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Baryon-number dissipation at finite temperature in the standard model

Emil Mottola
Los Alamos National Laboratory, Theoretical Division, T-8, Mail Stop B285, Los Alamos, Ne~ Mexico 87545

Stuart Raby*
Department ofPhysics, The Ohio State Uniuersity, Columbus, Ohio 432IO

(Received 23 July 1990)

We analyze the phenomenon of baryon-number violation at finite temperature in the standard
model, and derive the relaxation rate for the baryon density in the high-temperature electroweak
plasma. The relaxation rate y is given in terms of real-time correlation functions of the operator
E B, and is directly proportional to the sphaleron transition rate I: y ~ nf I /T . Hence it is not in-

stanton suppressed, as claimed by Cohen, Dugan, and Manohar (CDM). We show explicitly how
this result is consistent with the methods of CDM, once it is recognized that a new anomalous com-
mutator is required in their approach.

I. INTRODUCTION

Baryon (and lepton) number is not conserved in the
standard SU(2)L XU(1) electroweak theory. This derives
from the fact that the pure SU(2) vacuum is a periodic
structure labeled by an integer Chem-Simons winding
number:

In order to change from a vacuum configuration with one
integer value of Ncs to that with another integer value, it
is necessary to pass through nonvacuum, i.e., finite
energy field configurations: Fig. 1. The height of the po-
tential barrier between adjacent vacua is given by the en-
ergy of a certain static solution of the coupled Yang-
Mills-Higgs classical field equations, called a sphaleron.
In the steinberg-Salam theory this energy barrier is of or-
der M~/a ~, or 7 to 10 TeV. '

Necessarily associated with the twisting of the gauge
field from one vacuum state to another is the violation of
chiral fermion number through the chiral anomaly. Be-
cause of (maximal) parity violation, the chiral anomaly
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FIG. 1. The periodic vacuum structure of non-Abelian gauge
theory in the absence of fermions.

becomes an anomaly in the lepton- and baryon-number
currents as well:
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Here F„', and F„'„are the field strength tensors for the
SU(2)L and U(1) hypercharge gauge fields of the
Weinberg-Salam theory, g and g' are the corresponding
coupling constants, and nf is the number of sequential
generations (families) of quarks and leptons. Since
F„,F""may be expressed as the total divergence of a
four-vector whose time component is just that appearing
in the definition of Ncs, the nonconservation of B +L is
related to the change in Ncs of the SU(2)L gauge vacu-
um. Because the anomalies in the baryon and lepton
currents are identical, the difference B —L is exactly con-
served in the standard model.

At temperatures and energies low compared to 10 TeV,
such transitions and concomitant B+L violation are
very severely suppressed. 't Hooft showed that
instanton-induced baryon-number-violating processes in-
volving 12 fermions (for nf =3) are suppressed by a factor
of

exp( 4tr sin Hs, /—a)-10
and hence are entirely negligible at zero temperature.

At high temperatures, the situation is quite different.
Because the energy barrier represented by the classical
sphaleron solution is finite, the rate of classical real-time
thermal transitions changing Ncs and, therefore, B+L
has no such exponential suppression in electroweak
theory. The rate of such B- and L-violating processes
has been computed in the steinberg-Salam theory by
semiclassical methods for the temperature range
Mz, (T)« T «M~(T)/a~. At temperatures greater
than Mtt, ( T)/az„ the semiclassical analysis fails because
perturbation theory around the zero-temperature ground
state is unreliable. The failure of the semiclassical ap-
proximation for the rate does not mean that the rate is
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small. Though this might seem paradoxical from the
point of view of instanton methods, it is borne out by
calculations (both analytic and numerical) in two-
dimensional models. ' ' It is also possible to argue from
general properties of scaling in the high-temperature
phase that the rate of such transitions per unit volume is
of order a~T . '"

Another line of objection to unsuppressed fermion
number violation in the electroweak theory has been
raised by Cohen, Dugan, and Manohar' (CDM). These
authors have argued that the rate of dissipation for any
8 +L asymmetry remains exponentially small, even
though the rate of fluctuations of Ncs is large at high
temperatures. Although such a situation would be con-
trary to quite general statistical considerations which re-
late fluctuation rates to relaxation processes, ' the critical
role of a quantum anomaly in this case has generated
some degree of confusion and controversy.

