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We discuss, perturbatively and nonperturbatively, the multiband phase structure that arises in
Hermitian one-matrix models with potentials having several local minima. The tree-level phase dia-
gram for the P potential including critical exponents at the phase boundaries is presented. The
multiband structure is then studied from the viewpoint of the orthogonal polynomial recursion
coefficients R„, using the operator formalism to relate them to the large-X limit of the generating
function F(z)—:( I /N)(trl/(z —4) ). We show how a periodicity structure in the sequence of the
R„coefficients naturally leads to multiband structure, and in particular, provide an explicit example
of a three-band phase. Numerical evidence for the periodicity structure among the recursion
coefficients is given. We then present examples where we identify the double-scaling limit from a
multiband phase. In particular, a (k =2)-type multicritical nonperturbative solution from the two-
band phase in the P' potential, and a (k = 1)-type nonperturbative solution from the three-band
phase in the P potential is found. Both solutions are described by difFerential equations related to
the modified Korteweg-de Vries hierarchy. Finally, we comment on the other phases that coexist
with the k =2 pure gravity solution.

I. INTRODUCTION AND SUMMARY

Matrix models have proved to be a powerful tool for
analyzing sums over random surfaces. ' Their original
development from the large-N expansion was motivated
by the desire to understand the nonperturbative structure
of QCD, and recently they have been used to propose
a nonperturbative definition ' of certain toy models of
noncritical strings. "

Nonperturbative solutions are obtained at special sub-
spaces of the space of couplings of the matrix model
where its free energy becomes singular and can be con-
sidered as defining a sum over random surfaces. It is a
characteristic property of sums over random surfaces
that when the susceptibility is singular, the singularity is
systematically higher for every successive genus, the criti-
cal exponent y„, growing linearly with genus. ' ' This
property allows the enhancement of higher-genus contri-
butions close to the singularity by "double scaling" and
obtaining a solution directly for their sum, which is then
identified as a solution of a string model.

Since the matrix models provide the only nonperturba-
tive definition of two-dimensional (2D) gravity and string
theory via this identification, it is important to ask,
within the context of the matrix models themselves,
whether the subspace where such solutions have been ob-
tained admits other solutions corresponding to other
phases, particularly nonperturbative solutions, and if so
to find their nature, discuss tunneling, etc. The question
to be asked is, when is the matrix model in the first place
well defined on this subspace? If the proposal of using
these models to dePne the nonperturbative string theory
is valid, the answer to this question constitutes inforrna-
tion regarding the phase structure of string theory itself,
which cannot be obtained within its usual formulation as
a genus expansion. This was one motivation for this

work. Another motivation is that, in general, at every
critical line where double scaling is possible, the matrix
model defines some continuum random surface theory.
Thus the study of the various types of critical behavior
exhibited by the matrix model is also of interest in its
own right.

In this paper we address these issues for the simplest
case —the Hermitian one-matrix model. This contains
within its space of couplings a subspace where the solu-
tion obtained in Ref. 7 is characterized by the critical ex-
ponent y„,:——l/k= —

—,
' and is identified as being the

solution of pure 2D gravity. Two questions that are
relevant to the issues raised above and that we address in
this paper are, first, what is the phase structure of a well-
defined matrix model that exhibits a k =2 solution, in-
cluding critical exponents at the phase boundaries, and,
second, how can one obtain nonperturbative solutions
that correspond to the other phases. We give the com-
plete tree-level phase structure of the Hermitian one-
matrix model U6 (we refer to a model by its potential U„,
a polynomial of degree n), exhibit nonperturbative solu-
tions for U6 and Us corresponding to "multiband
phases, " and discuss some aspects of the kind of phase
that can coexist with the pure gravity solution.

