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Provided the number of matter fields is limited, the structure analysis of the gauge-field propaga-
tor results in superconvergence relations which provide a link between long- and short-distance

properties of the theory. The information contained in these relations is combined with specific
consequences of the Becchi-Rouet-Stora-Tyutin algebra in order to argue for the confinement of
transverse gauge-field excitations (gluons) if the number of flavors is less than ten for quantum chro-
modynamics. With a larger number of matter fields (between ten and sixteen flavors in QCD),
confinement is not required. Hence there could be a phase transition. The question of quark
confinement is considered only briefly.

I. INTRODUCTION

Superconvergence relations of structure functions are
obtained on the basis of analyticity and with the help of
renormalization-group methods. They provide a link be-
tween high-energy and low-energy features of a gauge
theory with asymptotic freedom. In combination with re-
sults following from the Becchi-Rouet-Stora-Tyutin
(BRST) algebra, we use this information in order to give
arguments for the confinement of transverse gauge-field
excitations in continuum gauge theories with a limited
number of matter fields (less than ten flavors in quantum
chromodynamics). Confinement is understood in the
sense that the corresponding states are not representa-
tives of physical states. With the number of matter fields
above a certain value, while retaining asymptotic free-
dom, our methods provide no restriction. Confined and
unconfined phases are possible in principle, but the latter
situation appears quite plausible, so that a phase transi-
tion is a possibility. Questions of quark confinement will

be discussed only briefly and are deferred to a later paper.
Within the framework described above, the emergence of
an approximately linear quark-antiquark potential has
been discussed in another publication. '

A preliminary account of our work may be found in

Ref. 2. Some of the results have been presented in Ref. 3.
In several papers, Nishijima has discussed confinement
using the structure analysis of Refs. 5 and 6 and BRST
methods, but employing a noncovariant formalism. His
conclusions are somewhat more restricted, but in agree-
ment with ours.

As has been pointed out, the tools of our analysis are
the BRST algebra and the structure analysis of the
gauge-field propagator. Even though the structure func-
tions of propagators are gauge-dependent quantities and
do not represent directly physical observables, they nev-
ertheless contain important information about the theory.
When we find, working in the Landau gauge, for exam-
ple, that certain states do not belong to the physical sub-

space and hence do not contribute to the unitarity rela-
tions of the 5 matrix, we have a gauge-dependent argu-
ment for a physical result.

We consider the gauge-field theory in isolation and ig-
nore the fact that it actually should be embedded into a
more comprehensive scheme. At least near the Planck
mass, it is to be expected that such an embedding be-
comes important. But as far as confinement is concerned,
we assume that it is not the dominant feature.

Non-Abelian gauge theories, as constrained systems,
are most easily quantized within the framework of the
BRST symmetry. The theory is formulated in a covari-
ant fashion in a state space V of indefinite metric, which
contains many unphysical excitations such as ghosts, an-
tighosts, longitudinal and timelike gauge quanta, and
possibly others. ' The BRST and ghost number opera-
tors form a graded algebra which can be used to define a
physical subspace as a particular cohomology group of
the nilpotent BRST operator g.

We certainly expect that excitations corresponding to
ghosts and to longitudinal and timelike gluons do not be-
long to the physical subspace of quantum chromodynam-
ics (QCD). This should be the case even in the weak-
coupling perturbation expansion, which is the formal
asymptotic limit of the theory for g ~+0. However, in
the nonperturbative theory, we expect that there is a
phase where gluons and quarks are confined so that they
are not created as free particles in collisions. There are
many approaches to the problem of confinement. Here
we concentrate on covariant continuum gauge theory.
We say that certain excitations are confined if they do not
belong to the physical subspace of the general state space
V, the subspace being defined by the BRST cohomology.
For ghosts and similar unphysical quanta, this
confinement is kinematical and persists also in perturba-
tion theory. In contrast, for gluons and quarks, it is of
dynamical origin and a nonperturbative effect.

The definition of the physical subspace % in terms of a
BRST cohomology is invariant under equivalence trans-
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formations and under Poincare transformations. '"
Equivalence transformations are "unitary" mappings in
the general state space V with indefinite metric. They
leave invariant matrix elements of BRST-invariant (phys-
ical) operators between physical states and therefore do
not change any physical result of the theory. For the
study of confinement, we need to isolate states of the
form A""~0) which are representatives of physical states
defined by the cohomology &. Here A"" is the curl of
the gauge field operator. In a specific frame with respect
to the transformations mentioned above, this is quite pos-
sible. The BRST algebra induces a decomposition of the
state space V into orthonormal subspaces V and V„,
where V is isomorphic to &. Further, V~ is a nonde-
generate subspace of V so that there is a well-defined
self-adjoint projection operator P(V ). But a direct pro-
jection is not invariant under Lorentz and equivalence
transformations, and it is necessary to proceed more in-
directly. As a first step, we use a projection P+ which
selects states of positive norm. ' We only need to con-
sider the states P+ A,"'(—k)~0) or, more conveniently,
4+ =P+%', where

@(c,k )= f d q 5(q —k )c&„(q)A,""(—q ) ~0) .

Here the coefficients c„',(q) are test functions, and
A,"'(—q) is the Fourier transform of the curl of the
gauge-field operator. The norm of 0 in V is given direct-
ly by the discontinuity p(k ) of the transverse gluon
propagator, except for a positive factor involving the test
functions. The norm of 4'+ is consequently related to
p+(k ) =p(k ) for p & 0 and zero otherwise. States corre-
sponding to possible multipole terms contributing to
p(k ) are not included in p+, which is therefore essential-
ly a positive measure. We can divide the positive-norm
states 4+ into two classes C and C„+ which satisfy
QV =0 or g+„+NO, respectively, where Q is the nilpo-
tent BRST operator. For a given A: ~ 0, we have then ei-
ther p+ =p or p+ =p„+. Since no new dimensionful pa-
rameter is introduced in this decomposition, the discon-
tinuities pz and p„+ are defined in a renormalization-
group-invariant way. In general, they can have support
in nonoverlapping regions of the real, positive k axis.
The states 4 are representatives of the elements of &,
the physical subspace, while the 4„+ are unphysical
states which, by a similarity transformation, can be
brought into a form having no component in V~.
Lorentz and similarity transformations leave C and C„
invariant, and hence p and p„+ are also invariantly
defined.

In addition to the BRST structure of the state space,
our arguments for confinement rest upon the structure
analysis of the gluon propagator. ' The general princi-
ples of gauge-field theories imply analytic properties of
the structure function, and an extensive use of the renor-
malization group provides asymptotic expressions which
depend upon the number of matter fields (number of
flavors N~ for QCD}. It is an important result of this
analysis that the structure function D(k ) of the trans-
verse gauge-field propagator vanishes faster than k in
all directions of the cut k plane provided yoo&0 and

Po&0 (corresponding to less than ten flavors in QCD:
NF &10). Here yoo and Po are the usual lowest-order
coefficients of the anomalous dimension of the gauge-field
operator in the Landau gauge and of the
renormalization-group function. Hence we have the su-
perconvergence relation for mp(k ) = ImD(k +i0):

f"dk'p(k') =0 . (1.2}

For yco) 0, Po & 0 (10& NF & 16 in QCD), this relation is
not valid.