The resolution of this controversy is important for
cosmology. Since the semina1 work of Sakharov' it has
been recognized that the observed baryon number of the
Universe could be produced by out-of-equilibrium reac-
tions which simultaneously violate baryon number,
charge conjugation, and CP. Moreover, the baryon-
number-violating reactions must turn off (i.e., become
insignificant) before the system returns to thermal equi-
librium; otherwise any baryon density produced will relax
to its equilibrium value, namely, zero. A high rate of
electroweak 8 +L nonconservation at T )M ~ therefore
carries with it the implication that any preexisting 8 +L
asymmetry would be eliminated by the time of the elec-
troweak phase transition. ' Thus, in order to obtain
the observed baryon number either B —LAO at ternpera-
tures much greater than M~, or baryogenesis must occur
at the time of the electroweak phase transition. ' This is
a strong constraint on any theory of baryogenesis, and ex-
cludes some grand unified models [such as the minimal
SU(5) model] for generating the observed baryon excess
in the Universe, quite apart from the bounds provided by
recent proton decay searches.

Khlebnikov and Shaposhnikov" (KS) used a well-
defined formalism to evaluate the nonequilibrium dynam-
ics of relaxation, and found a large relaxation rate at high
temperatures. However, they did not explicitly evaluate
fermionic quantities, which is at the heart of the CDM

II. THE BARYON- AND LEPTON-NUMBER
RELAXATION RATE

Consider the standard electroweak theory at tempera-
tures above M~. In our discussion we neglect the contri-
bution of the weak hypercharge to the baryon-number
anomaly. This is done for simplicity of notation. In-
clusion of the hypercharge contribution would not
change any of our conclusions. Let us assume that all of
the dynamical variables of the system are in thermal equi-
librium, except two: the baryon and lepton numbers Nz
and Nl, which have been driven out of equilibrium by a
small amount due to some unspecified process. The ini-
tial condition for our problem then is

(Ns(t =0))%0,(Nt (t =0))WO, and we wish to calcu-
late the relaxation rate y for 8 and L to return to their
equilibrium value. In statistical mechanics, the time de-
velopment of the dynamical variable Ntt =dNttldt is

given in terms of the statistica1 average
(Ns ) =Tr(Nsp)iZ where p(t) is the nonequilibrium sta-
tistical operator satisfying the quantum Liouville equa-
tion

p+i [H,p] =0,
and Z =Trp. Zubarev has shown that the operator

(4)

objection. In this paper we redo the calculation of KS
with ferrnions, and in the process obtain a closed form re-
lation between the baryon-number relaxation rate and the
(sphaleron) transition rate. This relation is quite general,
and independent of any sphaleron approximation, in ac-
cordance with general fluctuation-dissipation considera-
tions. The expression (23) for the rate in terms of a cer-
tain spectral density function may provide for techniques
of evaluation quite different from sphaleron methods.

Finally, we reexamine the analysis of CDM, and show
how the methods of those authors may be used to achieve
the same result. The new ingredient in our reanalysis of
CDM is an anomalous commutator between baryon num-
ber and E B, neglected in CDM, but required for con-
sistency with the usual anomaly. Since these several
different viewpoints all lead to the same conclusion, there
ought to be no further controversy about unsuppressed
electroweak 8 and L violation at high temperature and
its implication(s) for early Universe cosmology.

P exp PH +&0I e [ps(t )Ntt(t')+pt (t')Nt (t')]dt', 6 0+

—=expj P[H+h (t)]j, —

satisfies the Liouville equation in the limit e~o and
should be a good approximation in the case that only a
few dynamical variables are out of equilibrium. '

Now, the number operators satisfy the anomalous
equations of motion,

~ ~ agr
Ns=Nt = nI d x—q(t, x)—: nI —d xE' 8',2'

+nf X (7)

Following KS we evaluate now p/Z to first order in h:

where E' and 8' are the SU(2)t electroweak electric and
magnetic field strengths. In terms of the Chem-Simons
charge Pcs, we have
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1 +P f d g e »—3 i e i3HA.
Z 0 0

pf dye »—3 i e»A.
where

h = PE(—t)NE(t)

+ e"' "
p& t' N& t' +p& t' N& t' t'

+(BL), (9)

and the zero subscript denotes the equilibrium statistical
operator with h =0.