The k =2 solution also exists in the model U3 and the
"inverted Mexican-hat" model U4, both unbounded from
below. Thus U6 is the simplest well-defined model con-
taining a k =2 solution. Certain aspects of the tree-level
phase structure of this model have recently also been
studied by others ' results from these references over-
lap with part of Sec. II of the present paper. Other work
on related questions includes discussion of the k =3 solu-
tion' occuring in U6 and the impossibility of flowing
from k =3 to 2. ' Potentials with complex couplings
have also been considered.

We are interested in the phase structure of the one-
matrix model defined by the partition function
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where N is an N XN Hermitian matrix and

real. In this paper we will restrict ourselves to solu-
tions that preserve the P~ —P symmetry of U.
(Symmetry-breaking solutions will be discussed else-
where. ) Unless otherwise stated, we consider kL )0 so
that U is bounded from below and the partition function
Z well defined.

In the usual large-N limit (the tree level), the model is
completely described in terms of the density of eigenval-
ues p(z) =—(1/N)g+, 5(z —x; ), where (x „xz, . . . , xz) is
the large-N saddle-point configuration of eigenvalues of
4 that dominates the integral after the SU(N) degrees of
freedom have been integrated out. If all couplings k, are
positive, U(P) has a unique minimum at /=0. The
saddle-point solution for p then has a single finite band
centered at the origin on which p has support. If, on the
other hand, some A, , 1 &j ~ L —1, are allowed to take on
negative values, U acquires multiple local minima, and
then p(z) can have support in more than one band. This
phenomenon was first observed and studied in unitary
matrix models for QCD ' and also more recently in the
present context. The various phases of the model can
be characterized by the number of bands on which p has
support; it is the case that, as a function of the couplings,
I is in general a different analytic function for phases
with different numbers of bands. In Sec. II we discuss the
phase structure for U6, obtaining the phase boundaries of
the one-, two-, and three-band phases that are possible
for this potential. For completeness and use in later sec-
tions, we also reproduce the known phase diagram for
U4. The phase diagram is determined using the
Schwinger-Dyson equation ' satisfied by the generating
function of monomial expectation values

F(z) =—(tr ),
which is related to p. In Sec. II we spend some time dis-
tinguishing two types of critical lines that can arise and
mention the ones that are relevant for double scaling.
We also determine the critical exponents at the various
phase boundaries for U6.

Nonperturbative solutions of the matrix model have
been obtained at specific subspaces of the coupling-
constant space where the susceptibility develops a singu-
larity, using the method of orthogonal polynomials.
Singularities that admit of a double-scaling limit, and
hence such solutions, are possible typically at the edge of
a phase in matrix models. If a particular phase boundary
is a boundary of two distinct phases, the nature of the
singularity and hence the double-scaling limit if it exists,
as well as the solution, depend upon the phase from
which the boundary is approached, because the suscepti-
bility is a different analytic function of the couplings in
the two phases. The solutions obtained in Ref. 7 are valid
at the boundaries of the one-band phase and only when

these boundaries are approached from the one-band side.
The reason for this limitation is that in the continuum
(large-N) limit in which the solutions have been obtained,
the orthogonal polynomial recursion coeScients R„have
been assumed to approach a single function R (x)
(x =n /N ). It turns out that this simple continuum limit
of the R„'s is valid only within the one-band phase. As
we will show in this paper, in multiband phases R„do
not approach a single function in this limit, and one has
to generalize appropriately the Ansatz to obtain solutions
from multiband phases.

Strictly speaking, the R„approach a single function
R(x) in the continuum limit only when U has one
minimum. For the region in which U has two minima, it
has been suggested that a "period-2" Ansatz for the
continuum limit of the R„'s be used: R„ for n even ap-
proach a function A(x) in the continuum limit and R„
for n odd approach a different function B(x) Wh. en U
has three or more minima, which is the case for the sim-
plest model we wish to study, U6, the continuum limit
has not been investigated before.