With the help of the projection P+ and the classes C
and C„described above, the structure analysis can be ex-
tended to D+ and D with the discontinuities p+ and p,
respectively. But in these cases the renorrnalization-
group equations have two different solutions, a priori.
For yoo & 0, Po &0, (NF & 10), we find that D+ is either
identically zero, or it diverges for g ~+0 and fixed k

2 &oo«oat least like (g ) '. The situation is the samefor D .
In the case of D, which via p has only contributions

from physical states, we can argue from unitarity and
from other requirements that the divergent solution is ex-
cluded for XF &10. Then p vanishes, except possibly at
a set of points of measure zero, which are not of physical
interest. This indicates that all positive-norm states 4+
of the form (1.1) must be unphysical states 4„+. Trans-
verse gauge quanta are not in the physical subspace &;
they must be confined in this sense. On the other hand,
with D =0 we have D+ =D„+. Here we can choose
only the second and divergent solution. Otherwise the
theory becomes inconsistent. There are no difficulties
with the divergence of D+ for g ~+0. Since all con-
tributing states are unphysical, they do not contribute to
unitarity relations involving physical operators and
states.

We emphasize again that the superconvergence rela-
tions used in our arguments imply a connection between
low- and high-energy properties of the gauge theory.
They are not simply consequences of the asymptotic be-
havior, but depend in an important way upon the cut-
plane analyticity, which follows from general principles.
Because of these features, the superconvergence relations
make it possible to obtain results about problems such as
confinement, which are basically connected with low-
energy features of the theory.

For yco & 0, Po & 0 ( 10 & NF & 16 for QCD), the theory
looks quite different from the confined case described
above. There is no superconvergence, and consequently
our methods do not require confinement. However, it is
also not excluded that the confined phase persists for oth-
er reasons. Nevertheless, within the framework we have
considered, it is not implausible that there is a phase
transition as goo changes sign as a function of the number
of matter fields (between NF=9 and N~=10 for QCD).
In this case the condition goo &0 would be necessary and
not only sufficient for confinement. It is to be expected
that, with increasing numbers of matter fields (number of
flavors NF }, the corresponding vacuum polarization pro-
vides the appropriate screening of color charges. It has
been suggested by Nishijima' to use numerical simula-
tions in order to look for an indication of a phase transi-



42 RENORMALIZATION GROUP, BRST COHOMOLOGY, AND THE. . . 4211

II. BRST COHOMOLOGY

For our discussion of confinernent, certain properties
of the state space V and the physical subspace & will be
of importance. In this section we summarize the essential
tools '" "and introduce invariant classes of states.

In a non-Abelian gauge theory, we can construct a nil-
potent and self-adjoint BRST-operator Q. As a conse-
quence, the state space V of the theory has indefinite
metric. In addition to an anti-BRST operator, there is
also a self-adjoint ghost number operator 1V, which pro-
vides a grading of V. The operator Q satisfies the com-
mutation relation

i [N„Q]=Q (2.1)

and changes the ghost number by one unit. But we do
not need to consider the ghost number explicitly in the
following, nor the anti-BRST operator. Of course, as far
as the physical subspace is concerned, we are interested
only in states with ghost number zero.

The space & of physical states is defined by the "BRST
cohomology"

tion in QCD as a function of NF. Such calculations may
become feasible in the near future. '

In this article we discuss only gluon confinement. An
analogous approach to quark confinement with the help
of the quark propagator is not possible. There are no su-

perconvergence relations for the corresponding relevant
structure function. However, the results concerning
gluon confinement may be connected with the criterion
for general color confinement given by Kugo and Ojima
and discussed further by Nishijima. The suSciency of
this condition has been shown rigorously, and there are
indications that it may also be necessary. ' The necessity,
together with our results on gluon confinement, would
also give an argument for quark confinement provided

pm&0, 13, &0.
On a more phenomenological level, it is possible to

make a connection between the superconvergence of the
gluon propagator function D(k ) for y00 (0, PQ & 0
(NF (10) and an approximately linear potential between
static quark color charges. ' " . Again the superconver-
gence relation and the negative sign of the discontinuity
p(k ) for larger values of k are essential. We have dis-
cussed these matters in Ref. 1.

(4,4), ql&V, NEV . (2.6)

In order to obtain a complete decomposition of V, we in-
troduce a self-adjoint involution C so that the indefinite
metric inner product (2.6) in V is converted into a
definite product, which we denote by"

(ql, @)t ——(%,C 4) .

We have

Ct=C and C =1 .

(2.7)

(2.8)

The BRST-operator Q is self-adjoint with respect to the
inner product (2.6) in V:

(+,Q4)=(Q+, 4) or Q =Q .

With respect to the C product (2.7), we have then

(+,Q4)p=(Q'%, 4)p,
and the definition (2.7) implies

Q'=CQC .

(2.9)

(2.10)

(2.11)

We call Q' the conjugate BRST operator. ' It is also nil-
potent and self-adjoint in V:

Q' =0 and Q*t=Q', (2.12)

in accordance with Eq. (2.9). For vanishing ghost num-
ber, the cohomology

JY' =kerQ ' /imQ * (2.13)

is then isomorphic to & as defined in Eq. (2.2): &'=%.
Q and Q* are adjoint operators with respect to the prod-
uct (2.10). Hence we find that

(imQ)i =kerQ', (imQ*)z=kerQ,

and we can write the decompositions

V=kerQeimQ* =kerQ*eimQ,

which imply, in view of the isomorphism &'=%,

(2.14)

(2.15)

norm states of kerQ belong to imQ. Then the norm of
states in kerQ is of one sign only, and we can choose & to
have a positive-definite metric as desired for a physical
subspace. '

We denote the general inner product in the indefinite
metric space V by

%—=kerQ/imQ, (2.2) V=V eimQeimQ*, (2.16)
where the kernel is the subspace

kerQ =
t Q%'=0, 4 EVI,

and the image is given by

imQ=IV=Q@, 4EVI .

We have imQ CkerQ. Because of
2 —0

(2.3)

(2.4)

(2.5)

it follows that all states 4 C imQ have zero norm and are
orthogonal to the states of kerQ.

In quantum chromodynamics we expect that all zero-

where V~ is isomorphic to A. " ' This result is ob-
tained by showing that & and &' are isomorphic to
kerQ AkerQ*.

