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Calculations on infinite lattices applied to lattice gauge theory
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A procedure is introduced allowing the infinite lattice limit for particular lattice quantities to be

obtained by integrating over boundary conditions on small, finite lattices. Numerical results are

given for a simple lattice model. Relevance to the measurement of lattice finite-temperature effects

&s discussed.

GENERAL APPROACH TO INFINITE-LATTICE
CALCULATIONS

Matrix expansions defined upon a torus include paths
which would not belong on an infinite, simply connected
lattice. We discuss their removal with the aim of approx-
imating infinite-lattice calculations using finite lattices.

An infinite regular lattice in d-dimensional fiat space
can be fully described through a set of d basis vectors
(e„.. . , ed }. We can label the sites in the lattice using
vectors i (i„.. . , id ) with integer components. Consider
the typical case of a matrix 8' with nonzero elements
linking nearest neighbors and perhaps diagonal terms.
The quantities of interest for the present discussion are
those which can be expressed as functions of the elements
of the matrix expansion

lEj ——g a)Wj,
l=0

where the indices (i,j ) are to be understood as those of
the exponentiated matrix.

Examples are

(2)

and

W; '= g (1 —W)~j,
(=0

(3)

which converge when the modulus of the largest eigen-
value of 1 —8'is less than unity. Both of the above are of
interest in lattice gauge theory (where the matrix W is
taken to be the fermion matrix), as an e6'ective action
term for calculating expectation values in the full theory
(2), and as the lattice fermion propagator (3) (see, for ex-
ample, Ref. 1). These converge given a large enough bare
mass (this is discussed in Ref. 2 and references therein).
Meson propagators cannot however be written in this
form (rather as the product of two expansions, of W and
W, respectively).

We can interpret E, as a weighted sum of products of
matrix elements over all paths beginning with site j and
ending at site i. On an infinite regular lattice, the space

through which these paths wander is simply connected.
On a finite lattice, boundary conditions must be

chosen. We restrict the lattice to a parallelogram of side
lengths L (L), . . . , Ld }, having M=+L„ lattice sites.
We can define boundary conditions with reference to a
vector ()Ii), upon which the matrix W acts. In a lattice
gauge model, this would be a vector of Grassmann vari-
ables representing fermion fields. We consider here only
torodial topologies, and write

i8„
'P;+L, =e (4)

which is defined for 0 ~p„q, (L„,but must be imagined
as periodically continued (this can be seen when one no-
tices that traveling once around the toroidal lattice in any
direction brings one back to exactly the same link from
which one started —this is independent of the boundary
conditions chosen for )I)). It will in fact be of use to
define an infinite matrix V as the periodic continuation of
8'outside our finite lattice volume.

ij ~i modL, jmodL~i j
d

+ P ( W(j modL)+e, j modL~i j +e
r=1

i modL(j modL)+e ~j,,i +e„) (6)

The matrix expression (1) may now be written for this
finite lattice.

1E =pa(W
1=0

Xa X
1=0 w

1

e' [W' ]

Periodic or antiperiodic boundary conditions in the direc-
tion r would be achieved by 8, =0 or 8, =m, respectively.
We will however treat the general case where the bound-
ary phase 8„ is a real number (or in the range ( qr, n.], —
say).

We now calculate, with an M XM matrix,
d iB„

Wqq: Wqq+ g (e "WL L )5 o5
r=1

—iB„+e "WL ),L & qo& ,)-L-»
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where the terms

[ W-]- =—V'+y. i,
7T 7T ~

g
—(=(2ir) . e ' W d8 d8

pq 1 d

the elements of the matrix series expansion (1), necessari-
ly requiring that the series converges.

RESULTS AND DISCUSSION RELEVANT TO
LATTICE GAUGE THEORY

correspond to the paths in the sum with winding numbers
w(wi, . . . , wd ). See Fig. 1. One may interpret this as a
Fourier transformation between boundary-phase and
minding-number spaces.

In order to make calculations for the infinite lattice us-
ing the finite matrix 8', we must select out on1y those
paths in E which appear on the infinite lattice. These are
paths of winding number zero along every axis. They can
be separated out by integrating over boundary condi-
tions:

= y ai[Wi, ]o
1=0

1=0

=E-

1a(V

(9)

FIG. 1. Two paths with different winding numbers from site

j to site i on a toroidal lattice represented on an infinite lattice.
The path with nonzero winding number is unwanted on an
infinite lattice, since it leads to a "ghost" copy of i.

