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We present a new method for making exact calculations of physical quantities of two-dimensional

gauge-fermion models on a finite lattice. The method is applied to the Z2 gauge-fermion model

with a Kogut-Susskind fermion action. The behavior of the zeros of the partition function, Wilson

loops, and other quantities is explicitly examined on the basis of the exact calculation on a 6X4 lat-
tice. A novel symmetry of the partition function and the Wilson loop is also discussed briefly.

I. INTRODUCTION

In recent years, the study of dynamical fermions has
become an important theme of lattice field theories. Fur-
ther to enrich lattice field theories as a nonperturbative
method of field theories, analytic approaches must be
developed as well as numerical ones.

The purpose of this paper is to present a new method
which enables us to integrate exactly two-dimensional
gauge-fermion models on a finite lattice. To illustrate the
method we shall discuss explicitly the two-dimensional
Z2 gauge-fermion model with the Kogut-Susskind fer-
mion action on a 6 X4 lattice.

Both numerical and analytical approaches to lattice
gauge theory have some analogy to statistical mechanics
and successful results were obtained. ' The analogy,
however, does not apply to the models which contain
Grassmann fermion fields: (Euclidean) classical fermions.
For example, it is not clear whether e in such models
plays the role of a Boltzmann weight. Furthermore, it is
not obvious if the partition function keeps its positivity in
general. Nevertheless, it is desirable that the general
idea of phase transition in statistical mechanics be ap-
plied to the models containing the Grassmann fermion
fields to help us understand more deeply their phase tran-
sitions.

In this paper, we consider the distribution of zeros of
the partition function, first studied by Lee and Yang, in
the case of a two-dimensional Z2 gauge-fermion model.
In the course of our argument it will become obvious that
our expression of the partition function is positive
definite for arbitrary values of real parameters. In Zz
spin and gauge models there are some empirically ob-
served regularities; i.e., the zeros seem to fall naturally on
arcs although no simple rule exists for the locus of zeros
in the complex temperature plane. To our knowledge
there has been no such example including fermion fields,
and it wi11 be interesting to see whether or not the distri-
bution of the zeros has different features as compared to
the spin of the pure gauge systems previously calculated.

In addition to the above, the two-dimensional pure Z2
gauge theory has interesting properties such as
confinement (the area law of the Wilson loop ). Further,
the model is one of the simplest examples of two-

dimensional gauge-fermion models. A detailed study of
this basic model will be useful in finding basic ideas and
common methods for solving problems of further in-
teresting models such as the lattice Schwinger model and
two-dimensional QCD (QCD2) on a finite lattice.

We will introduce the model and briefly exhibit its nov-
el symmetry in Sec. II. Our method of the fermionic in-
tegration of the partition function is presented in Sec. III.
Methods of integration of the gauge fields in the partition
function and Wilson loop are described in Sec. IV. The
results are discussed in Sec. V.

II. THE MODEL

Let us consider a lattice model of the two-dimensional
(2D) Z2 gauge fermions in which the fermion action is of
Kogut-Susskind (KS) type. The fermionic part of the ac-
tion is given by'

P(x +is)o „(x)P(x) P(x)cr„(x)P—(x +@)
Sf= —g g„(x)

X&P

(2.1)

where the lattice points are denoted as x =(x„x2) or
n =(n l, n 2 ); n„=1,2, . . . , X„,and P is a unit lattice vee-

n~tor. ii, (x)=1 and g2(x) =( —1) ' are the standard repre-
sentation of KS fermion phases arising from the Dirac
matrices.

The pure gauge part of the action is given by '

Sg = —P g [o„(x)o „(x+P)o. „(x+p+v)o. ,(x+v)],

(2.2)

where cr„(x) is a Zi gauge variable on a link between
sites x and x+p, . The partition function of the model is
defined by

%1%2 %1%2
Z= f P do„(x)f + df(x)dP(x)exp( —Sf —S ) .

X &)M

(2.3)

Here, the notation fQ '„' d o „(x) means the
configuration sum

42 4190 1990 The American Physical Society



42 EXACT FINITE-LATTICE METHOD FOR TWO-DIMENSIONAL. . . 4191

0(Nl, N~ )=+1 cr(n &, n& ) =+1 o(1,1)=+1
invariant under the transformation

ri„(x)~1 and P~ —P . (2.5)

and X, and W2 are the total number of the lattice points
along the p=1 and 2 directions, respectively. %'e call
this configuration sum "integration, "because the present
method can be generalized into continuous gauge groups.