While V, imQ, and imQ* are orthogonal subspaces of
V with respect to the C product (2.7), in connection with
the indefinite metric product (2.6), the spaces imQ and
imQ* have zero norm. They are orthogonal to V . But
states in imQ and imQ* are paired so that for every
O' EimQ there is a ql'EimQ* so that (ql, 4')%0.

The operators Q and Q* carry ghost number +1 and—1, respectively. We can define the BRST Laplacian 6
as an operator with ghost number zero by'
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(2.17)

The Laplacian b, commutes with Q, Q* and C. The
kernel of b, directly gives the cohomology of Q or of Q*: ( 0'~, U ' A U4~ ) =O', U*„A„U„4,, (2.26)

and of the form (2.20). If 4 and 4„are states in kerQ,
satisfying QV =Q+ =0, then we have

%=kerb . (2.18) since the states have representations
T

For our later discussions, we are interested in map-
pings U in V which leave the inner product (2.6) invari-
ant: (2.27)

(U%, U4)=(%,4), V+,4&V . (2.19)

U11 0 U13

21 22 23

0 0 U33

(2.20)

where the indices refer to the subspaces V, imQ, and
imQ', respectively. The unitarity condition is then given
by

U'=C U'C = U-', (2.21)

and implies a set of relations between the operator U;, .
The BRST operator can be written, in a representation
corresponding to Eq. (2.20), as

0 0 0
Q= 0 0 q

0 0 0
(2.22)

and [Q, U]=0 implies U32q=qU33 Note that, in the
matrix representation, the states are written in the form

P3

(2.23)

and the inner product in V is given by

The operators U are "unitary" in this sense, and we write
formally U~= U '. Further, we want to impose the re-
striction that these mappings, like observable operators,
commute with Q and consequently leave kerQ and iinQ
invariant. With respect to the C inner product (2. 1), we
can then write U as a matrix corresponding to the decom-
position (2.16):

We see that only the suboperator U» of U is involved in
the transformation of matrix elements of BRST-invariant
operators with respect to states in kerQ, which includes
physical operators between physical states. Consequently
we call all mappings U with U» =1 "equivalence trans-
formations. " They do not change any physical quanti-
ties.

Other BRST-invariant unitary operators of the type
(2.20) are the representations of the invariance groups of
the theory. In particular, the Poincare transformations
U(a, A) are important for us. Also in this case, only the
elements U»(a, A) are of physical relevance, since they
transform the physical quantities as indicated in Eq.
(2.26).

We now define three exclusive classes of states O'E V:
(1) A state ql=+~ belongs to the class C if it satisfies

QV =0 and has positive norm. Then %~ must be of the
form (2.27) with a nonvanishing component in Vz, i.e.,
4 i+0. By an equivalence transformation with Uii =1,
we get

'P
1

U%, = U»%„+U»%„ (2.28)

with the U, satisfying Eq. (2.21). We can then find

operators U2, and U22 such that U%' has only com-
ponents in V . The states in the class C are representa-
tives of physical states defined by the cohomology %.

(2) A state %=%, belongs to the class C„ if Q+„%0.
In components, this means that we must have q1„30
since

0

(%,4)=(ql, C4)g=%'*, 4, +%2%3+%'3%3, (2.24)
Q+„= q+„3 (2.29)

with C having the representation

1 0 0
0 0 1

0 1 0
(2.25}

In general, an equivalence transformation with U» =1
implies

0„,+U»%„3

From the relation kerb, =% in Eq. (2.18), it follows that
all zeros of the Laplacian 5 are associated with the coho-
inology & of Q, which is isomorphic to V . Expressing
b, in terms of the suboperator q appearing in Eq. (2.22},
we then infer that q is invertible. A more complete dis-
cussion of these matters, including connections to the in-
dex theorem, may be found in Refs. 13—15.

Let A be an operator in V which is BRST invariant

U+u U21+u1+ U22+u2+ U23+u3 (2.30)

Either 4„,=0, a priori, or because %„3%0,we can find

an U with U, 3 such that % 1+U13% 3=0. This implies
that we can transform the state 4„ into a form where it
has no component in V . The states in the class C„are
unphysical. They have positive, negative, or zero norm
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+o= +or (2.31)

The classes C, C„, and Co are exclusive. In particu-
lar, we later need the fact that a state with negative norm
must belong to C„, while a state with positive norm is ei-
ther in C or C„. Another important advantage is that
the classes, and in particular C„, are invariant under
Poincare transformations and equivalence transforma-
tions. This follows from the previous discussion. For C„
it must be noted in addition that

in the space V. As we have seen, a state in C„may well

have a nonvanishing component in V, but it can be
transformed away with the help of an equivalence trans-
formation which does not change any of the physical
consequences of the theory. The features described above
show that a projection operator P(V ) from V into V
does not commute with these transformations, nor with
Poincare transformations U(a, A). Projections into kerQ
have an analogous problem; in addition, the projection
operator P(kerQ) is not self-adjoint since kerQ is a de-
generate subspace. We rather have P (kerQ )

=P(kerQ *).
(3) There is a third class of states, denoted by Co,

which satisfy Q+~=0 and have zero norm. They have
nonvanishing components in imQ only, and hence are of
the form

0

We also remark that the subset of states in V with pos-
itive norm is in general not a subspace. Given the ex-

istence of a state %'+&V with positive norm, we can

write any O'EV as 4=4&+A,%'+, where 4&=%—
A, %'+

has positive norm for sufficiently large values of ~A. ~, even

if 4' has negative norm.
The features of the classes of states described above

can already be studied explicitly in very simple examples.
For instance, we may consider the Fock space of nonin-

teracting quantum electrodynamics. In the one-particle
sector for a given momentum, one has the two transverse

photon states as physical states, and the longitudinal and

timelike photons as unphysical states. All these states are
orthogonal to each other in V, and the latter has negative
norm. The sum and the difference of the unphysical
states are zero-norm states in the subspaces imQ' and

imQ, respectively. Of course, the tranverse photon states
are in V .

Although some of the properties of states in V as de-

scribed in this section, may appear to be unconventional,

they are typical for indefinite metric spaces. " ' ' For
our arguments in the following, we only have to decide
whether or not positive-norm states of the form
A ""(—k)~0) are representatives of physical states. This

is a rather straightforward problem as far as the coho-

mology is concerned, but because we have to preserve rel-

ativistic covariance, we need the tools collected in this
section.