Let us calculate first the average baryon number to this
order. We find

(NE(t)) = p—f dA, (NE(t)e E h(t)eE ~)o, (10)

where we have used ( NE )(3. Substituting the previous ex-
pression for h, we find that the term involving Nz van-
ishes by the time-reversal invariance of p in the limit
@~0+. Ignoring the term involving pz for the moment,
we obtain

(Ntt(t)) =Pp&(t) f dA(Nt((0)e» N&(0)e»~)&

Pp (t)(N (0) ) (11)

where the last expression is valid in the high-temperature
or weak-coupling (classical) limit. An exactly analogous
expression holds for (Nt(t)). The term involving p, E is
negligible, provided that the relaxation rate y is slow
compared to typical correlation times in the system. This
approximation is justified a posteriori by Eq. (32) below.

In a similar manner we may compute

—(Ntt(t)) = Pf d—A f dt'e" "[hatt(t')+pt (t'))
dt O —oo

X(NE(t)e E ~NE(t')eE ")
(12)

using (7),

(NE )O=0,d
dt

and

(Ntt(t) j'dk, e E ~NH(t)eE ~) =0

by the time-reversal invariance of the equilibrium state.
Since pEL is negligible, we may replace FARL(t') by
pE L (t) in the above expression and remove them from
the integral. Then using the previous results for (Ntt(t) )
and ( Nt ( t ) ), we may eliminate the chemical potentials
from (12) entirely, to arrive at

where

& —= f dt'e"' "f dz(N, (-t)e E'N, (t )e»-'),
00 0

(14)

This derivation exactly parallels that of KS, " who
derive the equivalent result for Ncs instead of the fer-

(15)

whose Fourier transform Gz is analytic in the upper half
complex co plane:

I

GR(co, k)= f de'
CO CO +lE

(16)

The spectral density p (not to be confused with the densi-
ty matrix of which we have no further use) is determined
by the matrix elements of the topological charge density:

2 3

p(co, k)= g ~(n~q(0)~m )o~
n, m

E„/T —(E —E„i/T-
Xe "

1 —e

x5(co E+E—„)5 (k —p +p„),
(17)

where the states
~
n ) are a complete set of eigenstates of

the full Hamiltonian with energy eigenvalues E„.
By using the anomaly operator equation (7) and substi-

tuting the same complete set of intermediate eigenstates,
it may be verified in a direct computation that the quanti-
ty l(: of Eq. (14) is given by

~ 2 d
I('. =i Vnf T GR (cu, k)

dt's

co=k=O

= —iVn T dN
—oo CO l6'

p(co, 0)

=Vn Tm
(t0 0)

f
N=O

= Vn Tm
d

f
co=k=O

where we have made use of the fact that

p(co) =p+(to) —p (co) =p+(co) —p+( —~)

is explicitly an odd function of co when k =0.
The quantity (dp ld co)

~ „z o occurs in a quite
different context, as the rate for the (Brownian) diffusion
of the topological charge,

Q(t)—:f dt'fd xq(t', x) (20)
0

in the periodic potential of Fig. 1. For we may calculate

mionic operator N~. We now depart from those authors
by expressing K and the high-temperature (sphaleron)
transition rate I in terms of the same spectral function,
thereby allowing us to find a direct relation between the
two, independently of any specific approximation scheme.