We investigate the pattern of the continuum limit of
the recursion coefFicients in Secs. III-V both numerically
and analytically when U has one to three minima. Our
numerical results support the period-1 and -2 continuum
limits when U has, respectively, one and two minima and,
further, when U has three minima, provide evidence for a
periodicity of 3.

To understand these results analytically and to explain
the band structure from a given periodicity in the R„, in
Sec. III we relate the R„'s to the tree-level generating
function F(z), in terms of which the band structure is ex-
plicit. To do this we employ the operator formalism
where F(z)—:(1/N)g„(n ~(z —P) ' n ), and P in turn is
an operator whose matrix elements depend upon the R„.
Concentrating on the period-2 Ansatz, we show that it
correctly reproduces the phase boundary between the
one- and two-band phases, and leads to the correct solu-
tion on either side of the phase boundary.

In Sec. IV we discuss the double-scaling limit at a
boundary of the two-band phase using the period-2 An-
satz and show how the double-scaling procedure gives
rise to both the equation that describes the boundary as
well as the nonperturbative solution at the boundary.
For U4 and U6 the phase boundary is characterized by
the critical exponent k=1, and the result is given in
terms of a solution of the Painleve II equation. (The re-
sult for U4 was also mentioned in Ref. 19.) In the same
section we obtain a k =2 nonperturbative solution for the
two-band phase. This occurs on a one-dimensional curve
in the four-dimensional coupling-constant space of the
potential Us. This solution satisfies an equation (k =2)
of the modified Korteweg —de Vries (KdV) hierarchy.
Both the solutions obtained from the two-band phase
have appeared in the context of unitary matrix models.
The k =2 solution also appears when the U8 potential is
unbounded from below.

We give a general expression for F(z) in terms of a
period-q Ansatz for the R„'s in Sec. V. The period-3 An-
satz is used to obtain F(z) for the three-band phase in U6.
Surprisingly, we find that the result for F(z) agrees with
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II. PHASE DIAGRAM

The phase diagram indicates the region of coupling-
constant space where different types of solutions for p
characterized by the number of bands on which p has
support are present. The solutions for p satisfy the
saddle-point equation

U'(z) —2P J dz', =0, p(z')
z —z' (2.1)

(P stands for the principal part), which is obtained by
minimizing the free energy

the solution of the large-N Schwinger-Dyson equation

only for the case where U6 has three degenerate minima,

which is characterized by a special surface in the

coupling-constant space. A double-scaling limit, which

corresponds to approaching the boundary between one-

and three-band phases along this surface from the three-

band side, is identified using a specific form of the

period-3 Ansatz. We find that the nonperturbative solu-

tion using this Ansatz for the three-band phase at this

particular point is again characterized by the k = 1 Pain-

leve II equation.
Finally, in Sec. VI we conclude with a review of the

status of the k =2 solution and mention some open ques-
tions.

single band seeing only the outer walls of the big well.
The equations for the curves a, b, and c in Figs. 1(a) and
1(b) and the points a, y will be discussed shortly. Note
that all three phases meet at a, which is in the region
where U has two minima.

At this stage it is worth pointing out a feature of the

U6 phase diagram that is not shared by the quartic case.
For U4 the one-band phase exists above the line a whose
equation is '

p = —2&g and the two-band phase exists on
a and below. The existence domains of the one- and
two-band phases do not overlap, but are separated by the
line a. The free energy is continuous across this line.
However, for U6 it turns out that in some regions of
phase space one can have more than one kind of solution
of the saddle-point Eq. (2.1) for p; e.g. , in some regions
one can have simultaneously both one- and three-band

solutions or simultaneously both two- and three-band
solutions. When such an overlap appears, one or the oth-
er solution has the lowest free energy and is the dominant
large-N solution, the others being subdominant. In Fig.
l(b) the region between two dotted lines is the one where
the three-band phase has the minimum free energy. [A
one-band-type solution to (2.1) exists below the upper
dotted line, and a two-band solution exists above the
lower dotted line, but they have higher free energy in

r=r, +r,+r, , (2.2)

where 1
&
=—jdz p(z ) U(z ) is the "potential term, "

I z=——j f dz zd'p(z)ln~z —z'~p(z')
Zxz'

is the "repulsion term, " and 1 3—=y[ f dz p(z) —1] is an

additional term involving the "chemical potential" y to
enforce the constraint jdz p(z) = l.

