of these

large corrections can be associated with the ratio of the
absolute value squared of the Sudakov form factor at
timelike and spacelike momentum transfer. Large
corrections in this ratio may be easily identified by treat-
ing the form factor in the leading-logarithm approxima-
tion (LLA) in the momentum transfer squared q, taken
to be much larger than the fermion (or vector) mass.
Neglecting the running of the coupling, these enhance-
ments in momentum transfer exponentiate in the LLA, in
both Abelian and non-Abelian theories:"

r„(q') l LL~= r„r(q') l LL~

tioned above. Equation (1.1) has been improved by in-

cluding the effects of the running coupling. The q
dependence can be resummed, including all logarithmic
behavior, ' ' in terms of an evolution equation for
r(q2) 15

Solutions to the Sudakov evolution equation in the
literature have generally been constructed with the pur-
pose of resumming the large logarithms of q, and are ex-
pressed in terms of an undetermined integration constant,
which contains the dependence on the particle masses
and the infrared regulator. Such solutions do not im-
mediately supply an expression for the form factor that is
directly comparable with the results of diagrammatic cal-
culations.

In this paper, we shall study the Sudakov form factor
in QCD in dimensional regularization, the form in which
it usually occurs in calculations in perturbative QCD. As
we shall see, in this case it is easy to give a simple solu-
tion to the evolution equation, by using the electromag-
netic charge at q =0 as a boundary condition. Then,
both logarithms in q and poles in n —4, with n the num-

ber of dimensions, exponentiate explicitly. As such, our
results can be readily compared to existing calculations.
They will also make it possible to show explicitly that all
divergences in the ratio of timelike to spacelike form fac-
tors are in an infinite phase, a generalization of the
Coulomb phase of QED.

Even aside from the infinite phase, the ratio of form
factors has, as expected, a large two-loop correction,
which can be easily derived from the explicit calculations
of Kramer and Lampe' or Matsuura, van der Marek,
and Van Neerven. We will show that most of this large
two-loop correction may be understood in terms of the
exponentiation of the one-loop correction, including the
effects of the running coupling. We suggest that this is an
encouraging sign for attempts to resume large correction
in perturbative QCD.

II. EVOLUTION EQUATION AND SOLUTION
FOR I ( q ) IN DIMENSIONAL REGULARIZATION

The central result in Ref. 12—14 is that the form factor
obeys an evolution equation of the form
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q,I, , =—K(e, a, )+G
3 lnq p 2 p

p
(2.1)

Here we work in a massless theory, with p the renormal-
ization scale and define

At this stage, renormalization has already been carried
out, so that we can take e &0 to regulate infrared and col-
linear divergences .K(c,a, ) and G(q /p, a„e) are per-
turbatively calculable functions, with Feynman rules that
can be found in Ref. 5. K(E,a, ) is defined as a pure coun-
terterm, and therefore is a series of poles in any minimal
renormalization scheme, while G(q /p, az, e) is finite as
Q~O, and contains all the q dependence.

We shall use modified minimal subtraction scheme
(MS) renormalization, and we accordingly define

n6=2
2

' (2.2)
p, =poexp[ E(—ys —ln4m)], (2.4)

F(a, ) = g — F'"'(a, ) .Q

n=0
(2.3)

with n the number of dimensions. We also introduce the
notation, for any perturbative function F(a, ),

n

with pp the mass scale appearing in the interaction La-
grangian. One can find explicit expressions for K and 6
simply by differentiating the form factor and using their
defining properties described above. At one loop, ' with

p given by Eq. (2.4),

2 Q 2

I q, e =1+ Cz ————+g(2) —8 —2e[8 —
—,'g(2) ——7((3)]+O(e )

p2
' 4~ q2 F ~2

(2.5)

In this notation, we find

26'" q Q e =C27 sl F
p

p
—

q

—+———[j(2)—8]+E [8——'g(2) ——'g(3)]+O(e )
—Cp —.1 3 e

2 2 4 3 E
(2.6)

In four dimensions 6 reduces to"

G,Q, 6=0
p

Qs —
q 3

cF ln
7T p 2

(2.7)

p +P (K+G)=0,8
Bp Bg

It will be useful to review some of the known properties
ofI( and G.