To this end let us introduce the retarded response func-
tion

G„(t —t', x—x'):— i—0(t —t')( [q(t, x),q (t', x')]),
icu—(t —t')

3

3e2m' (2n') 3

xe "'"-*'G (~ k)
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(Q (t) )o=2VJ drop+(to, O)
CO

where p is the chemical potential for this particle num-

ber, whose average is given by

~2m. Vtp+(0, 0), t~ ~ pVT(N) =T InZ(p)=
Bp 6

(26)

d=2m. VtT
dc' ~—k —0

(21) to linear order in p. The mean square fluctuation of this
number is

Since (in the absence of fermions) we define the diffusion
coefficient of the random walk in Chem-Simons number
by

N~)=T ~ Z =T ~ 1Z
P p=o P =o

(27)

lim (Q (t)) = lim ([Ncs(t) —Ncs(0)] )
f ~ oo

=2 Vt I

we have proven that

g f(n/q(0)/m ) f'
n, m

Xe " 5(E„E—)5 (p„—p ),
and, therefore,

K = Vnfl

(22)

(23)

(24)

which is consistent with Eqs. (11)and (26).
In the standard model the accounting is a bit different.

We must consider both baryon and lepton numbers to-
gether, since both are violated by the transition. Since

3

Ns =
—,
' g g (¹„+Nd ),

f c=1

Nt = g (Ni +N„),
f J

(28)

1 Pa 2VT 2
(N~ ) =n~ X3X2X—X X = n&p—tt VT

3 3 6 9
(29)

(,Nt ) =n&pz( ', + ,')VT = ~n—y—pL VT

where f labels the family or sequential generation, we
have

which relates the baryon relaxation rate to the finite-
temperature diffusion rate in the absence of fermions.
The last two expressions remain valid in the presence of
fermions as well, provided only that the baryon-number
density is small compared to T, which is the same as-
sumption necessary to derive the linear relations of Eqs.
(13).

In the previous literature '" I is evaluated in the semi-
classical method of Langer, ' which relates it to the
sphaleron energy in a semiclassical approximation. Ex-
pression (23) furnishes an a priori definition of I, which
may (in principle) be evaluated from knowledge of the
spectral density function near co=0. In practice, this is
quite difficult since it involves the long-time behavior of
the response function, which cannot be calculated in per-
turbation theory. Euclidean methods are also of little use
since the long time limit is sensitive to any
approximation(s) made in Euclidean time, and hence the
continuation is generally unreliable. Nevertheless, we be-
lieve it is worthwhile to have a definition of the rate that
is independent of any approximate method of evaluating
it.

To complete the evaluation of the relaxation rate we
must calculate the denominators of Eq. (13). If we were
dealing with a single species of left handed ferrnion this
would be straightforward in the regime where the tem-
perature is much higher than fermion masses and chemi-
cal potential p. In that case we would simply compute
the partition function of a free fermion gas with a single
helicity state:

The Auctuations in these quantities are likewise modified
to become

(Nz(0) )o=—', n& VT, (,NL(0) )o= —,'n& VT3, (30)

in the high-temperature or weak-coupling limit. Substi-
tuting these last relations into the denominators of (13),
and using the earlier result for K, Eq. (24) yields the
desired expression for the fermion number relaxation
rate:

—(,Ntt) =—(,NL ) = — ( ', (Ntt )+2(,—Nt ) ).d
(31)

I
y = —'nf (32)

Equation (32) is the main result of this paper. It shows
that the fermion number relaxation rate is directly pro-
portional to the diffusion rate that is calculated by the
usual semiclassical sphaleron method. If the latter is un-

suppressed, then so is the former.
Actually, there is a simpler, more intuitive way to

derive this same result, based on detailed balance. Sup-
pose for t (0 constant chemical potentials pz and pL are
added to the Hamiltonian,

If we consider initial conditions with (N~ ) = (Nt ), or
simply consider the relaxation of the linear combination,
', ( Ns }+2 ( NL )—, the fermion number relaxation rate be-

comes

( )
2VT ~ (

—)"+'
7T ~ —) 1l

(25)

H ~H —p&N& —pLNL, (33)

so that it becomes energetically favorable to create a net
baryon and lepton number in the plasma. From the
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anomaly equation, this means that the periodic potential
of Fig. 1 is replaced by a skewed potential near Nz =0:
Fig. 2. Notice that the minima of Fig. 1 are forced to be
degenerate, since all integer Ncs are equivalent to each
other by a (topologically nontrivial) gauge transforma-
tion. Unlike the Chem-Simons number, Nz is gauge in-
variant, so that states of different baryon number may
have (and do have) different energies.