The phase structure is displayed in Fig. 1(a) for the
quartic potential

U (P) +P2+ LP4
2 4

and in Fig. 1(b) schematically for the potential

U (O) ="C'+ 'O'+—2 8 4 ~ 6

2 4 6

-0.5

-2-

(derivation to be discussed shortly). Broadly speaking,
when U has one minimum, one has the one-band phase;
in most of the region where it has two minima, one has
the two-band phase; and the three-band phase exists
mostly in the region where U has three minima. The
correspondence is not exact because of the repulsion
term. For example, some insight into why the one-band
phase extends into regions where U has more than one
minima can be gained by considering the situation when
all the couplings are very small. The picture in this limit
is as if there is one big well whose profile is determined by
the A,14 term, containing a number of small wells
whose number and location depend upon the signs and
magnitudes of the other couplings. Because of the repul-
sion energy, the eigenvalues do not see the fine structure
at the bottom of the well, but distribute themselves into a

FIG. l. (a) Phase diagram for U4. I and II correspond to re-
gions where one- and two-band phases exist. {b) Schematic
phase diagram for U6 in the plane A, =const)0. The lines
demarcate regions where the one-, two-, and three-band phases,
denoted I, II, and III, respectively, minimize the free energy.
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the large z expansion F(z)=(1/z)(l+m2/z
+w4/z + . ); and finally it must lead to a density
function that is positive semidefinite for real z. In terms
of F(z), p(z) for real z is given by (a}

p(z) = — Imv'h(z ),1

2m
(2.5)

which can be seen by comparing (2.1}with the expression
F(z) = Jdz'p(z')/(z —z').

Every odd degree zero of b, (z), which is a 4L —2 de-
gree polynomial, is a branch point of F(z) and, hence,
must be real. Since b, (z) changes sign across every such
point as we traverse along the real axis, it follows that the
branch cuts of F are the bands on which p has support.
The positivity of p is a powerful constraint on the zeros
of 6, namely, that between any two adjacent square-root
branch cuts of I' (i.e., between any two adjacent pairs of
adjacent single zeros of b,} there must be at least one dou-
ble zero of h. A phase with a given number of bands for
a given potential can be characterized by the possible
configuration of zeros of h(z) in the complex z plane cor-
responding to that phase. In Figs. . 3(a) and 3(b) we de-
pict these configurations for the one- and two-band
phases, respectively, for U4 and in Figs. 4(a), 4(b), and
4(c) for the one-, two-, and three-band phases for U6.
The diagrams depict the complex z plane whose origin is
at the center of the diagram with the real axis horizontal.
Each dot represents a zero of b, (z), a total of six for each
diagram for U4 and ten for U6. Double dots represent
double zeros, and the horizontal lines connecting single
zeros depict the bands where p will have support. We
show only those configurations which are consistent with
the above-mentioned constraints and respect the P~ —P
symmetry of the potential.