U33% 3%0 if P„3%0 (2.32)
III. SUPERCONVERGENCE

since Eq. (2.21) implies

UP/ U33 U33 UP/ 1 ~ (2.33)

0, +3= 0
0 3

(2.34)

Then %„=% &+A%& is an unphysical state for AWO. We
see that A.%3=+„—4, is a null vector. Hence there is
no relevance to the magnitude of A, as far as the situation
described above is concerned. The states 4, and 0'„
have the same norm. Given A, %'3%0, we can find an
equivalence transformation U which brings +„ into the
form

We note that C and Co are linear vector spaces, but

C„ is not. A sum of unphysical states, where the com-
ponents in imQ cancel, gives rise to a state in Co or in

C . In the latter case we would get a representative of a
physical state. A related feature of C„ is that sum of a
physical state and an unphysical state results in an un-

physical state. For instance, let us consider the states

%~, EVz and %~E imQ '; in components

0

The second ingredient of importance for our discussion
of confinement is the structure of the gluon propagator.
Detailed derivations have been given in previous pa-
pers. ' Hence we restrict ourselves to a summary of the
assumptions and a formulation of the results as they are
needed in the following.

We assume the usual postulates of covariant gauge
theories with a state space of indefinite metric. As spec-
tral conditions, we require only non-negative eigenvalues
of P„P" and of P, where P" is the energy-momentum
operator. At least for the first few orders of perturbation
theory in powers of the gauge coupling parameter g, we
assume that the exact Green's functions are connected
with the corresponding formal perturbation expansion in
the limit g ~+0. This requirement appears to be natu-
ral in view of the asymptotic freedom of QCD and the
physical relevance of the weak-coupling limit. The con-
nection with perturbation theory is assumed only for
unprojected Green's functions within the framework of
the general state space V. Projections may not commute
with the limit g ~+0.

Since later we wi11 also introduce projected propaga-
tors, it is convenient to define the transverse gluon propa-
gator in terms of

L

where the component in V is removed.

(2.35)
(3.1)

In this way the longitudinal part is eliminated in all cases,
and the two point function is completely determined by
the transverse structure function D, (k ). We write
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fd'x e"""(OITA,""(x)AP(0)IO) lim g ( u, g ) = (
—Polnu ) '+ .

@~QO

i—o,„D,(k )

X(k"k~g" k—"k g "~+k'k g" k—"k~g" ),
(3.2)

k
lim R

g ~+0
k

,g =1+y~ ln +. . .
K

(3.7)

where use has been made of relativistic covariance, the
invariance of the ground state IO), and the unbroken glo-
bal gauge symmetry. As a consequence of Lorentz in-
variance and spectral conditions, the structure function
D, (k ) is the boundary value of an analytic function: D(k, ~,g)= Cv(g—)k ln

k

K

&oo~~o

(3.8)

we obtain for the asymptotic behavior of the structure
function

D, (k )=D(k +iO) for real k ~0, (3.3)

2

kD(k, a—,g )—:R
k

,g =1 for k =~ &0 . (3.4)
K

where D(k ) is analytic in the cut k plane. A priori,
with the space-time expression for the two-point function
being a tempered distribution, the analytic function
D(k ) is bounded by a polynomial for k ~ oo.

We obtain further information for the asymptotic be-
havior of D(k ) from a renormalization-group analysis.
As explained in the Introduction, it is sufficient and con-
venient to use the Landau gauge, and to consider the
fields as functions of x, g, and K, where K & 0 is the re-
normalization point:

x exp f dx
g Yoo p(x)

0 ox x
(3.9)

The renormalization group is needed here only for g in
the neighborhood of g =+0, where it is controlled by
the asymptotic expressions of p(g ) and y(g ), and where
possible higher fixed points are not relevant. Also in

Cv(g ), we consider only values of g below possible
higher zeros of P(g ).

For the discontinuity irp=ImD(k +iO), we find corre-
spondingly

for k ~00 in all directions in the complex k plane. The
coefficient Cv & 0 is given by

C,(g') =(g'IP. I)
'

Possible intrinsic quark masses can be accommodated
with the help of a mass-independent renormalization
scheme. ' The renormalization-group equation for R can
be written in various forms. At first, we use the relation

kp(k, x'-, g)= —Cv(g ) k ln
po

(3.10)

kR,g =R
K

f

k k
2 ,g R e', g 2 ,g

K K
(3.5)

where k ~+ ~ along the real axis. In view of the ana-
lytic properties of D(k ) and the asymptotic behavior

(3.8) in all directions, we obtain the unsubtracted disper-
sion relation

with

R(u, g)=exp f '
dx y(x)IP(x ) (3.6)

k'
D(k )=f dk' k' —k' (3.1 1)

««k = —
I
k

I
e'~,

I P I
n.,g ( u, g ) is the effective cou-

pling, p(g ) the renorinalization-group function and
y(g )=y(g, a=O) the anomalous dimension of the
gauge field. In the limit g ~ +0, we have
P(g')=Pe' P+i g+ . 1'(g' a)=(1~+azoi)g'+
For QCD, the coefficients are given by

Po= —(16' ) '( l l 'NF ), ——

k'
D(k )=f dk'

—o (k' —k )

with

2 /c

cr(k )—:f dq p(q ),
where for k ~+ ~

(3.12)

(3.13)

Because of Eq. (3.10), this formula can be rewritten as a
dipole representation

goo= —(16ir ) '( —", ', NF), ——
k

cr(k )=2C (gv) ln

—
&oo~~o

(3.14)

yo, =(16' ) 3/2

with XF being the number of flavors. We always assume
Po&0 corresponding to asymptotic freedom. With the
limits

These relations are of interest for quark confinement.
They have been discussed in Ref. 1 in connection with an
approximately linear quark-antiquark potential.

The discontinuity p of the structure function is also of
importance because it is characterized by the norm of the
states A4"IO). Using the Fourier transform of the
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Heisenberg operator

A ","(k)=f d x e'" "A,""(x),

we have

(0~2 ","(k')A /b ( —k)~0=5, 5(k' —k)8(k )harp(k )

X( —2)(2~}'

X(k"k~g" —k"k g l'

(3.15)

K (a,g ) =K (~',g')

with

&2 /2

z
=u(g', g)—= exp f dxP '(x)

K (a. ,g)=Cx. //: exp(1/Pog )(g )
' +

In the weak-coupling limit g ~+0, we have then

(3.23)

(3.24)

(3.25)

+k "k g"/' k "—k/'g" ) .

(3.16)

With test functions c„'„(k)=—c'„„(k), the norm of the
states

so that E vanishes exponentially.
Let us note here also that the states q/(c, k ) intro-

duced in Eq. (3.20), considered as functions of k and g,
are related by

'I/(c, k, g ) = &R (u(g', g ),g )%(c,k', g')u '(g', g )

'P(c)= f d k c„',(k)A,""(—k)iO)

is then given by

(q/(c), q/(c))= fd k 0(k )np(k )C(k),

with C(k))0, where, fork &O, k &0:

(3.17)

(3.18)
kg'=g, g or k' =k u '(g', g), (3.27)

(3.26)

for renormalization-group equivalent points (k,g ) and
(k', g'), where either

C(k) =— 8(2n)—k "c „'.,(k)k/'c' (k )g' (3.19)

Hence the sign of the norm in Eq. (3.18) is determined
solely by p(k ). It is convenient to introduce states with
a fixed value of k by writing

q/(c, k )=fd q 5(q —k )c'„(q)A,""(—q)~0) . (3.20)

They have the norm

(4'(c, k' ), 4'(c, k ))=op(k )5(k' —k )

X fd q 8(q )5(q —k )C(q),

(3.21)

which is directly given by p(k ) except for a positive fac-
tor. For possible multipole states, the representation
(3.20) is less useful. But these states are not particularly
important for our discussion of confinement. They have
been considered in Refs. 5 and 6.