For large enough positive Nz the potential of Fig. 2
turns upward once more. This is because of Fermi-Dirac
statistics: even if the fermions are treated as massless, it
costs energy to create a fermion-antifermion pair with net
chirality, since the pair must be created in an unoccupied
momentum state. Since the spacing between states (and
hence this energy cost) goes to zero in the infinite-volume
limit, the value of N~ at which the potential of Fig. 2 be-
gins to turn upward is of order V. Indeed, to linear order
in p~ explicit evaluation of the thermal average in the
Fermi-Dirac distribution just yields the results, (29) to
linear order in pz and p, L. The mean N~ is shifted to this
positive value, so that the larger population of states with
(Nz ) )0 diffusing to lower N~ can compensate for the
energy bias to the right. Hence, there is detailed balance
and

—(N ) =—(N ) = nV—(q(t, 0)) =0, t (0. (34)

Suppose that the external chemical potentials are re-
moved suddenly at t=0. Now the large rate of diffusion
to the left from the initial overpopulation with positive
N~ is no longer balanced by an energy bias to the right.
Hence there will be a net decrease of (Nz ) with time;
i.e., the net baryon number will relax to zero. We may
calculate the rate of relaxation if we assume that Eqs. (29)
continue to hold for t&0 as well, effectively defining a
slowly varying ljz(t) and pL(t) in terms of the decreasing
baryon and lepton numbers. That is, we assume that the
relaxation is slow enough so that the system may be treat-
ed as approximately in equilibrium at all times during the
relaxation, with an effective time-dependent chemical po-
tential. This adiabaticity assumption permits us to use
detailed balance and equate (d/dt)(Na ) for t &0 to the
negative of the transition rate to the right with the origi-
nal skewed Hamiltonian that set up the distribution for

t & 0 in the first place. Therefore,

(q(t)) = ——(N ) = —(r —r )
dt

r
=+nf(@~+GAL )—,t &0T'

since

+ nf(p&+ pL )P/2
I +=I e

(35)

(36)

III. CDM ANALYSIS REEXAMINED

CDM also calculate (dldt)(Na(t)). However, they
use a trick to obtain the thermal average in terms of the
derivative of a generating function F(8), defined in terms
of the generalized electroweak Hamiltonian,

2

II+a~ B +(B) +Hf„;,„,2'H(8)= —fd'x1

2

(38)

where

0II = —E—o,'~ 8
2~

is the momentum conjugate to the gauge field. Define

e PF(8( Tr(e PH(e))— —

(39)

(40)

such that

(41)

to linear order in pz and pL in the skewed potential.
Then we may eliminate (Ma+(ML from Eq. (35) by using
Eqs. (6) and (29) to secure

dr a dr ' T3( Na ) =—( NL ) = — ( —', ( Ng ) +2 ( Nr ) ), (37)

which is the same result for the fermion relaxation rate
obtained by the more formal Zubarev approach.

In fact, all derivatives of F(8) vanish because F is in-

dependent of 8, as we now demonstrate. In order to do
so it is suScient to show that

—N P
e H (8)e =exp nf P H (8)=H (8+nf P),f ao

(42)

i.e., that a baryon number phase rotation can be used to
rotate the angle 0 to zero in the electroweak theory. Ex-
panding (42) in a power series in P gives

FIG. 2. The potential energy of gauge field plus massless fer-
mion system as a function of ferrnion number. The potential is
concave for large X& in a finite volume, due to Fermi-Dirac
statistics, as explained in the text.

H (nf p) =H (0)—ip[N~, H (0)]

2
[Ns, [N~, H (0)]]+ (43)
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The second term on the right-hand side (RHS) is given by
the anomaly Eq. (6):

[Ns,—[Ns, H (0)]]= —nf [Ncs, [Ns, H (0)]]
= —nf Ncs inf d xq3

'2
+W= +n fdix 8' B'
2~

28H=nf
Bt9 g=0

(45)

This verifies that terms quadratic in P in Eq. (43) are
correct. Since B no longer involves the electric field
operator, its commutator with Ncs and Nz vanishes, as
do all the higher-order commutators in the ellipsis, since

a"a =0, n )2.ae",=,
(46)

Thus, consistency requires a new anomalous commuta-
tor, viz. ,

2

Ns fd xq = in& — fd xB (47)

in addition to the original anomaly, Eq. (6). If desired,
one may verify this new anomalous commutator directly
in terms of the canonical commutation relations of the
theory, by defining the operator Nz composed of fermion
bilinears in terms of a gauge-invariant point-splitting
technique. Insertion of the path-ordered exponential of
jdx'A; between the fermion operators yields the anoma-
lous commutator (47), which remains after the point
splitting has been removed.