Since the band structure is determined by the locations
of single and double zeros, the phase boundaries of the
various phases in the coupling-constant space can be ob-
tained by determining the values of the couplings for
which the various zeros collide. For U4 there are two
phase boundaries, ' ' curves denoted a and b, whose
configurations of zeros and the corresponding equations
are shown in Table I, and which are plotted in Fig. 1(a).
In the diagram representing line a, for example, the four
dots in the center are meant to be coincident, represent-
ing a fourth-order zero at the origin where the two bands
meet each other. For U6 there are six phase boundaries
in the A, &0 region, surfaces a f, which are shown —in
Table II and plotted in Figs. 2(a), 2(b), and 2(c) in three
different planes iL=0.003, g= —0. 1, and p=1, respec-
tively. The one-, two-, and three-band phases are denot-
ed I, II, and III, respectively. For A, &0, surfaces a, b,
and c are phase boundaries of I, a and d of II, and c, e,
and f of III. The type of phase that can exist (irrespec-
tive of whether or not it is dominant) in every region, is
indicated. Our diagrams differ from those in Refs. 15 and
16 in this respect, as also in the identification of other
phase boundaries. The surfaces a, c,d, e intersect at the
curve a (g = —p, A, = —p /2, p &0) when eight zeros of
b (z) coalesce at the origin, and surfaces b, c,f intersect at
y (g= —p /9, A, =p, /270, p&0} when five zeros come
together at each edge of the band. a and y meet at the

(b)

FIG. 3. (a) Configurations of zeros of A(z) for the one-band
phase in U4. (b) Configurations of zeros of h(z) for the two-
band phase in U4.

origin, and all three phases meet at the curve a where U6
has two minima. This justifies the schematic phase dia-
gram in Fig. 1(b). The curves a and b of the quartic case
are restrictions, to the A, =0 plane, of the surfaces a and b
for the U6 case. The phase boundaries g, h, and i also
shown in Table II are the special cases that exist only for
A, &0. They are not plotted on any figure. The one-band
phase exists between g and i and the two-band phase be-
tween g and h. The model is undefined beyond h and i.
These three surfaces meet at a curve 5 whose equation is
g=p /3, A, =p /54, p&0. Appendix A illustrates the
calculation for c.

Note from Fig. 4(c) that in the interior of the three-
band phase h(z) will have four unknowns (the four dis-
tinct zeros), but comparison with (2.4) provides only
three independent equations as noted in Appendix A.
Thus F(z) cannot be uniquely determined from the

(c)

FIG. 4. (a) Configurations of zeros of A(z) for the one-band
phase in U6. (b) Configurations of zeros of A(z) for the two-
band phase in U6. (c) Configuration of zeros of A(z) for the
three-band phase in U6.
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TABLE I. Phaseboundaries for U4(P) =
—,'pP+4gg".

Name of phase
boundary

Configuration of zeros of 6
corresponding to phase boundary Equation of phase boundary

p= —2+g; p &0, g &0

p='12lgl; p&0, g&0

Schwinger-Dyson equation as it stands. Equivalently,
there are many saddle-point solutions p(z) corresponding
to the three-band phase that satisfy (2.1). This is because
when there are three bands, the value of the chemical po-
tential y which appears in I 3 in (2.2) could be different
for the central and the two sidebands. This would give
the same saddle-point equation (2.1), but introduces the
one extra parameter in the solutions.

One can obtain a unique three-band solution by
demanding that the only admissible solution is the one
for which y is the same in all bands. However, such a re-
quirement strongly restricts the existence domain of the
three-band solutions. In Appendix A we have explicitly
displayed the equations that give the generic three-band
solution. The one free parameter that labels distinct solu-
tions can be taken to be ro, whose square root is the loca-
tion of the double zero between the cuts. The demand
that y be the same in all bands fixes ro, as discussed in
Ref. 21. This constraint is conveniently expressed in the

form f —„'~b,(z)dz=0. ' Since ~h(z) changes sign at
I

z=+ro, the constraint also implies that ro cannot be
coincident with r, or r2 unless r, =r2. Consequently, the

existence domain of such solutions does not extend all the
way down to the line eor all theway up to theline f in
Fig. 2(a) because there ro coincides with r, or rz, whereas

r, and r2 are unequal. The three-band solutions possible
close to those lines necessarily have a different value of y
for the central and sidebands. Thus such a restriction
can miss some regions of phase space where double-
scaling solutions may be possible.