%e also calculate the Wilson loop, which is defined by

W(C)= g o„(x}
x6C

On the one hand, the Wilson loops do not change their
values by the above transformation up to the sign
W(C)~+W(C). Here the plus (minus) sign is the case
when the contour C encloses an even (odd) number of
plaquettes.

The proof is as follows. We change the gauge field
variables as

NI N2

=Z 'I +der (x)
cr„(x)~o„(x)=rj„(x)cr„(x) . (2.6)

x,p

Nl N2

X f P d 1((x)d P(x )

X g o„(x)exp( —Sf —Ss),
xEC

This enables us to absorb rl„(x) into the gauge field vari-
ables in (2.1). Then, each plaquette in the gauge action
(2.2) becomes

pg cr„(x)~pTI cr„(x),
ao ao

(2.4)

where C is a closed contour of the links.
It is well known that the fermionic integrals in (2.3}

can be integrated out formally so that we obtain a usual
determinant form and an effective action of the gauge
fields. One may doubt, however, if this step represents
real progress as it was emphasized in numerical simula-
tions of lattice gauge theory with dynamical fermions.
There are at least two diScult problems in making the
exact analytic calculations for the partition function and
other quantities on the finite lattice.

First, naively, the determinant contains (6 X4
X2)!=10 ' terms by definition in the lattice size in our
consideration. This large number make it diScult to
combine like terms even by using the latest and fastest
computer. Second, even if we could rearrange the terms
in the determinant and form an effective gauge field ac-
tion by exponentiating the determinant, we must in-

tegrate it out; this integration is diScult because it is

highly nonlocal and nonlinear.
In the fermionic integration, we therefore abandon the

above forrnal method and employ the method developed
for nonlinear fermions on a finite lattice, ' which is some-
what extended in order to deal with gauge field variables.
The complexity of the calculation is drastically reduced
by this method in the fermionic integration. In the in-

tegration of the gauge fields we choose the o z(x) = 1

gauge in order to reduce the complexity of calculations
further.

For this purpose, we impose free boundary conditions
along the p =2 direction. Along the p = 1 direction we

impose both periodic and antiperiodic (periodic) bound-
ary conditions for the fermion (gauge) fields in order to
examine the boundary effects. The latter case of the an-

tipenodic boundary conditions can be considered as a
system in a finite temperature T=(Ni) ' if we identify
the p=1 axis as a temporal direction instead of a spatial
one.

Finally, we briefly discuss the existence of a novel sym-
metry which is to be satisfied by the partition function
and the Wilson loop; i.e., the partition function of (2.3) is

where p=p[1Is~ il„(x)], and the shorthand notation

11sp ineans the product around each plaquette. On the
other hand, there is a condition that the KS fermion
phases satisfy

g il„(x)=—1,
ao

(2.8)

x,p x,p

Thus, it is shown that the partition function is invariant
under the transformation of (2.5). Similarly, in the Wil-
son loop, it can be proved that the Wilson loop operator
in (2.4) is transformed so that

Cl6D aCI
g o„(x)
c

(2.10)

by (2.6), where BD =C. Q.E.D.
Thus the calculation of the partition function or the

Wilson loop is simplified in such a way that, starting from
an action, without KS fermion phases il„(x) in (2.1), (2.3),
and (2.4}, we obtain the correct solution by the transfor-
mation p~ —p.

Generally, all physical quantities that have a simple
transformation rule under (2.6) are easily calculable ow-

ing to the invariance of the partition function. This sym-
metry is valid depending on the gauge groups. It can be
extended to the gauge-fermion models with KS fermions
on the lattice whose dimension is less than or equal to
four and the gauge group contains —1 as an element.
The details of the extension and applications will be dis-
cussed in a separate paper. '

III. FERMIONIC INTEGRATION

%e first explain the method for calculating the fer-
mionic integration in the partition function (2.3). We
consider the Grassmann functional integration

which has been already pointed out. ' ' The measure is
obviously invariant under this transformation:

(2.9)
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Nl N2

Z&(o )=I P dlt(x)dg(x)exp( —S&) . (3.1)
SI= —g rI„(x)[g(x+P )o„(x)f(x)

—g(x}o„(x)g(x+p)] . (3.2}
The method of the fermionic integration is almost paral-
lel to our previous work for nonlinear fermion models'
except for the inclusion of the gauge field variables.
Therefore, details can be found in the references.