The formulas (3.8} and (3.10) exhibit a critical depen-
dence of the theory uPon the sign of yoo/Po. We assume

asymptotic freedom corresponding to po & 0. For
yoo/Po&0 (corresPonding to NF &10 in QCD), it then

follows that D(k ) vanishes faster than k for k2~ oo.

Hence we have a superconvergence re1ation '

f dk p(k', a, g ) =0 . (3.22)

Furthermore, as seen from Eq. (3.10), the sign of the
discontinuity P is oPPosite to that of y~/Po for
sufficiently large values of k, and hence it is negative for
yoo/Po & 0.

The distribution properties of p(k ) have been dis-
cussed in detail in Refs. 5 and 6. Here we mention only
that there must be a smallest K (/r, g) &0 so that for
yoo/Po&0 the discontinuity P is a negative measure for
k &K . The position K (v,g) must be invariant with
respect to the renormalization group:

and where /~ is fixed. Here g(u, g),g(l, g)=g, is the
effective coupling, and u(g', g) has been defined in Eq.
(3.24). The factor &R is determined by Eq. (3.6) as

g/2
v'R(u(g', g),g)=exp —,

' f, dx y(x)/p(x) (3.28)

In Eq. (3.26) we have assumed that the test functions in

Eq. (3.20) do not depend upon /r and g, and that they
scale like c""(k)=y ~c""(ky ') in accordance with their
dimension.

In contrast with the case yoo/po) O, p, &0, there is no

superconvergence relation if y oo/po &»po & 0
(10&&F& 16 for QCD), and the discontinuity p is posi-

tive for k larger than some K (/r, g ) & 0.
As we have mentioned before, the superconvergence

relation (3.22) provides a connection between infrared
and ultraviolet properties of the theory. It is not simply a
consequence of the renormalization group, which has

been used in order to obtain the asymptotic behavior in
the complex k plane. A major role is played by the
analyticity of the structure function in the complex plane
cut along the positive real axis, which follows from
Lorentz covariance and simple spectral properties. The
relation (3.22) is not satisfied in weak-coupling perturba-
tion theory, nor in the so-called improved perturbation
theory, where one sums an infinite sequence of subgraphs.
In the latter case, the structure function has an asymptot-
ic behavior corresponding to that of the exact expression
(3.8), but there are Landau-type singularities on the nega-
tive real k axis. These singularities contribute to the su-
perconvergence relations so that the resulting formula is
quite different from Eq. (3.22). A more detailed discus-
sion will be given elsewhere.

We close this section with a few remarks about general
covariant gauges, although, as has been explained in the
Introduction, it is sufficient for our purpose to work in
the Landau gauge. The situation for arbitrary values of
the gauge parameter a has been considered in Ref. 3. We
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kR,g, a
K

(3.29)+Cv(g, a) ln
ao K

where y(g, a)=(yoo+ayo, )g + . for g ~+0 and
ao=——yoo/yo, . For yoo/Pp& 0, there is a modified super-
convergence relation

+f dk p( k,~, g, a)= 0.
ao —o

The discontinuity has the asymptotic form

(3.30)

find, for the leading asymptotic term of the structure
function R, taking the case 0&goo/Po& 1 as an example,

&oo ~~o

measure. More details may be found in Ref. 6.
As far as the renormalization-group equations are con-

cerned, they are satisfied separately by the contributions
from multipole terms and from r(k ) in Eq. (4.2). The
multipoles do not contribute to the superconvergence re-
lation (3.22). As we have discussed in Sec. 3, we know
that for k &K (x,g), with some K (~,g)&0, the
weight function p is a negative or positive measure for
goo/Po&&0, respectively. Consequently there are no mul-

tipole terms in this region, and the points K in Eq. (4.3)
are restricted by 0 ~ K, ~ K . More detailed discussions
of the distribution aspects of p may be found in Refs. 5

and 6. The positive-norm states for fixed k are

p(k, a,g, a) = — Cv(g, a) +(c, k ) =P+ V(c, k ), (4.3)

k2
)&k 2 ln (3.31)

with %(c,k ) as given in Eq. (3.20}. The norm of 4+ is

directly proportional to p+ and hence positive:

and hence the same functional dependence as in the Lan-
dau gauge, where a=0.

The use of general covariant gauges in the following
discussion of confinement is in principle possible. But it
involves considerable complications, and we do not con-
sider it in this paper.

IV. GLUON CONFINEMENT

For the discussion of confinement, it is important to
consider projected propagators. These have also been ex-

plored in detail in previous publications. ' Ideally, we
would like to use a Lorentz-covariant formulation of the
projection into the physical subspace as defined in Sec. II
by the cohomology of the BRST operator. But this is
complicated because the projections into V~ or into kerQ
are not Lorentz invariant. It may be possible in principle
to obtain a satisfactory formulation by using operator
cohomologies. However, in this paper we employ more
conventional methods. The only projection which we use
is concerned with states of the form A,"'(—k ) ~0) which
have positive norm. We write

(4+(c,k' ), ql+(c, k ))=op+(k )5(k' —k )

X f d q 9(q )5(q —k~)C(q),

(4.4)

with C(q) & 0 as defined in Eq. (3.19).
We now introduce a projected propagator with the

structure function D+ (k ) by

f d x e'" "(0~TA,"'(x)P A| (0)lo)

i5,bD+—(k +i0)(k "k~g" k"k g"~—

+k "k g"~—k'k~g" ), (4.5)

since the projection is defined in a Lorentz-covariant
fashion. If we want to see more explicitly how
D+(k +iO) is given in terms of the basic projected
discontinuity p+(k ), we can express the time-ordered
product in Eq. (4.5) in terms of a commutator times e(x )

plus an anticornmutator of the Heisenberg operators.
Then we find

D+(k +iO) f=d x e'" "f dA'p+(A), 5,(x,,A),
P A,""(—k ) ~0 ), (4.1)