Finally, we turn to a calculation of the string suscepti-
bility exponent y„,—= —1/k based on the large-N
Schwinger-Dyson equation. Given the tree-level free en-

ergy I as a function of the L couplings k. , in principle,
one should identify the cosmological constant A as a
function of the couplings and reexpress I in terms of A

and an independent set of L —1 couplings A,
', Then at

the phase boundary characterized by(A„X,'), @is defined

by the formula for the susceptibility

BI -(A —A, )"",
BA

TABLE II. Phase boundaries for U6(P)= —'pP'+ —'gg4+ —'AP.

Name of
phase

boundary

Configuration of zeros of 5
corresponding to
phase boundary

Equation of phase
boundary

s=t; p&0

u=6'"U; p&o, g&o

u=4U; g&0

w=3 (4k ) g &0
2A, =pg; p &0, g &0
u= —4U; p&0, g&0
s= —t; p&0, g)0

w=3 (4A. ); p&0, g)0

u=6'"U; g&o

only A. )0
1s

considered
for af—

g, h, andi
exist only
for A. &0

s =(g 6pg) ~, E—:g 9pgA, +54k, ', u—:(6g2 20pg)312
U =——g'+Spgk, +SOX' w =(g' —4pA, )'"
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where on the right-hand side we consider the most singu-
lar tree-level term as A approaches A, . Equivalently, one
can read off k from

)i+ilk
aw ~

C

In practice, it is convenient to work with
ice =(1/N )( trP ) =BI /Bp instead of BI /BA, and deter-
mine k from the formula du 2/dt —t ', where t
parametrizes a path approaching the phase boundary
(t =0 at the boundary) in such a way that the couplings
are analytic functions of t along the path.

We have found k to be equal to 1 for all phase boun-
daries in the A, )0 region of the phase space that we have
considered [except for the already known cases of mul-
ticritical behavior, namely, the boundary b from the one-
band phase (k =2) and y approached from the one-band
phase (k =3)]. When the curve a or the surfaces a or c
(excluding y) are approached from the one-band phase,
or a, a, and d are approached from the two-band phase,
we get k =1. When the curve a is approached along any
of the surfaces a, e, d, or e, and the curve y along any of
the surfaces b, c, or f, also k =1 is obtained. For ap-
proaching phase boundaries from the interior of the
three-band phase, the calculation requires making some
choice out of the one-parameter family of solutions (an
explicit example is discussed in Appendix 8), but again
we have found k=1 for the choices made when we ap-
proach the curve y or the surfaces c, e, and f from the
three-band phase.

k =1 at a particular boundary implies that the tree-
level susceptibility is not singular at that boundary when
approached from the phase in question. However, this
does not mean that higher-genus contributions will not be
singular. Typically, at phase boundaries it is seen that
higher-genus contributions to the susceptibility are singu-
lar in a systematic way that allows a double-scaling limit
and a nonperturbative solution. Examples of such non-
perturbative solutions will be discussed in Secs. IV and V
where, e.g., the two-band phase approaches a and the
three-band phase approaches c, and for which, as men-
tioned above, we have k =1.

Having discussed the tree-level phase structure from
the viewpoint of the Schwinger-Dyson equation, in the
next section we turn to address the same question from
the orthogonal polynomial method.

III. T%'0-BAND PHASE
USING ORTHOGONAL POLYNOMIALS

We shall discuss in this section how the generating
function F(z) can be obtained in the large-N spherical
limit using the method of orthogonal polynomials. We
recall that for each normalizable measure
dp(x) =exp[ NU(x )]dx, —~ &—x & ao, a set of orthog-
onal polynomials P„(x) can be defined by

fdp(x)P„(x)P (x)=h„5„

P„(x) is an nth-order polynomial, conventionally normal-
ized so that the coefficient of the x" term equals unity.