In order to avoid the complication of the fractional
coefficients in (2.1), we rescale the fields as follows:
f~(1/&2)f and f~(l/&2)lT. Then SI is converted
into the form

We can calculate the partition function and the Wilson
loops using S& in (3.2} instead of (2.1), and the final ex-
pression of Z will be recovered by multiplying the overall

Nl N2factors ( —,
'

)

We can rewrite Z&(o ) of (3.1), by using the algebraic
properties of Graslmann num'bers, ' ' in the following
form factorized into (N, +Nz ) traces along each axis:

4 Ni

Z/(o')= g P Sp P (
—1) ~ (n) g Tr ff (

—1) ' g 'R (n) (3.3)
Ip I

=1 n2 =1 n1=1 n) =1 n2=1

where

(n)=K&„(n)Rp(n} . (3.4)

Here, R~(n)=R except at the boundaries, and R are
the matrices

R1 =r1 r1, R2 = r2(3 r1,

Rz =r&rz and R4 =4 (rzrz)
(3.5)

=diag(l, o„(n))diag(l, o„(n)) . (3.6)

o „(n) plays the role to couple the fermion and gauge field
in this formulation. 4 and K are, respectively,

(3.7)

and

4
K= —g r, gr, (F4=1) .

2 ' —
1

(3.8)

Here r, =
—,'(I+el), rz=r&, and r; are the Pauli matrices,

and eV' is the diagonal matrix: 4'=diag(1, 1, —1, 1). In
(3.4), 8„(n) is defined by the following diagonal matrix
which includes the gauge field variables:

o„(n)=diag(l, cr„(n),o„(n), 1)

At the boundary along the p = 1 direction, they become
Rz(N, , nz)=R~S or R~(N„nz)=R~ corresponding to
the choice of periodic or antiperiodic boundary condi-
tions, respectively. On the other hand, at the boundary
along the p=2 direction, R (n„Nz)=R~R, correspond-
ing to the choice of the free boundary conditions. This
expression with the free boundary conditions is derived
from the fact that the system is strictly confined to the re-
gion 1 & nz Nz [i.e., f(n)=P(n) =0 for nz (1 and
nz)Nz], and an identity tr(AR, )=(A») for arbitrary
4X4 matrix A =( A; ).

We should have accessibility to a computer to calculate
the partition function and the Wilson loop with lattices
as large as possible. To evaluate (2.3) and (2.4), two pro-
cesses of the integrations (fermionic and gauge field ones)
are required. Here we describe the algorithm with only
fermionic integration in order to treat (3.3). The one of
the gauge field integration will be described in the next
section. The fermionic integration by a FORTRAN pro-
gram is carried out on the basis of the following algo-
rithm in order to obtain the analytic result. Each term of
(3.3) can be expressed by an integer matrix (p„„)formed

1 2

from the subscripts of Pz(n„nz) (n„=1, . . . , N„). For
example, the column (p„„)(nz fixed) is uniquely associ-

1 2

ated with the operation

Here Sp and Tr mean traces along the @= 1 and 2 axes,
respectively. 4 is a rewriting of ri„(x), and can be re-
moved by assuming the transformation P~ —P in the
present model as stated in Sec. II. F~(n) is given by

Sp g R~(n„nz)
n1=1

(nz fixed),

F (n, , nz)=F (n„nz)
which can be easily evaluated. It gives the form

&C g g F (ml, mz)
=n m =n

I I 2 2
mod 2

(3.9)

where F (p =1, . . . , 4) are fermion numbers of 8' which
are elements of the basis of the Grassmann algebra

I &I =(l,f, f, ff) (p =1, . . . , 4). We can further simpli-

fy F (n), if we use g„"=l Fz(n& ) =0 (p= 1,2).

b„
C(b(nz )) g cr, (n „nz )

j(n2) nl =1
j(n2)

(nz fixed)