X —1

+ g c„(k )",
n=0

(4.6)

where the operation P+ selects only those states for
which the norm is positive in the sense that the discon-
tinuity p in Eq. (3.16) is a positive distribution, which we
denote by p+. A priori, the weight function p is only
known to be a temperate distribution. We can write

where

b,,(x, A. )=—,'[e(x }b(x,A, )+id, ,(x, A, )]

with

(4.7)

p(k )=r(k )+g g c„5'"'(k K, (~,g}), (4.2—)
j n=1

where r(k ) is a measure except at isolated singular
points. The multipole terms involve finite-order deriva-
tives of 5 functions. They correspond to states which are
not eigenstates of P, where P" is the energy-momentum
operator. Rather, these states satisfy (P k)"4.=0, —
with appropriate powers n ~ 1. In defining p+, we omit
the multipole terms and consider only the positive part of
r(k ). For normalizable states, p+(k ) is then a positive

d gh(x, A, ) =i f e'q "e(q )5(q A), —.
(2m. )

d4
b, (x A. ) = f e' "5(q —

A, ) .
(2m )'

(4.g)

In Eq. (4.6), the polynomial with real coefficients has its
origin in the possible appearance of products of e(x ) and
distributions 5'"'(x ) in the integrand of ReD+(k +iO),
which are not defined at x =0. This feature introduces a
certain arbitrariness in the Fourier transform which is
just expressed by the polynomial with arbitrary
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coefficients. Only derivatives 5'"'(x ) of finite order are
possible in the vacuum expectation value of the projected
commutator

2

R(u(g', g),g)=
L

—roo/Po

(Ol[ A,"'(x),P At' (0)]lo), (4.9)

because Lorentz covariance requires that the expression,
which is odd in x, vanishes in spacelike regions. An
analogous polynomial is present, a priori, in the corre-
sponding expression of the unprojected propagator.

From the Lorentz covariance of the projection P+,
and the usual spectral condition, it follows that
D+ (k +i 0) is, as already indicated, the boundary value
of an analytic function D+ (k ) which is regular in the
cut k plane. Up to possible subtractions and corre-
sponding polynomials, we therefore have the representa-
tion

D+(k )=f dk'
p+(k' )

—p
(4.10)

Further information about the asymptotic behavior of
D+ (k ) can again be obtained from the renormalization
group. The projection P+ does not introduce a new di-
mensionful parameter, and therefore does not disturb the
renormalization-group in variance. The points, which
characterize the regions where p+(k ) has support, are
invariant. They are given by functions K (Ir,g) which
have been discussed in Sec. III, Eqs. (3.23)—(3.25).

Defining the dimensionless structure function

k
,g = kD+ (k,—a,g ),

K
(4.11)

we find that it satisfies a renormalization-group equation
analogous to Eq. (3.5). ' We obtain

k
,g =R

K

k

K

XR+ e,g 2,g
k

K
(4.12)

with k = —lk le'~, lPl m. However, although Eqs.
(4.12) and (3.5) are of the same form, there is an essential
difference. While R(k /~, g ) is normalized to "one" for
k =I~, the expression R+ ( l, g ) in an unknown function
of g . Given the known asymptotic form (3.8) of R (u, g ),
we get from Eq. (4. 12) a correlation between the behavior
of R+ for k ~~, g fixed and the limit g ~+0 with
k fixed. Somewhat more general, this correlation is seen
also by writing the renormalization-group equation in the
form '

Xexp f, dx y(x) yoo

g (X 0X
(4.14)

k & 0(( 2) F00 0)
K

(4. 16)

for g ~ +0 and fixed k .
(2) For y00/p0 & 0 (10~ NF ~ 16 for QCD), on the other

hand, we may assume that R+(k /a, g) approaches a
constant for g ~+0 without having superconvergence
or other relevant restrictions.

We note that polynomial terms in D+(k ), which are
possible a priori as indicated in Eq. (4.6), do not change
the above conclusions. The polynomials, and corre-
sponding subtractions in the dispersion relation D+, have
been discussed in detail in Ref. 6. As a consequence of
the renormalization-group equations (4.14), the
coefficients of the polynomials would diverge exponential-
ly for g ~+0, like the appropriate power of

u '(g', g ) =exp( —1/Pog )(g )
' ', (4.17)2 -~I«o

2 roo«omultiplied by (g )

Let us now return to the classes of states in the space
V which have been introduced in Sec. II in a generic
fashion.

(1) First, we are interested in states of the form (4.1)
which satisfy

gP A."'(—k)lo)=o (4. 18)

Since the integral in Eq. (4.14) is bounded, R behaves like

(g ) 'forg ~+0.
The essential consequences of the renormalization-

group equations are the following.
(1) For y00/p0& 0 (NF (10 for QCD), we see from Eq.

(4.12) that R+ vanishes for k ~00 in all directions in
the cut plane and fixed g unless we allow it to diverge for
g ~+0 and fixed k, so that the last factor R+ in Eq.
(4.12) compensates the decrease of R in view of the limits
in Eq. (3.7). But if R+ vanishes asymptotically, D+ van-
ishes faster than k at infinity. Then we have again a
superconvergence relation

f dk p+(k') =0 . (4.15)

Since p+ is positive, Eq. (4.15) implies that p+ vanishes
everywhere for k &0. [An exception are contributions
from a possible set of measure zero. Here, and in the fol-
lowing, we do not consider this mathematical possibility.
Furthermore, such functions do not contribute to D+ as
given by the dispersion relation (4.10).] The superconver-
gence for y00/P0 & 0 is avoided only if

k2
,g =R(u(g', g),g)R+

K

k
u '(g', g ),g'

K

with u (g', g ) as given in Eq. (3.24), and

(4.13)

as antimetric Lorentz tensors and SU(3)-octet vectors in
color space. As before, we assume that there is no spon-
taneous breaking of global color symmetry. Since the
operators U(A) representing Lorentz transformations in
V commute with the BRST operator Q, we find that Eq.
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(4.18), for a given four-vector k, implies that all states
with the saine value of k )0 also satisfy Eq. (4.18). In
terms of the states 4+(c,k ) introduced in Eqs. (3.2) and

(4.3), the validity of Eq. (4.18) and its transforms implies
then that

QV+(c, k )=0 (4.19)

is valid for all test functions c,"'(k) for a given k &0.
Hence these states belong to kerQ, and because of the
positive norm, there must be a nonvanishing component
in V . This implies that the states considered are
representatives of physical states as defined by the coho-
mology & of Q.

(2) The alternative to Eq. (4.18) is that, for a given
four-vector k, the state P+ A ~0) satisfies

(4.20)
k

,g —=k pz(k, K,g),
K

(4.24)

are the BRST operators (see, in this connection, Ref. 8}.
Since the factors are real, it follows that the classes C
and C„+ are invariant. This implies that possible points
of separation between p and p„+ must be invariant func-
tions K, (K,g) as given in Eqs. (3.23)—(3.25). Similarly,
the position K, (K,g ) of possible 5-function contributions
are invariant.