Defined as above, E and G have a simple behavior un-

der the renormalization group. First, because the elec-
tromagnetic form factor is unrenormalized by the strong
interactions, so must be the combination E and 6

a, a, (po), ep
pp

p
pp

a(p, )
T26

1 p1—
pp

' 2E'
b 0

a, (po)

(2.10)

The one-loop result (2.6) may be substituted in (2.9) to
give

Xk"'=2CF (2.1 1)

p, +P K= —yx(a )
Bp Bg

p +P G,
Bp Bg

(2.8)

Equations (2.8) and (2.11), by standard methods, deter-
mine the leading behavior of E in 1/e and of 6 in

ln(q /p ) at each order of perturbation theory. To see
how, we expand E in powers of Q, and inverse powers of
E',

with yx (a, ) an anomalous dimension, which depends
only on the coupling. Here and in the following, we will
need to use the n-dimensional P function defined by

K„(a, )K=+
Qo Q

K„(a,)= g K'
m =n

m

(2.12)

3

P(g, e)= —eg b, , +O(g') .—
(4m )

(2.9)

The corresponding n-dimensional expression for the run-
ning coupling is

From the fact that the K„(a, ) are by construction in-

dependent of p, we can use the renormalization group
Eq. (2.8) to show that
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gBK)
yK

az„
P(e=0) =g

Bg Bg

(2.13)

These recursion relations show, as usual, that the single
pole terms in e determine the entire series for I( order by
order.

An expression for 6 at eXO may be found by solving
the renormalization group equation (2.8), to give'

r

6 2, a, (p, ), eq

p

quantum electrodynamics Ward identity

q "I „(q ) =0, (2.15)

for arbitrary q", so that according to standard arguments
all overall counterterms cancel (and Z& =Z2 at the QED
vertex). As a result, the term of order a," in the perturba-
tive expression for the form factor must be of the form

2 fl 2
m6

I (n) q e —~ I (n)(e) I
m

p m=1 q
(2.16)

where each term is proportional to at least one power of
(lu /( —

q ) )'. Then, since e & 0,

=G —l, a q
, A~(P ),EE'

p and

I'"'(q =0)=0 (n )0) (2.17)

P

dpi2 p&2
+—, yx a, a, (p)e . (2.14)

p p

From the reality of I (q ) for q (0, 6( —l, a, e) is purely
real. Note, however, that, even if q is chosen real, noth-
ing stops us from extending Eq. (2.14) into the complex
ll2 plane. Equation (2.14) shows that the logarithms of 6
are determined directly by yz, and that the lowest-order
term in yx. (2.11) generates, through the running cou-

pling, leading logarithms in all orders of G. We are now
ready to construct our solution to Eq. (2.1).

To solve Eq. (2.1), we use the fact that 1 „(q ) obeys the

1(q =0)=1 . (2.18)

Another important consequence, which follows from Eqs.
(2.1) and (2.16), is

lim K(e, a, )+6
2

q2 0 p
=0 (2.19)

as a power of q for e &0, at least in perturbation theory.
We can now use Eq. (2.18) as a boundary condition for

the evolution equation (2.1), which then has the explicit
solution

2
1 q2dn2 2

I 2, E =exp '
2

E E', cx p +6 2, cK p, E

p 2 0 p
'I

=exp — K(E', a, (p))+6 —l,a, a, (y, ),e, e +—, yx a, a, (p), e
2 0 g' ' ' ' p'' ' ' '

2 r' p' p

(2.20)

In the second expression we have used Eq. (2.14) for 6 and have changed variables to ( = —
7) . Because of Eq. (2.19),

the exponent vanishes as q ~0, and Eq. (2.18) is satisfied. The apparent logarithmic divergence at $~0 from K, which
is independent of g, cancels against the g-independent pole parts from the integration of yx over p . The g integral is
defined order by order in perturbation theory, and the effective couplings should be thought of as expanded in powers of
a, (p). The series generated in this way is at best asymptotic, because the resummed efFective couplings will diverge at
g2 A2 17

III. THE RATIO OF THE TIMELIKE TO SPACELIKE FORM FACTOR

(3.1)

Equation (2.20) clearly displays the q dependence of the form factor, so that it is easy to write an expression for the
ratio I (q )/I (

—
q ), with q —= Q )0. It is given by a contour integral extending from +Q to —Q in the g plane.