Equality with E is only achieved if the elements of the
infinite matrix W; already have a periodicity of L (i.e.,
V= W). This includes the case where they only depend
upon the difference i —j, which occurs for the free-field
situation in lattice gauge models. It is also interesting to
note that, if the integral over 8 in (9) is replaced by a sum
over Z(N) [i.e., Jd8~+exp(i8), exp(i8)EZ(X)], par-
ticular topologies other than that of the infinite lattice
may be selected out.

The above considerations show how the topological
properties of an infinite lattice can be realized in calcula-
tions upon a finite, torodial, lattice. It is, moreover, also
possible to calculate quantities for an infinite lattice ex-
actly in a finite calculation, but only if the problem al-
ready involves a periodicity of the finite lattice size used.
The seriousness of the errors arising from the absence of
such a periodicity in the infinite system will of course de-
pend upon the properties of the quantity being measured.
The method proposed is restricted to linear functions of

As a simple example, a two-dimensional Z(2) lattice
gauge model was chosen. Gauge fields UEZ(2) are
defined upon links. The lattices studied were restricted to
sizes 1 XI.. The model can be imagined as a closed chain
of L sites, with a single loop tied to every one. Links be-
tween adjacent sites will be written U, . The loops re-
quire only one site index, and will be referred to as U, .
We choose the "quenched" action'

S=PQ(l —U, U, +, ) . (10)

The absence of the U, in the action allows them to be re-
garded as random variables. One can define a type of fer-
mion propagator as the inverse of the matrix

Wi =5;, —a[2U;5;, +(I+cr)U; 5;1+,

+(1—o )Ui5;i i],
where indices on the Pauli matrices have been
suppressed. The inverse of this matrix is of the form (1),
and therefore a candidate for being calculated on an
infinite lat tice.

If we calculate in a "free-field" situation (U= 1 every-
where on the lattice), then we can expect that integration
over boundary conditions will lead to the infinite lattice
results exactly. The inverse of the matrix 8'for the free-
field case on an infinite lattice may be found analytically.
Calculations on finite lattices were performed numerical-
ly by explicit summing over the finite number of states in-
volved with a.=0. 1. Summation over elements of Z(X)
was used to simulate the integration in (9) over all bound-
ary conditions. A translationally invariant form for the
propagator (of which the trace with respect to Pauli ma-
trix indices will be referred to as 6) was used. The re-
sults are shown in Table I. One sees that infinite lattice
results are already obtained with the lattice of length
L =4 by a summation over Z(4). The same accuracy for
fixed, antiperiodic boundary conditions was only reached
by I.=16 and above. Assuming that the calculation of
the full inverse of the matrix 8' requires of the order of
L operations, the advantage of summing over Z(4) to
obtain the infinite lattice limit is seen as a reduction in
the number of operations required by a factor
16 /(4 X4)=16.

The results obtained are also interesting in that the
propagator values in Table I for the I.=4 lattice with
summing over iZ(2)—:ti, i I are identical —to those
found on the I.=8 lattice with fixed antiperiodic bound-
ary conditions. This is to be expected from Eq. (7). Sum-
ming over iZ(2) eliminates those paths with an odd
winding number. The remaining paths have lengths
which are multiples of 8, and acquire a minus sign if the
multiple is odd. These are, however, exactly those prod-
ucts one would expect on a closed chain of length I.=8
with fixed antiperiodic boundary conditions, explaining
the numerical result.
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TABLE I. Fermion propagators calculated for the free-field case on a 1 XL lattice.