(there are 6 nontraceless ones for N, =4). Here the ex-
ponents b„„ take values 1 or 0. The subscript j(nz) (nz

1 2
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fixed) specifies the kind of terms in this calculation, which
are less than or equal to 2, and the coefficient
[C(b(n2))]j~„~ (n2 fixed) of each term takes values +1 org(n2)

exceptionally 2. Similarly, each row (p„„)(n, fixed} is
1 2

associated with Tr[ ] in (3.3) (there are 13 nontraceless
ones for N2=6). All of the nontraceless ones, however,
are simply reduced to sign factor +1, if we take o z(x) = 1

gauge.
N1 N2

Although (3.3) has 4 ' ' terins, almost all of them will
vanish. Therefore, it is desirable to generate only a set of
nonvanishing (nontraceless) terms. This is actually possi-
ble by using the method described in Ref. 14. As a result,
only 517 nonvanishing terms in (3.3} are picked up and
evaluated in 6X4 lattice size, before the translational
symmetries are considered. Thus, if a matrix (P„„)ex-

1 2

pressing the nonvanishing term of (3.3) is given by this
efFicient method, we can associate it with a polynomial in
cr, (n, , nz). This polynomial is a product of N, traces

P (n)
(Tr), N2 traces (Sp), and other factors such as (

—1) '
and ( —1) '~ (which depend on the indices p). The poly-
nomial can be easily expressed by a FORTRAN program,
because each term of the polynomial is specified by nu-
merical information such as the exponents and
coefficient. Finally, we note the following point to avoid
misunderstanding. Since the fermionic integration is not
the final goal, it is not necessary to obtain the most com-
pact form of Zf(o }, (3.3). Once a nonvanishing term of
Zf(o ) is obtained, it can be transformed to the expres-
sion after executing the gauge field integration discussed
in the next section. It will be more efficient and con-
venient to combine like terms with it. Therefore, the
remaining part of the algorithm will be described along
this line in the next section.

N1 N2

z=z, ' x c(b„„~ir ri ~,(.„n, )
' '),

(4.3)

where the notations Z, and ( ) r mean the partition func-
N2 N2 —1

tion [=2 '(coshP) ' ] and the expectation value in the
1D Ising model of the chain of N2 spins, respectively.

We can evaluate the arbitrary n-point correlation func-
tions in (4.3). The 2n-point correlation functions are ob-
tained as follows [we note that (2n +1)-point correlation
functions vanish]. Assuming the coordinates to be in the
order x, (x2& . &x2„, the correlation function is

given by

m =1 "m(o o 0 )r=(tanhP) (4 4)

where d =x2 —x2, . This formula can be obtained
by a straightforward extension of the two-point correla-
tion function. '

Consequently, the partition function (2.3) is given by

Here, Z is the partition function of the pure gauge mod-
N1N2

el, and can be evaluated as Z =2 ' '(coshP) ' with the
free boundary conditions. ' Here % is the total number of
plaquettes, and N =N, (Nz —1). At the same time we
can factorize each term in (4.2) along the p= 1 direction,
and the equivalence between the 2D Zz pure gauge model
and the 1D Ising model enables us to rewrite (4.2) by the
language of the 1D Ising model

IV. GAUGE FIELD INTEGRATION
N

NZ=(coshP) ' g C(m)tanh P (4.5)

If we carry out the traces Tr and Sp in (3.3), the follow-
ing polynomial will be obtained in the case of o 2(x )=1
gauge

N1 b„
Zf(o )= g C(b„„)g g o i(n, n )

Ib I n =1 n
n1n2 1 2

(4.1)

where exponents b„„ take values 1 or 0. %'e notice that
I 2

the partition function is essentially none other than ex-
pectation value of Zf (o ) over the gauge field

N1N2

Z= do.
1 x Zf o. exp —S = Zf N gZg 42

m=0

Thus the evaluation of the partition function means the
determination of C(m). We can do it, because the terms

N1 N2 b„

rr ri-, ~ .. .~""),
n1=1 n2=1

in (4.3) can be evaluated by (4.4) and the calculation,
equivalent to the evaluation of the coefficient C(b„„),

1 2

can be done by the algorithm discussed in the latter half
of Secs. III and IV (see below}. Hence the partition func-
tion on the finite lattice is calculated exactly.