The contour runs above the branch cut from g =0 to —~, but is fixed to go through the singularity at ( =0, which is
integrable in dimensional regularization.

If we close the contour with a semicircle of radius Q in the upper g plane, we can shrink the resulting close curve to
a small circle at its only fixed point, the origin, where the integral vanishes because the singularity there is integrable.
Therefore the ratio of form factors can be written as

ln = — K(e, a, (p))+6 —l, a 2,a, (p),e, e +—,
2 yx a, a, (p), e

I (Q2) 1 d$2 $2 1
2 dp&2 tt2

I ( Q2) 2 c g2 2 2 (2 2 2

where C is the semicircle g =Q e', with 0 & 0 (7r We can then ch.ange variables to 8, and set p=Q in 6+K. (Recall
that G+K is independent of p, Eq. (2.8). Noting that K(e,a(Q)) is independent of 0, we find our fundamental result



42 ANALYTIC CONTINUATION OF THE SUDAKOV FORM FACTOR. . . 4225

2

ln =i —K( e, a, (Q))+—f d0 G —I,a(e', a, (Q), e), e ——f dp year a(e'~, a, (Q), e) (3.2)

g (m) 1

2m
(3.3}

Thus at this level yz' determines all K~
' with p =q, i.e.,

the most singular terms, yz' those with p =q
—1, and so

on. In particular, the resummation of the leading 1/e
singularities [all the terms proportional to (a, /e)"] in the
infinite phase is given by

m 'm —1

bo V r" 1

4 2 ping ~m

a,
exp i

m=1
(3.4)

Similarly, the finite contributions to both real and
imaginary parts may be derived from G and y&, expand-
ed to the available order in the effective coupling. We use
the expansion

2

This expression gives the ratio of the timelike to the
spacelike form factor as an explicit sum of a divergent
phase, given entirely by K(e, a(Q)), and a term which is
manifestly finite (although complex) as e~O. As in Eq.
(2.13), higher orders in a, (Q) are inffuenced by lower or-
ders through expansions of the effective coupling. For
example, the recursion relation (2.13) can be solved using
the one-loop P function (2.10), to give

'n —1

bo (m —n+1)
4 VK

a, (Q)
1+i Oboa(Q}/43r

' (3.6)

and define for the sake of simplicity

v= 1+ bo—a(Q) .l

4
(3.7)

(1)
4m 'V ac

(v lnv —v+ 1)
bo a, (Q)

4y(2)
+ (lnv —v+1) .

Q2
(3.8)

Note that for small v, lnv- v —1 is purely imaginary.

IV. COMPARISON WITH TWO-LOOP CALCULATIONS

Then we get the following simple expression for the full
two-loop exponent in the ratio:

'2
r(Q'} &~ a Q' () a Q' ()ln

r( —Q2) 2

G( —l, a, e=O)= —G" + — G' '+0(a },
7T 7T

with the effective coupling

(3.5) The renormalized two-loop Sudakov form factor of
QCD has been calculated in Refs. 9 and 16. The result is
of the form of Eq. (2.16), with n =2 and coefficients

C2
r'~'(e) = —+—+—[—", —2g(2)]+ —[+3' ——", g(2)]+ [ ","+ —", g(2) —58((3)—13( (2)]

E E'

+C„CF — —+—[g(2)——", ]+—[13((3)——", g(2) —",,", ]+[—", g (2)+ '96'g(3) ——',"g(2) "„',"]
11 1 1 83 1

T

+n C + + [ 1 g(2)+ 333 ]+[ 26((3)+ 34((2)+ 7341 ]3 ~3 9 ~2
(4.1)

and

r',"(e)= —+—+ —[8—g(2)]+16——', g(2) ——', g(3)
CF&o 2 3 1

16 g3 g2 e
(4.2)

The former is the sum of all two-loop diagrams directly,
the latter the sum of one-loop diagrams dressed by one-
loop MS counterterms.