4
8
16

4
4

exp(ig)

Z(4)
iZ(2)
Z{2)

G(0)

1.245 136 1

1.249 980 9
1.250 000 0
1.250000 0
1.250 000 0
1.249 980 9
1.250 019 1

G(1)

0.145 9144
0.156 209 5

0.156 250 0
0.156 250 0
0.156 250 0
0.156 209 5

0.156 290 5

G(2)

0.000 000 0
0.038 909 3
0.039 062 5

0.039 062 5

0.039 062 5

0.038 909 3
0.039 215 7

G(3)

-0.145 9144
0.009 155 1

0.009 765 6
0.009 765 6
0.009 765 6
0.009 155 1

0.010 376 1

Calculations were also carried out for P=O, which is
the "strong coupling" limit of such a model where all
field configurations are equally likely. In order to see a
nonzero propagator after summing over all states, some
fixing of the gauge fields is required. %e choose a "tem-
poral gauge" here, setting all links between adjacent sites
to 1 except the one at the end (U„), which closes the
chain. U„may still be considered a random variable.
The corresponding infinite lattice propagator G can also
be found analytically. The results are given in Table II.
~ was again set to 0.1. This low value suppresses the er-
rors due to the fact that the gauge fields in the strong-
coupling limit do not have a periodicity of L ( VA W), al-
lowing us to concentrate on topological aspects. The
infinite lattice results are reached much earlier (already
by L =8) than in the free-field case, and the antisym-
metric nature [G(r)= G(L ——r)] of the free-field propa-
gators with fixed antiperiodic boundary conditions (see
the first row in Table I) is gone. This is to be understood
as a direct result of the randomness in U„, which is una-
voidable since we are using the "quenched" action (10)
and given that we only fix the field using gauge transfor-
mations (one cannot fix every link in a lattice ). Making
the substitution U„~bU„, where b FZ(2), and sum-

ming over b with a fixed U„ is therefore equivalent to U„
itself being random, which it is. This implies an effective
summing over periodic (b = 1) and antiperiodic (b = —1)
boundary conditions. The propagator 6 measured on a
lattice of length L will be topologically equivalent to a
free propagator measured with periodic boundary condi-
tions on a lattice of length 2L [consider Eq. (7}]. This ex-
plains the rapid approach to infinite lattice results in
Table II, and the disappearance of the symmetry
G(r) = G(L —r), since—the effective length of the lattice
is no longer L.

The above topological considerations would be of im-
portance in the measurement of finite temperature prop-
erties of fermion propagators in quenched SU(N) [or

U(1)] lattice gauge models. In lattice gauge theory, the
physical temperature is proportional to the inverse of the
length of the lattice in the time direction. If temporal
gauge fixing is used, transformations at the boundaries
of the form U„~bU„, where b 6Z(N} [or 6 U(1), re-
spectively] do not disturb the gauge fixing, since one does
not fix links at the boundaries, and are a symmetry of the
quenched action (see Ref. 5). In sumining over all states
one therefore automatically and unavoidably sums over
boundary conditions, effectively lengthening the lattice in
the time direction by a factor of N for SU(N), or to
infinity for U(1), for the fermion propagator. Related
effects for meson propagators were reported in Ref. 5.
One would nevertheless continue to use the original lat-
tice periodicity to define the temperature, since it is the
gauge fields which determine the physics in the quenched
approximation.

One should also be wary of this effective change in
length if masses are to be found by fitting to free-field
propagators, since the effective length of the lattices, and
certain symmetries of the propagators, differ between the
two cases.

The fact that antiperiodic boundary conditions in the
time direction for fermion fields are required when calcu-
lating finite-temperature properties must also be con-
sidered. The effective boundary conditions are not al-
ways those of the original lattice ( as was seen above). In
particular, effective antiperiodic boundary conditions are
achieved by choosing antiperiodic boundary conditions
for the finite matrix [Eqs. (4) and (5)] if N is odd, but
complex boundary conditions (8, = m. /2) if N is even.

A consistent approach to approximating the infinite
lattice limit in a nonquenched calculation must use a cor-
responding fermion determinant in the lattice action. An
appropriate form is Eq. (2} averaged over boundary con-
ditions. To approach the infinite lattice limit, one should
integrate over all 0„, irrespective of what group is chosen
for the gauge fields.

TABLE II. Fermion propagators on a 1 XL lattice at strong coupling.

8

4

exp(i0)

Z(3)

G{0)

1.041 671 3
1.041 666 7
1.041 666 7
1.041 666 7

G(1)

0.108 517 8

0.108 506 9
0.108 506 9
0.108 506 9

G(2)

0.022 653 6
0.022 605 6
0.022 605 6
0.022 605 6

G(3)

0.004 930 6
0.004 709 5

0.004 709 5

0.004 709 5
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