In Refs. 5 and 6, the renormalization-group equations
for the discontinuity p as a distribution, and of p+ as a
measure, have been studied in detail. Because of the
renorrnalization-group invariance of C and the related
invariant separation of p from p„+, the weight function

p must satisfy an equation analogous to the one for p+.
Defining a dimensionless expression by

as Lorentz tensor and color vector. Because of
[Q, U(A)] =0, we find again that all corresponding states
with the same value of k )0 also satisfy Eq. (4.20). For
the states 4+(c,k ), Eq. (4.20) implies that there are test
functions c,"'(k) for which

we have the relation

(4.25)
Qql~(c, k )%0 . (4.21)

If Eq. (4.20) is valid for a given test function c, then the
same is true for all its Lorentz and/or color transforms

c,'"'(k) =ct' (A 'k )At'A "Rb, . (4.22)

The states 4+(c,k ) and 4+(c', k ) have, of course, the
same norm, which is determined by p+(k ). According
to the discussion in Sec. II, they must have a nonvanish-

ing component in imQ". By an equivalence transforma-
tion, they can be brought into a form which has only
components in kerQ*, and none in V . Hence they are
unphysical states, even though they have positive norm.

The two possibilities for positive-norm states are ex-
clusive. In the neighborhood of a given point k ~0, or
as a 5-function contribution, the discontinuity p+ is ei-

ther due to physical states in the class C of Sec. II, or
unphysical states in C„:

p+(k )=p (k ) if A( —k)~0)EC

p+(k )=p„+(k ) if A( —k)~0) EC„+ .
(4.23)

As we have pointed out in Sec. III, the discontinuity p
is a negative ineasure for k )K (K,g) and yoo/po) 0,
with K (K,g) as defined in Eqs. (3.23)—(3.25). Conse-
quently p+ and p vanish for k )E, and the separation
discussed above is of importance only in the interval
0~k ~K (K,g). We may well have either p+=p or

p+ =p„+ in this whole interval, but there is no difficulty
in dealing with the more general situation considered
above.

So far, we have discussed the separation of p and p„+
for fixed values of ~ and g, but it is actually invariant un-

der renormalization-group substitutions of (K,g ) by
(K,g') where K =K u(g', g ) as described in Sec. III. At
these renormalization-group equivalent points the states
A " (

—k, K,g ) ~0) are proportional to each other, and so

Here R is given by Eq. (4.14) and u(g', g) by Eq. (3.24).
The function u (g', g ) vanishes proportional to

Z ~1«O
exp(1/Pog )(g )

' '. Note that, substituting k
=K (K,g) on both sides of Eq. (4.24) and using Eqs.
(3.23) and (3.24) with

K (K,g')=K (K,g)u '(g', g)

we obtain

(4.26)

K(K ) K(K ')x, ' =~(ii(g' g) g}x,' g'

(4.27}

So, for example, zeros of p rnatch on both sides of the
renormalization-group equation, their location being
defined in an invariant fashion.

In this section we discuss only the case yoo/Po)0
(NF ( 10 for QCD). As has been mentioned above, there
is a minimal point K (K,g ) )0 so that

p+(k, K,g)=0 for k )K (K,g), (4.28)

where K is invariant according to Eq. (3.23) and van-
ishes exponentially for g ~+0. For the projected struc-
ture function D+ (k ), we then write the representation
(4.10) in the form

p (k' )
D (k2)= I k' —k' (4.29)

In principle, and as indicated in Eq. (4.6}, there could
be a polynomial in k with real coeScients in Eq. (4.29).
From the renormalization-group equations, we learn that
these coefficients diverge exponentially for g ~+0. As
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indicated before, a possible polynomial does not change
our later conclusions, and we omit it in the following.

In view of Eq. (4.23), we can split Eq. (4.29) and write
separate relations involving p and p„+, both having sup-
port for diferent values of k & 0. So we have

p (k' )
D, (k')= f dk' ', (4.30)

and a corresponding relation for D„+.
The formula (4.30) collects the contributions from all

possible regions of support of p which have
renorrnalization-group-invariant boundary points
K, (lc,g) or positions K, (x,g) as discussed before. The
function D is the part of the general structure function
D which is due to possible physical states of the form
A""(—k) l0). Because of the invariance of Cz, which we
have discussed, the function D must also satisfy a
renormalization-group equation such as the one for D+.
Either directly, or via Eqs. (4.25) and (4.30), we obtain

R, ,g =R(u(g', g),g)R, u (g', g), g'
K K

K
D (k )= — f dk' (k' )

k' (k' )1 k, P
k' k' —k

(4.34)

From the renormalization-group equation (4.31), we learn
&oo«othen that the first term diverges like (g )

' for
g ~+0, unless Eq. (4.32}holds. The second term is pro-
portional to exp(1/pog } and vanishes exponentially for
g ~+0.

We would now like to give some arguments which indi-
cate that the second possibility can be excluded.

(4.31)

with R = —k~D .
P P'

Another derivation of a renormalization-group equa-
tion corresponding to Eq. (4.31) can be found in Ref. 4,
where Nishijima uses an explicit decomposition of the
propagator with respect to physical states for a given
reference frame in V.

In analogy with the situation for D+ discussed earlier
in this section, there are two possibilities for the solution
of Eq. (4.31).

(1) If we want to keep D~ bounded for g ~+0, it must
vanish asymptotically faster than k . But then it is su-
perconvergent and we get

f dk'p, (k') =0 (4.32)

and hence pz(k ) —=0 and Dz(k )—:0. We again ignore a
set of measure zero.

(2) The superconvergence can be avoided if we allow
divergence for g ~+0. The requirement is

IDp(k', ~',g)l o((g') ' ") . (4.33)

The dispersion relation (4.30) can be written in the
form

p (k')
D„,(k2)=f'dk '"'

k' —k' (4.35)

and we have the same two possibilities as discussed in
connection with D . However, since the states involved
in p„+ are not physical, the objections mentioned above
against the divergent solution do not apply now, and we

z &oo»ocan allow D„+ to diverge at least like (g ) for
g ~+0. In fact, this is the only acceptable solution,
since p„+(k )—:0, together with p =0, would result in

p+(k )=—0. With p+ ——0, the superconvergence relation
(3.22) for the discontinuity p of the full propagator would
imply that p(k ) vanishes for all k, with the possible ex-
ception of multipole terms such as

n.

g g c„,5'"'(k —K, (a,g )) . (4.36)
j n=1

If the transverse gluons are physical quanta, we expect
that the k term appearing in the weak-coupling limit

g ~+0 of the structure function D is associated with
the physical gluon contributions to the exact propagator,
so that D = —c k for g ~+Op with c being a finite
constant. This is excluded for yo/po)0 (NF &10) in
view of Eq. (4.33). On the other hand, for yoo/pa&0
(10 NF 16), there is no problem in satisfying the re-
quirernent described above, although D may vanish for
some other reason.