Next we will discuss a method of calculation of the
Wilson loop (2.4). This is similar to one for the partition
function. From (2.4) and (4.3), in o2(x)=1 gauge, the
Wilson loop W(C) can be written as

(4.6a)
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where

b„„+1 if (n„nz)EC,
1 2

b„„ if (n „n2 ) fK C.
1 2

(4.6b)

This turns to the following expression by similar deriva-
tion of (4.5):

each coefficient of like terms is accumulated there. For
the Wilson loop, it can easily be understood that the algo-
rithm is similar to the one for the partition function men-
tioned above.

Finally, we comment on the following equality which is
satisfied between either the coefficients C(m) in the parti-
tion function (4.5) or the coefficients C(m, C) in the Wil-
son loops (4.7):

N

W(C)= g C(m, C)tanh P
m=0

N

g C(m)tanh P
m=0

N

m=0

N

C(m, C)= g C(m),
m=0

(4.8)

(4.7)

We can evaluate the Wilson loop (4.7), because we can
determine the coefficient C(m, C) by a similar method as
in the calculation of the partition function; the difference
is only an addition of unity to the exponents b„„belong-

1 2

ing to links along the @= 1 direction in a contour of the
Wilson loop.

Now, we briefly describe the FORTRAN algorithm for
the gauge field integration. In the preceding section it
was discussed that if the integer matrix (p„„)expressing

1 2

each nonvanishing term of (3.3) is given we can correlate
it with the polynomial in tT, (n, , n2) for the treatment of
(3.3). On the FORTRAN program each term of the poly-
nomial can be numerically expressed by a set of the ex-
ponents and the coefficient. The exponents can be corre-
lated with the one of tanhp on the basis of (4.4) by a
searching algorithm (there are several quick searching
methods, e.g., the binary search). Also, combining like
terms of the polynomial can be easily accomplished in the
following manner: Numbers of addresses of the
memories are assigned by the exponent of tanhP, and

TABLE I. Coefficients C(m) of the partition function in
tanhP [see (4.5)].

C(m)

for arbitrary contours C of the Wilson loops (i.e., this
means that the sum of the coefficients is independent of
the loop size and the location).

The reason can be easily understood by (4.3), (4.4), and
—(-)

(4.6); i.e., it is due to the identical coefficients C( b „„)
1 2

in (4.3) and (4.6). Therefore, W(C)~1 with P~ao is
satisfied.

V. RESULTS AND DISCUSSIONS

In Table I, we show the coefficients C(m) as being a re-
sult of the calculation of the partition function (4.5} on
the 6X4 lattice. The gauge invariance is explicit, because
coshP and tanhP (or sinhP) are expressed by the
integration(s) of the plaquette variables. "9 Since all
C(m) have positive signs, the positivity of the partition
function is obvious for the positive P. The positivity of
the partition function is also satisfied for the negative P.
However, the positivity of all C(m } is nontrivial. For ex-
ample, the signs of the coefficients change alternatively
when rl„(x)~1; the positivity of the coefficients will be
recovered by the simultaneous transformation P~ —P as
stated in Sec. II.

In Fig. 1, we show the distribution of zeros of the par-
tition function in the complex t =tanhP plane. The plot
in the t plane is natural from the expression of the parti-
tion function (4.5) as it is the standard one for the Zz

0
1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

1 681
9 512

27 808
56 168
87 174

109 392
115824
108 992
95 994
82 072
69 824
59 640
50 208
40 872
32 160
24 120
16 588
10000
4856
1 584

242

Irn t

~ ~

~ 1
l Ret

—1
~ ~

FIG. 1. The zeros of the partition function on the 6X4 lat-
tice in the t ( = tanhp) plane.
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U= lnZ
1

(5.1)

and

1C=
~
lnZ,

(jp~
(5.2)

respectively. Also in Fig. 2, the internal energy and
specific heat of the pure gauge model are plotted by
dashed lines.

