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Nonperturbative studies of field theory require the Schwinger-Dyson equations to be truncated to
make them tractable. Thus, when investigating the behavior of the fermion propagator, for exam-

ple, an Ansatz for the three-point vertex has to be made. While the well-known Ward identity deter-

mines the longitudinal part of this vertex in terms of the fermion propagator as shown by Ball and

Chiu, it leaves the transverse part unconstrained. However, Brown and Dorey have recently em-

phasized that the requirement of multiplicative renormalizability is not satisfied by arbitrary
Ansatze for the vertex. We show how this requirement restricts the form of the transverse part. By
considering the example of QED in the quenched approximation, we present a form for the vertex

that not only satisfies the Ward identity but is multiplicatively renormalizable to all orders in lead-

ing and next-to-leading logarithms in perturbation theory and so provides a suitable Ansatz for the
full three-point vertex.

I. INTRODUCTION

The Schwinger-Dyson equations embody the full struc-
ture of any field theory' and consequently are the natural
way to study their dynamics. Unfortunately, being an
infinite set of coupled equations they are intractable
without some simplifying assumptions. The best known
of these is, of course, perturbation theory. However, to
study the nonperturbative behavior of any Green's func-
tion requires some other, nonperturbative, approxima-
tion. The structure of these equations is such that they
relate the n-point Green's function to the (n+1)-point
function; at its simplest, propagators are related to
three-point vertices, three-point vertices to four-point
couplings and so on, ad infinitum Since p. racticality dic-
tates that we can only investigate the behavior of a few
Green's functions simultaneously, we must find some
way to truncate this set of equations. A well-known way
to do this is illustrated by considering the photon and fer-
mion propagators b,„,(p) and SF(p), respectively, in

QED. We denote their inverses by II„(p ) and SF '(p ) in
an obvious manner. If we consider a world with Xf iden-
tical fermions, then the Schwinger-Dyson equations are

q "I „(k,p ) =SF '( k )
—SF '(p ), (3)

where again q =k —p. The fact that this relates the full
three-point function to the full two-point function means
that with its aid we can imagine solving Eqs. (1) and (2) in
terms of just two-point functions. How to do this in the
case of a massless theory will be discussed in Sec. II. We
shall see that the solution to Eq. (3) for the vertex is, of
course, not unique and show in Sec. III how multiplica-
tive renormalizability acts as a powerful constraint on the
unknown transverse part. In Sec. IV we treat the massive
fermion case and summarize our results.

ties. Figure 1 illustrates the fermion equation, Eq. (2).
These equations will form a closed system for the two-

point functions if we can make an Ansatz for the three-
point vertex in terms of these. The most trivial of these is
the so-called rainbow approximation that treats the ver-
tex I" as bare, i.e., as just y". However, this form
violates one of the most fundamental of consequences of
gauge invariance, namely, the Ward-Takahashi identities.
Relevant here is the relation between the full fermion-
boson vertex, I "(k,p), and the fermion propagator ex-
pressed in the well-known identity

e Nf+,fd'k r~s, (k)I "(k P)SF(q)
(2m )

k-p

iSF '(p )=iSF (p )

2

f d4k r"SF(k )I'"(k,p )b, (q ),
(2n)

(2)

where q =k —p and I is the fermion-boson three-point
function and the superscript 0 denotes the bare quanti-

FIG. 1. Schwinger-Dyson equation for the fermion propaga-
tor. The straight lines represent fermions and the wavy line the
photon. The solid dots indicate full, as opposed to bare, quanti-
ties.
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II. SOLVING THE WARD IDENTITY—MASSLESS
FERMION CASE rPk, p)=—1 1 1+ yP

2 P(k ) P(p )

From the work of Ball and Chiu, how to solve Eq. (3)
for I „should be well known. However, erroneous solu-
tions continue to appear in the literature. Consequently,
we discuss these first since they illustrate how to find the
right solution. Clearly, we can write the vertex

1 1+—
9'(k )

1

&(p')
(k+p )"(k+P )

2 p2

p v qPI "(k,p)= g""— I,+ [S '(k) —S '(p)] .
q q

This clearly satisfies the Ward- Takahashi identity.
Indeed, it continues to appear to do so, even if we replace
the first term, i.e., the transverse projection of I ", by any
other transverse vector I ~z-, for which q„I ~&