For even potentials, P„(—x)=( —1)"P„(x), and they
satisfy a two-term recursion relation:
xP„(x)=P„+i(x)+R„P„&(x),with Ro —=0. The free en-

ergy of an XXX matrix model can be expressed in terms
of R„as

X —1

I —= N —1nZ~-const —N g (N —n)lnR„.
n=1

(3.1)

It is convenient to use the operator formalism which in-
troduces an orthonorinal basis t ~n ), n =0, 1,2, . . . ], each
basis vector ~n ) being associated with a normalized or-
thogonal polynomial P„(x)/"i/h„. For instance, the re-
cursion relation for P„(x) is equivalent to the existence of
an operator P, with matrix elements given by

(n ~y~m ) =S„.„QR„+S„. ,QR. . (3.2)

The generating function F(z):—(1/N)(tr(z —4) ') of
the original matrix model can now be expressed in terms
of/:

N —
1

P(z) = y(—n [(z —y)-']n ) .
X „

(3.3)

Given a potential U2L (P), the set R„obeys a recursion
relation which can be obtained by evaluating the
(n —l, n) matrix element of the differential operator
8/BP. Upon integrating by parts, this relation, in an
operator form, reads

n =NQR„( n —
1~ UzL (P) ~n ), (3.4)

where the right-hand side involves R,
n —L+1~j n+L —1. For example, in the case of
L =2, we have the familiar relation

n =NR„[p+g(R„,+R„+R„+,)] . (3.5)

For general L, explicit formulas can be worked out using
the graphical technique of Ref. 27.

Equation (3.4) can be considered as a (2L —1)-term re-
cursion relation, which allows us to find R„ iteratively,
once R, , . . . , R2L 3 are specified. Alternatively, for the
large-N limit, one can directly analyze Eq. (3.4) once an
Ansatz for the continuum structure of R„as a function of
x =n /X is made. We first discuss our numerical calcula-
tion of R„, whose results are displayed in Figs. 5 —7. The
figures cover, respectively, the cases when the potential
has one, two, or three minima. The R„'s were obtained
by calculating the first few numerically (R, for U4 and
R, , R2, Ri for U6) and using the recurrence relation (3.4)
for the rest. The integrations involved in R i,Rz, R3 (Ref.
26) were performed using the numerical integration pack-
age of Mathematica™.

The figures suggest the kind of continuum limit that
may be appropriate for the various regions of phase
space. When U has one minimum, Fig. 5 suggests that
R„approach a single function R (x) (x:n /N ). F—igure 6
suggests that when U has two minima odd and even R„,
each approach a different continuum function for x less
than a certain value, after which they become identical.
Figure 7 is evidence that when U has three minima, R„
corresponding to n =3p, n =3p+ 1, and
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n =3p +2 (p =O, 1,2, .. . ) approach different continuum
functions which merge at sufficiently large x. Thus the
continuum limit seems to be characterized by a certain
periodicity structure in n that depends upon the region of
the coupling-constant space: period 1 when U has one
minimum, period 2 when U has two, and period 3 when
U has three minima. (Of course, since this is a numerical
result, one can only say from this evidence of what the
periodicity is a multiple. For example, it does not rule
out the possibility that for the three-minima region the
periodicity is some multiple of three, and that for the
couplings for which the numerical calculation was done,
the fourth branch is sufficiently close to the first, the fifth

to the second, etc. , for the difference to have been missed

by the numerical calculation. However, the result does
rule out the possibility of a periodicity 1,2,4,5,7,8,. . . at
those points. Another related remark is that the numeri-

cal results are obtained only at specific points in the
phase space. They do not rule out the possibility that,
e.g., in another part of the three-minima region of phase
space, the periodicity is different from 3.)