The differences are effects of the dynamical fermions.
A conspicuous difference is that U holds positive value
even in the limit P~O, in contrast with the pure gauge
model. The reason is as follows. In the limit P~O, only
the linear term of tanhP contributes to U. The expression
tanhP is the same as the expectation value of one pla-
quette in the pure gauge model. On the other hand, the

variables. ' It is interesting to see how the distribution
of the zeros occurs as compared to the ones of the pure
spin or gauge models. The result shows a tendency for
the zeros to approximately fall on an arc which looks like
a circle. In the physical region 0& ~Ret

~

& 1, the closest
zero is sufficiently separated from the positive Ret axis.
This is consistent with the fact that the specific heat does
not indicate a phase transition (see below). On the other
hand, in the negative Ret region, the zeros have a richer
structure than the positive Ret, particularly the existence
of zeros near the Ret axis.

For more details about the negative Ret region, let us
comment on the model of negative P. The model de-
scribes a coupled system of the two-dimensional fermions
and the antiferromagnetic Ising model with the aniso-
tropic limit (quasi-one-dimensional one) in an analogy
with the positive P model. As stated in Sec. II, the parti-
tion function with negative P is identical to the one of the
positive P without rt„(x). This means that loci of the
zeros of the partition function of the original model and
the one without rt„(x} are related by mirror reflection
along the Imt axis.

In the region of negative t, pairs of the zeros exist close
to Ret axis. These are at Ret = —1.5 and —1. We con-
sider that the former pair does not indicate the existence
of phase transition in the thermodynamic limit, because it
is outside the physical region 0& ~Ret~ &1. In the 2D
ferro- and antiferromagnetic Ising model, circles of the
zeros of the partition functions in the t plane intersect the
Ret axis at such nonphysical points and the physical ones
at t, =k(v'2 —1). 0 On the other hand, it is not obvious
if the latter is nonphysical on the basis of similar reason-
ing of the former. The point t = —1 (i.e., P= —~ ) is a
trivial phase transition point of the pure gauge model (or
1D antiferromagnetic Ising model), although this is not
shown by root. The present zeros are controlled by the
contribution of the dynamical fermions as understandable
from (4.5). Therefore, if this is an indication of some
physics, it would be with regard to some symmetry of fer-
mions.

In Fig. 2 we show (normalized) internal energy and
(normalized) specific heat of this model by solid lines;
they are defined by

1.0

0.5

FIG. 2. The solid lines show the specific heat C and internal
energy U for the 6X4 lattice for this model, and dashed lines
show those for the pure gauge model.

determinant represents closed fermion loops, and de-
pends on the gauge link variables in (2.1} forming closed
loops. From these, the positive value of U means that
one plaquette having positive coefficient is created by the
fermion loop. More explicitly, this positivity itself re-
quires the existence of rt„(x) as stated before, and it can
be proved that the property its~ rt„(x)= —1 acts to can-
cel the statistical minus sign factor accompanied to the
fermion loop. (To avoid a lengthy discourse, proof is om-
itted. )

As for the specific heat of this model, it decreases
monotonically so that there is no indication of a phase
transition. This is consistent with the fact that the
closest zero is sufficiently far away from positive Ret axis.

In order to examine the boundary effects, we change
the periodic boundary conditions along the p = 1 axis into
the antiperiodic boundary conditions for the fermion
fields. We find, however, that there is no change at all in
the partition function and other quantities. Therefore,
we infer that the boundary effect is relatively small. The
antiperiodic case means that the system can be interpret-
ed as it is in the finite temperature T '=1V, =4; since
the present calculations are in the Euclidean, the p=1
axis can be considered to be the temporal axis instead of
the spatial one and the @=2axis to be the spatial axis in-
stead of the temporal one.

On the other hand, we examine the boundary effect of
the p =2 direction, along which the free boundary condi-
tions are imposed, in the following manner: We gradual-
ly shift the 1 X 1 Wilson loop on the lattice from the
center to the edge through intervals of the unit lattice
spacing along the p=2 axis.

In Fig. 3, we show these 1 X 1 Wilson loops, which are
placed at n z

=3 (placed at the center), n z =4, and n z
= 5

(placed at the edge). In this figure, the solid line denotes
nz=3, the dashed-dotted line is nz=4, and the dashed-
double-dotted line is nz=5, respectively. Similarly the
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1.0— 1.0—

0.5 0.5

FIG. 3. The solid line denotes n2=3 (center placed), the
dashed-dotted line is n2=4, and the dashed-double-dotted line

is n 2
=5 (ending placed} with the p, =2 coordinates, respectively.