—=0, so that

I "(k,p)=l "(k,p)+ [S '(k) —S '(p)] . (4)

Such forms have often been used. However, such Anscitze
take no account of the fact that the Ward-Takahashi
identity has a well-known nonsingular limit when k~p,
viz. , the original Ward identity:

BS '(p ) =I "(p,p) .
Bpp

(5)

It is easy to see that this will not be satisfied by an arbi-
trary choice of transverse vector I ~r in Eq. (4), but only

by the unique form that ensures the kinematic singularity
induced by the 1/q cancels; i.e., it requires

aS (p)I'"(k,p)= g""—
q Bp

for k~p.
The importance of Eq. (5) as the limit of Eq. (3) sug-

gests a natural way to construct a form for the full vertex
is to start with its limit Eq. (5). To see the idea let us first
consider massless QED for simplicity. Then we can write

V(p')SF(p)=

so that Eq. (5) requires

I "(p p)== a

ap„

a
2

+
2 ZV(p') ap' V(p')

It is then natural to write this limit in a k,p symmetric
way and so represent the longitudinal part of the vertex
by

r~(k, p)= g' —'"', r„+q"q r,
q q

as a trivial identity. Then using Eq. (3) this can be re-
expressed as

I "(k,p ) = I L(k, p )+ I ~r(k, p )

satisfies Eqs. (3) and (5).
For the transverse part, Ball and Chiu enumerate a

suitable basis of eight independent tensors. Of these only
four can have nonzero coemcients if the fermion in Eq.
(2) is to remain massless, which is the case we consider
first for simplicity. Then we can write

I ir(k, p)= g r;(k,p, q )T/'(k, p),
i =2, 3, 6, 8

(10)

where the T~ are given in the Appendix and the dynami-
cal coefficients r; ensure that the full vertex is k, p sym-
metric, but are otherwise arbitrary.

The truncation of the Schwinger-Dyson equations at
the level of the two-point functions of Eqs. (1) and (2)
means that any Ansatz for I ~r, i.e., for the r; in Eq. (10),
can only involve the fermion and photon renormalization
functions as the only unknown functions. An obvious
way to achieve this is to set I ~&=0, i.e., ~; =0, but it is

clear, we have no real criterion for such a simple choice.
We shall see in the next section that the requirement of
multiplicative renormalizability provides a powerful con-
straint.

III. MULTIPLICATIVE RENORMALIZABILITY

It has long been known that the renormalization of the
Schwinger-Dyson equations is highly nontrivial, except
in perturbation theory. In general, a nonperturbative An-
satz for some n-point function does not respect the prop-
erty of multiplicative renormalizability (MR). This prob-
lem has been studied in the context of a spectral represen-
tation for the fermion propagator in QED by King, for
instance, and has recently been highlighted in a way more
suited to practical calculations by Brown and Dorey.
Here, we will use the criterion of MR to restrict the form
of the three-point function. This, of course, means that
since the longitudinal part is fixed by the Ward identity,
it is the coefficients of the transverse tensors, ~;, of Eq.
(10) that will be constrained.

In general, MR for massless QED is accomplished by
introducing the renormalized fermion field Pii =Zz '~ P,
the photon field Ag =Z3 '~ A", and the coupling
e~ =Z2Z3 e/Z, . The renormalized fermion function
then satisfies

This is the Ansatz proposed by Ball and Chiu, which
is, of course, free of kinematic singularities. To this we
can add any transverse part I ~z that is also free of kine-
matic singularities and satisfies both

(i) q„I ~z(k, p)=0, (ii) I ~z(p, p)=0,
to ensure the full vertex
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1gPv(q }
— gPv

q q
+~q q

4 (12)

9~(p p)=Z~ (A p)J(p A)

where A is the ultraviolet cutoff introduced to make the
loop integrals in Eqs. (1) and (2) finite and p is the arbi-
trary renormalization scale.