Hence Eq. (42) is proven, and indeed we may rotate
away the angle 8 in Eq. (40), proving that F(8)=F(0}is
independent of 0. This conclusion is verifiable directly in
a Lagrangian path-integral approach. In the Harniltoni-
an approach consistency requires the anomalous commu-
tator (47). By taking the second derivative of F with
respect to 0 and using the fact that F is independent of 8,
we find"

d xEB die

X fd'x'E' B'e»'
0
(48)

Let us now consider nonequilibriurn dynamics. As a
trial nonequilibrium statistical operator, CDM consider

aa
i g—[N&, H (0)]=QNz = n—fP f d x q = +nf P

8=0

(44)

This verifies the first derivative term of the expansion.
Integrating the anomaly relation Nz =nfNcs and fixing
the gauge by the condition that Ncs =0 when N& =0 per-
mits us to write the commutator in the third term on the
RHS of (43}as

the local operator

pe=N exp —P H(8)+ g ck01, (8)
k

(49)

where the Ok are arbitrary operators and the ck are arbi-
trary small coefficients. Define F(8) as before with this
new statistical operator e ~ ' "—Tr(ps} with—iN~ (, t)p iÃ~ ( t)pOk(8)=e Oke and /=8/nf . Then
F(8)=F(0) as before. Differentiating F with respect to 8
once we obtain

hf ld Xg) I xCk([NBOk]) 0,

k

(50)

to first order in the small parameters ck.
CDM consider operators satisfying [Ns, 0„]=nk0„,

but they do not consider operators such as
0 =Ps = nf J—d x q. Using the anomalous commuta-

tor, Eq. (47), for this single operator, we obtain
'2

—(N~)= —c (Jd'xB )

Notice that this estimate for (d ldt)(, Ns ) is not small or
instanton suppressed. If we replace the nonequilibrium
statistical operator of KS and the perturbing Hamiltoni-
an of Zubarev with the local term

(51)

h (t) = N~—:cO,Pa+PL
(52)

which is valid in the limit that the autocorrelation func-
tion for Nz has support only when the time interval is of
order T ', then Eq. (51), obtained by the CDM local
operator method, is identical to Eq. (12) of the previous
section, since

2

d xB (53)

by Eq. (48).
Thus, the main results of this paper, Eqs. (23) and (24),

and (31}and (32) relating the dissipation of fermion num-
ber at high temperature to the Auctuation or diffusion
rate over the potential barrier are consistent with the
methods of CDM, provided account is taken of the
anomalous commutator (47}. The relation (32) is a
refIection of general fluctuation-dissipation theorems, and
is a kind of analog to the relation found by Einstein for
Brownian motion in a medium. ' The local approxirna-
tion of CDM leads to the estimate

2

(B'),
2m

(54)

by combining Eqs. (24} and (53}. Actually, we might ex-

E=f dt'e" " Ns(t) f dA, e ~ "Ns(t')e~
00 0 0

2

P f d x E Bf dA, e ~ f d x'E' B'e~ ~
2' 0
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pect the time scale for the correlation function (14) to de-

cay to be of order (au, T) ' rather than T ', since the
former is the inverse dimensional coupling of the three-
dimensional gauge theory appropriate at high tempera-
ture. Then the above estimate for I should be enhanced
by a factor of a tv' relative to (54). The same dimensional
coupling enters the magnetic screening length, so that
we should expect

much larger than the expansion rate of the Universe at
these temperatures, and certainly relevant for cosmology.

In related work, Cline and Raby' have derived rela-
tions between the high-energy behavior of 8-violating in-
clusive cross sections that imply results for I different
from this naive scaling behavior.
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