The dashed line shows the internal energy U.

FIG. 4. The behavior of P dependence of TX 2 Wilson loops
in this model. The numbers of lines denote T along the p=2
direction.

dashed line shows the internal energy U, (5.1) (this is the
1X1 Wilson loop averaged over all lattice points) in or-
der to compare with the 1X1 Wilson loops placed at
different locations. We observed that the dependence on
the location does not vary uniformly. Consequently, U
agrees well with the center placed 1X1 Wilson loop due
to the cancellation of the deviation as shown in Fig. 3.
As a result, from Fig. 3 we would conclude that as a
whole the discrepancy of the values due to location of the
loops can practically be neglected. In its pure gauge
model, the Wilson loop has a peculiar property, such as
translation invariance, even if the free boundary condi-
tions are imposed on a finite lattice. Therefore, in the
present calculation, the small violation of the translation
invariance along the p=2 direction must be caused by
the fermionic part.

In Fig. 4, the behavior of P dependence of T X2 (=R)
Wilson loops of this model is shown. The numbers of the
lines denote the size T of loops along the @=2 direction.

Figure 5 shows the size dependence of TX2 Wilson
loops of this model compared with the one of the pure
gauge model for various P in logarithinic scale. In Fig. 5,
the effects of the dynamical fermions to the Wilson loops
are clearly seen at each loop size in the small P region.
On the other hand, in the large P region, it is difficult to
distinguish the Wilson loops between this model and the
pure gauge model in the present loop sizes. The values of
the Wilson loops incorporating dynamical fermions devi-
ate upward from the ones of the pure gauge model as the
size increases, as seen in Fig. 5.

This behavior will be expected when the dynamical fer-
mions are incorporated. In the pure gauge model, the
Wilson loop having a size of T XR is given by
W [T XR ]=exp I

—[1n(cothP) ]TR I . Therefore the area
law is exact in any loop size and any finite value of P, as
seen in Fig. 5. On the other hand, the expected main
effect of the fermions to the Wilson loop can be con-

1.0

0.5

0.1

0.05

0.01
2 5 4 2 ~ 4 5

FIG. 5. The size dependence of TX2 Wilson loops of this
model (open circles) are compared with those of the pure gauge
model (solid lines) for various P in logarithmic scale.

sidered such that many dynamical loops of the fermions
rotate to cancel out the gauge field strength and to make
holes in the Wilson loop. As a result, the area enclosed

by the Wilson loop will be effectively reduced compared
to the one for the pure gauge.

Finally, we comment on the extensions of our method.
The present method tells us how to make extensions for
calculating further physically interesting two-dimensional
gauge-fermion models such as the lattice Schwinger mod-
el or SU(2), QCD2. The essential difference between the
lattice Schwinger model and the present model is as fol-
lows: after the gauge fixing, such as Az(x) =0, the exact
calculation of arbitrary n-point correlation functions of
the 1D planar spin model instead of the 1D Ising model
becomes a matter of great concern. Fortunately, all n-

point correlation functions are exactly calculable on a
finite lattice. Similarly, as to the SU(2), QCDi, except a
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soluble extension to fermions having SU(2)-color indices,
a critical problem becomes whether or not the arbitrary
n-point correlation functions of the 1D O(4)
[=SU(2)SU(2)] classical Heisenberg model are exactly
calculable. They can be evaluated on finite lattices.
Therefore, SU(2), QCD2 is a solvable model on a finite

lattice. Such models will be fully discussed in a separate
paper. '

A reduced version of KS fermions is considered to be
advantageous for the calculation on larger lat-
tices."' ' ' Therefore, examinations by the method
described in this paper would be an interesting subject for
a future investigation.

In conclusion, we presented a new method for calculat-
ing exact physical quantities of the two-dimensional
gauge-fermion models, such as the partition function on
the finite lattices. %e explained the method with a con-
crete example of the Z2 gauge-fermion model, which is

the simplest model having the essential framework. At
the same time we showed the behavior of the quantities,
such as zeros of the partition function, the internal ener-

gy, the specific heat, the Wilson loop, and the boundary
e6'ects, on the basis of the exact calculations on the 6X4
lattice. We also showed that the model has the novel
symmetry in the partition function and the Wilson loop
with respect to the KS fermion phases and the coupling.
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