To see how MR imposes constraints at its simplest, let
us follow Brown and Dorey and investigate Eqs. (1) and
(2) in the quenched approximation, when we let the num-
ber of fermions Nf tend to zero, so that the photon prop-
agator becomes bare. Then Z3 ——1 and the photon propa-
gator is simply

I "„,( k,p }=y' 1 — ln
ag

A
[gfy&k'+(g —1)k"P] ln

1 k
4m k p

(15)

When this is substituted into Eq. (2), this, of course, gives
O(a ) corrections to V(P, A) with A2=A, /2. To see
the form of the effective transverse part of the vertex im-
plied by Eq. (15), let us subtract from I ",„, the longitudi-
nal part of Eq. (8) and dropping the g-independent terms
that vanish under the integral of Eq. (2), we have

where g is the covariant gauge parameter. We then just
have to consider the fermion equation, Eq. (2). In the ul-
traviolet leading-logarithm approximation in perturba-
tion theory, when

ag
T,p«t

2k "gf (k+p )"(k+p }
1

k—yP — +
k2 k2-p2 p2

ln

(16)

V(P, A)=1+aA ilnp /A +a A&in p2/A~+

where a=e /4nas us. ual, MR requires Az = A
~
/2.

Indeed, in general it requires that if

9(P,A)=1+ g a"A„ln"p /A
n=1

ag „ln(k /p )
T pert 8 6 (17)

To this order in perturbation theory we note that since

which, in the leading-logarithm approximation of
k ))p, can be written as

then

A„= A
1 /n!

so that

2 aA)

V(p, A) =exp[a A, ln(p /A ) ]=

(14)

9(k )=1+ ln(k /A )+
4m

the forms of Eq. (17) can be written as

1 1 1ryk, p}=—
V(k ) V(p ) k

(18)

(19)

A 2
'aA

Z2 '
(}u,A) =exp[a A, In(Ai/p2)] =

p

then
' aA1

&~(p V) =exp[a A i»(p'/l ') 1
=

p

independent of A as MR requires.
As noted by Brown and Dorey, the vertex with I ~T=0

does not give A2= 3, /2. Of course, this relation must
be satisfied in perturbation theory, so guided by that we
compute the O(a) contribution to I" from Fig. 2. Then
again in the leading-logarithm approximation, when
k ))p, we obtain

as a possible form for the full transverse part for k ))p .
Of course, I " has to be symmetric in k, p, while T6 is
antisymrnetric. Consequently, the factor of k in the
denominator must be the large-k limit of an appropriate
symmetric, kinematic-singularity free function of k, p,
we denote by d(k, p).

Now the first thing to note is that forming a full vertex
from the present Eq. (19) and Eqs. (8) and (9) and substi-
tuting into Eq. (2) gives a leading-logarithm result for V
that satisfies MR not just to O(a), as we have already
guaranteed, but to all orders; i.e., Eq. (14) is satisfied.
Furthermore, if the corrections to the k in the denomi-
nator of Eq. (19) are O(p /k ), then straightforward, but
tedious, algebra shows Eq. (19) gives a full vertex that
satisfies MR to all orders in next-to-leading logarithms,
too: that is, if

V(p, A }= 1+ g a"A „ln "(p /A )
n=1

+ OOOOOO

+ $ a"B„ln" '(p /A )+
n=1

then not only does A„= A ", /n! [Eq. (14)],but

Bn = A„2B2—A„ 1Bl .

(2O)

(21)

FIG. 2. Lowest-order graphs in the perturbative expansion of
the fermion-boson vertex. The lines are as in Fig. l.

To show that we have indeed found a satisfactory form
for the transverse part of the full vertex, Eq. (19) we con-
sider the massive fermion case.
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IV. MASSIVE FERMIONS

With the fermion propagator now given by

3'
X(p )=m 1 — ln

4m.
(25)

s,(p)=
P —X(p')

(22)

and so we have to add nothing to our Ansatz for I ~z in
the massive case to lowest order. However, we now have
to ensure the appropriate mass renormalization, so that

rather than Eq. (6), the longitudinal vertex that satisfies
the Ward identity, Eqs. (3) and (5), is obtained by adding
to Eq. (8) the piece

I "„,L(k,p)=— X(k ) X(p ) (k+p)"
V(k ) P(p ) k —p

Q k"I"„,„,(k,p)= (3+() m ln
4~

k

p
(24)

where m is the zeroth-order value for X(p ). This is ex-
actly the form that comes from Eq. (23), since, to O(a),