These expressions allow us to derive the two-loop con-
tributions to K and G in Eq. (2.1), from the relation

' 26 6'

~(2)+G(2)=-
—(K' "+G' ")-,' er' ", (4.3)

which follows by equating the expansion of the right-
hand side of Eq. (2.1} to the derivative with respect to
Inq of I, using Eq. (2.16). K' ' and G' ' can be read off
from the right-hand side of Eq. (4.3), which may be evalu-
ated from Eqs. (2.5), (2.6), (4.1), and (4.2). Note that to
determine 6' ' to order e", it is necessary to expand G" '

to order e"+', since eI'i"=O(l/e). Of interest to us
here, however, is only the explicit form of K' ', which is
given by
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(2) g (2)

+
g2

(4.4)

with

+2 8 CFbo I6 ~07K(2) & 1 (1) (4.5)

as expected from Eq. (3.3). Similarly, we have

(2)
(2) Vk

1 4
(4.6}

with y'k ' the two-loop anomalous dimension computed
first by Kodaira and Trentedue: "

year =CqCF[ —'„' —g(2)]+nf CF( —
—,') . (4.7)

It is straightforward to verify that all of the two-loop pole
terms in r(Q )/I (

—
Q ) may be derived from IC' ' and

cross terms between K"' and y~"' or G'", according to
the expansion of Eq. (3.8).

Of more physical interest is the ratio of the absolute
values ~1 (Q )/I ( —Q )~, which, by Eq. (3.2) is (as
claimed above) free of infrared poles to all orders. To
compute this quantity, it is only necessary to know that
e—+0 limits of the G'"', while for I'(Q ) itself, all powers
of e in the G'"' contribute, through cross terms with 1/e
poles in E.

The squared ratio of absolute values may be calculated
directly, using Eqs. (2.5), (4.1), and (4.2), which gives

2

=1+ n. CF+ [2m CF+n ( — n)—C„—C. F
—'~ nfCF] .2 ~ 4 2 2 233 2 2 38 2

27T 4m. 9 3 9 (4.8)

=1+ 3((2)yx +a, (Q) (, )

2'

Alternately, we may expand the absolute value squared of Eq. (3.8):

a, ( )
[18( (2)yx' +12((2)boG'"+24((2)y' '] (4.9)

= 1+ —(6.6}+ — (58.9), (4.10)

which hardly has a convergent look. On the other hand,
referring to Eq. (4.9), we see that the coefficient of (a/m )

is made up of three terms, two of which follow from us-

ing one-loop results only in the exponential form of Eq.
(3.8). The only "intrinsically two-loop" contribution is
the one proportional to yz'. Numerically, it makes up
15.0 of the 58.9 in Eq. (4.10), a value not too dissimilar
from the one-loop coe5cient. The size of truly two-loop

By substituting Eqs. (2.7), (2.11), and (4.7) in (4.9), we
easily check that Eqs. (4.8) and (4.9) agree.

The ratio ~r(Q )/r( —Q )~, which enters directly
into the Drell-Yan cross section, gives a typical example
of large corrections in an infrared stable, and hence nomi-
nally perturbatively calculable, quantity. Suppose we
take for the purpose of illustration nf=3, for which
ho=9 in color SU(3). Then the numerical values of the
coefficients in Eq. (4.8) are

2

effects in the ratio squared is thus moderate for small
(a/m ). We note the importance of the ho 6"' term in Eq.
(4.9), which is due to the running of the coupling. This is
consistent with the results of Ref. 18 for large corrections
in Drell-Yan cross sections. The combination of the con-
clusions of this paper with those of Ref. 18 is quite
straightforward. '

We conclude by reemphasizing that the choice of MS
subtraction to define the function E in Eq. (2.1) is for
convenience only. Other choices will lead to different ex-
pressions for yz), and hence to better or worse numerical
reduction of two-loop corrections by exponentiated one-
loop results. We believe, however, that the example of
MS is adequate to illustrate the value of resummation
techniques in understanding large higher-order correc-
tions.
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