A more formal argument can be given by studying uni-
tarity relations for Wightman functions involving BRST-
and gauge-invariant operators such as, for example,
G =F„F"~.We can use the methods worked out in col-
laboration with Zimmermann, but for the particular sit-
uation with possible physical gluons as defined by the
BRST cohomology. The unitarity relations for the G
propagator are resummed so that integrals over p ap-
pear. If goo/po & 0, these lead to divergencies in the limit

g ~+0 which are not compatible with unitarity. On
the other hand, if gluons are confined, they are not states
in the physical subspace and hence do not contribute to
the unitarity relations. Then the divergences for g ~+0
do not matter.

In addition to the arguments in favor of gluon
confinement given above, we recall that for yoo/po) 0
(NF &10) there are no states of the form A ""(—k)l0)
with positive norm for k & K (v, g ), and hence no cor-
responding physical states. Here the bound K (~,g)
vanishes exponentially for g ~+0. Although, in princi-
ple, a theory with a state space of indefinite metric may
have unusual features, we would nevertheless expect that
the Heisenberg operator A " ( —k ) can generate physical
many-particle states for all values of k if there existed
physical gluon states of the form A ""(—k ) l0) for
k &K . As a contrast, we note that for yoo/po&0
(10&NF & 16), the discontinuity p+ does not vanish for
large values of k, as will be discussed in the next section.
Hence, there is no obstacle to the existence of such physi-
cal states for any value of k & 0 if yoo/po & 0.

We now turn to the contribution of unphysical states
from the class C„ to the dispersion relation (4.29). We
can write
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As we have pointed out before, these multipole contribu-
tions involve derivatives of 5 functions of finite order, and
they do not contribute to the superconvergence relation

(3.22) for p. However, the expression (4.36) alone is not
compatible with the asymptotic form (3.10) for p, nor
with the weak-coupling limit g ~+0, which should
reproduce the perturbation theory expression in the case
of the full propagator.

We conclude that for yoo/Po&0 (NF &10 for QCD)
there should be no physical states of the form
A " (

—k) ~0 },and hence no physical gluon states. There
must be unphysical states of this type with both positive
and negative norm (sign of p). The case yoo/pp&0
(10& Nf & 16) will be discussed in the following section.

Di(k )= —
~ f dk' pi(k' )

(5.1)

From the renormalization-group equations we learn that
&oo«othe first term in Eq. (5.1) diverges like (g )

' for
g ~+0, while the second term is proportional to
exp( I /pog ), vanishing exponentially in the weak-
coupling limit. None of the terms in D+ contributes to
the power series in g which, by assumption, is the formal
asymptotic limit for g ~+0 of the full propagator func-
tion D. These perturbation theoretical terms must then
come from D, for which we can write the decomposi-
tion

V. MANY FLAVORS

In the previous section, we have found that the gauge-
field quanta are confined if yoo/po & 0 (NF & 10 for QCD).
We now want to discuss briefly the situation for
yoo/po &0, po &0 (10& NF & 16), and to compare the two
cases with the help of the dispersion representations of
D+(k ) and D (k ).

As seen from Eq. (3.8), the structure function D(k )

for the full propagator decreases less fast than k for
k ~~ if goo/Po&0. Hence we have no superconver-
gence relation. For the projected propagator functions
D+(k ), etc. the renormalization-group equations show
that nonvanishing expressions, which are bounded for
g ~+O, k fixed, are allowed in this case. Therefore, for
D~(k }, we are not forced to take the trivial solution.
The situation is com.pletely compatible with the states
P+ A ""~0}of positive norm being in kerQ with nonvan-

ishing component in V, and therefore gluons may not be
confined. On the other hand, we could choose the solu-
tion p —=0 corresponding to confinement. We see that,
on the basis of our methods, unconfined and confined
phases are possible for yoo/pp&0 po&0. Nevertheless, it
may be quite plausible that the condition yoo/po&0 is

not only sufficient but also necessary for the confinement
of gluons and perhaps also of quarks. Then we would
have a deconfining phase transition as yoo/pp changes
sign with an increasing number of matter fields in the
theory. In general, it is to be expected that quark vacu-
um polarization provides the appropriate screening of
color charges with increasing values of XF. As explained
in the Introduction, it may eventually be possible to de-
cide the question of a deconfining phase transition around
ypp=0 with the help of computer simulations. ' '

An interesting picture of the different characteristics of
the states A ~0} for both signs of yoo is provided by a
more detailed study of the dispersion relations for
D+ (k ) and D (k ). D+ has been discussed in the pre-
vious section, D contains contribution from negative-
norm states and possible multipole terms of the type
(4.36); we have D =D+ +D

We first consider the case yoo/po) O, po (NF & 10): As
has been mentioned before, we can write the representa-
tion (4.29) for D+ in the form

D (k2)= f dk' p (k' )

k' (k'i)
+ ' f'dk

—p

+f ",dk",p (k' )
(5.2}

D~(k )= — f dk' p~(k' )

But now the first term vane'shes like (g ) for2 &oo«o

g ~+0, while the second term again decreases exponen-
tially. The perturbation expansion for weak coupling
comes from the third term and is associated completely
with positive-norm states. As we have pointed out in the

For g ~+0, the first two terms behave as described be-
fore for the corresponding terms of D+. In particular,
the diverging first terms cancel in D =D+ +D in view
of the superconvergence relation (3.22) for p=p++p
It is the last term in Eq. (5.2) which gives rise, for
g ~+0, to the perturbative power-series expansion of
D. The latter is obtained by inserting the asymptotic ex-
pansion of p (k )=p(k ) for k ~~, and hence is con-
nected only with unphysical states of the general, nonper-
turbative theory. It should be recalled here that, as
shown in Eq. (3.25), the boundary point K =E (Ir,g)
vanishes exponentially for g +0.

According to our previous results, we have D =D„ for
yoo/Po) 0, and we see from Eqs. (5.1) and (5.2} and the
related discussion that the representations are in com-
plete accord with this conclusion.

As a comparison, we consider briefiy the situation for
yoo/po &0, po &0 (10&NF & 16). In this case with many
flavors, we have
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beginning of this section, we cannot tell whether these
positive-norm states are physical or not in the case
yoo/Po & 0 considered here, but it tnay perhaps be sugges-
tive that they are. The function D (k ) satisfies an equa-
tion analogous to Eq. (5.1) in the present case. The whole
function vanishes for g ~+0.

We see that the dispersion representations for D+ and
D give a good picture of the very different structure of
the theory for positive and negative signs of the anoma-
lous dimension coeScient y00.

Finally, we remark that it is of interest to study super-
symmetric gauge theories and theories with conformal in-
variance in the light of the features presented in this pa-
per. Some such theories have been discussed in Ref. 24.
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