Now Eq. (2) becomes two equations, one for 1/7(p ) and
the other for X(p )/P(p ), readily projected by tracing
Eq. (2) with P and with the unit matrix, respectively. To
see how we may have to alter the transverse part to attain
MR with a mass term, let us again be guided by perturba-
tion theory to O(a) in leading logarithms. We find from
the graphs of Fig. 2 that we must add to Eq. (15), for
k ))p ))m:

X„(p,p)=Z '(p, A)X(p, A) . (26)

( k 2
p 2)2+ [X(k 2)2+ X(p z)2]2

d(k, p)=
k +p

(27)

which gives a transverse component free of kinematic
singularities for real k, p . Thus our Ansatz for the full
vertex that depends only on the fermion renormalization
functions is

Again, if the leading and next-to-leading logarithms in
the expansion of X(p, A) are C„and D„, respectively,
analogously to A„,B„ in Eq. (20), then these in turn must
satisfy analogues of Eqs. (14) and (21) for MR. Indeed,
our vertex constructed using Eq. (9) for the longitudinal
parts of Eqs. (8) and (23) and the transverse part of Eq.
(19) does, when substituted into Eq. (2) for the fermion
propagator, make this multiplicatively renormalizable to
all orders in both leading and next-to-leading logarithms
for both V(p, A) and X(p, A). This is provided that the
corrections to the k in the denominator of Eq. (19) are
again of O(p /k ). Since this factor must be analytic
and symmetric in k, p, this suggests a form such as

r~(k, p) =—1 1 1 1 1+ yP+
P(k') V(p') 2 &(k')

1 (k+p Y'(l(!+P)
P( 2) k2 p2

X(k ) X(p ) (k+p)"
9'(k ) V(p ) k —p

1 1+—
V(k )

1

9'(p')
y"(k' —p') —(k+p )"(k—P )

d(k, p)
(28)

The use of this form is presently being investigated in an
extensive nonperturbative study of three-dimensional
QED

If we had not chosen to be guided by the perturbative
calculation of I z- explicitly from Fig. 2, but had just
sought an effective transverse vertex given by Eq. (10),
then in the leading-logarithm approximation when the
functions v.,- are taken to be constants t, times powers of
k to ensure each term in I ~z is dimensionless and a fac-
tor of —(ag/4m)ln(k /p ) for i =2, 3, 6, 8 and
(am/4n)(3+/)ln(k /p ) for i =1, 4, 5, 7, we would find
that the O(u) component of I ~z. gives the contributions
to V and to X to O(a ) listed in Table I. These contribu-
tions must sum together with the known component from
Eqs. (8) and (23) to ensure MR. Of course, these trans-
verse parts must thereby sum to the same result as the to-
tal transverse component of perturbation theory, which is
also given in Table I. Thus MR requires

Tensor
LL contributions to

1/~(p')
2 23a

1
2P

128~ A

LL contributions to
x(p') /P(p')

am 2pln
64m. A

+2(3+ /)
+2(

—(3+(}

Pert. answer

TABLE I. The leading logarithm (LL) contributions to the
fermion renormalization functions to O(a ) from the O(a) com-
ponents of the transverse part of the vertex given by the tensors
T~ (i =1, . . . , 8) of the Appendix, together with the total per-
turbative answer for these transverse parts.
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( t—, —2t, +2t, +2ts)g=g,

2(t3+t6)g+(2t5 t7—)(3+))=g .

These imply

t2 t8 l
t =t/2 t+t =—' ——+t+—=—.

5 7 ~ 3 6 2s 4 6

The only one tensor that can satisfy these is T6 with

ts =
—,
' with the other t, =0, as given by Eq. (19), making

Eq. (28) a most suitable, straightforward form for the full
vertex.
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APPENDIX

We collect here the formulas for the eight basis vectors
T~ for the transverse vertex as defined by Ball and Chiu.
As in Fig. 2, the momenta of the fermion legs are k, p
and that of the boson line is q =k —p:

T", =p"(k.q) k"—(p q), T2 =T", (k+I) ),
TI3 =q y" q "g—, T4 = T~&p "kt'o„'

TP =&0 q

T6 =y"(k p}—(k+—p }"(k'—Jt },
T(7 = ,'(k —p)[y—"(t(,'+JJ ) —p"—k"]+(k+p )"p "kt'a „
Tis = y"—p'k~cr „+p"lt!—k "J(,

where tr„„=,' [y„—,y „]
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