Note that there is no one-to-one correspondence be-
tween the periodicity and the number of bands. For ex-

ample, in Fig. 6(b) the coupling constants correspond to
the one-band phase, but we have period 2 for the R„'s.
We have also checked at a number of points of the phase
space (diagram not displayed) which are in the one-band

phase, but where U6 has three minima, for which one
again gets a periodicity of 3. Thus the relationship be-

Q 4"

0.3"
n

0.2"

tween the periodicity and the phase structure is not a
priori clear. In what follows we will directly analyze the
band structure from (3.4) for various different Ansatze for
the continuum structure of R„(i.e., for various periodici-
ties). We will see that the increased periodicity when the
potential has multiple minima is crucial for understand-
ing the multiple-band phases and the phase boundaries of
the matrix model, and for obtaining nonperturbative
solutions.
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A. Scalar Ansatz and single-band structure

The simplest continuum Ansatz one can make is one in
which the R„approach a single continuous function
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FIG. 5. (a) Numerical result for R„when U4 has one
minimum (N=10, p=1, g=1). (b) Numerical result for R„
when U6 has one minimum (N=10, p=1, g =1, A, =1).

FIG. 6. (a) Numerical result for R„when U4 has two minima

(N =25, p = —105, g =2500) and in the interior of the two-band
phase. (b) Numerical result for R„when U4 has two minima
(N=25, p= —90, g =2500) and in the interior of the one-band
phase. Note that the odd and even branches merge sooner than
in (a). (c) Numerical result for R„and U6 has two minima
(N=15, JM= —6, g = —36, A, =108).
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R(x). This will be referred to as a scalar Ansatz (or
period 1).

In the large-N limit, Eq. (3.4) then gives

x = WL(R(x)), (3.6)

5"

R
n

~ ~ ~ ~ ~ ~ ~
~ ~ ~

~ ~
~ ~

which can be solved for R(x) analytically. WL (R) is an
I.th-degree polynomial, which can be obtained from
U2I ( p ) either by the graphical method of Ref. 27
or, more compactly, using the relation W'L (R )
= f(du/2vri )Uzr (u+Ru '). For symmetric potentials
whose coupling constants are all positive, a unique real

solution R(x) exists which is monotonically increasing
over the positive x axis with R (0)=0. We shall refer to
this class of symmetric potentials as "positive" and shall
concentrate on this special class first.

It is convenient to approach the large-N limit by using
the pair of conjugate operators I and 8, where
1~ n ) =x„~n },x„:n—/N, and [8,1]=i /N. Under the sca-
lar A nsatz, the operator P can be expressed as
p='1/R(1)e'e+e ' +R(l ). In the 8 basis, an operator-
valued function of P becomes a local differential operator
with 1~ (i —/N )(d /d8), and wave functions are period-
ic in 8 with a period 2m. . Since [8,1]~0 as N~ ao, one
finds, for the diagonal matrix elements of the resolvent
operator,

(n ~(z —y) '~n ) f [z —y(x, 8)]
0 277

where P(x, 8)=(e' +e ' )&R(x). It follows that, in the
large-N limit, the generating function approaches

10 20 30

d8 1

o o 2m. z —$(x, 8)

=f dx
1 1

+z —4R (x)
(3.7)

4 ~

R
n 3"

10 20 30

3"~ ~ ~ ~

2.5-.
~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ 'I ~

1 ~
5-.

~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~

~ ~

where the superscript signifies that (3.7) is derived under
a scalar Ansatz.

Since R (x) is bounded for 0 ~ x ~ 1, Eq. (3.7) defines an
analytic function for ~z ~

sufficiently large. Since R (0)=0
and R (x) is monotonic, it follows that F'"(z) is real ana-
lytic with a pair of symmetric square-root branch points
located at +z, ,z,:—2&R (1). That is, (3.7) represents a
single-band structure. Furthermore, since F'"(z)~1/z
as ~z~ ~~, it automatically leads to a properly norrnal-
ized spectral density p(z) on the cut.

Two necessary conditions for (3.7) to be a bona fide
solution to the Schwinger-Dyson equation are that, on
the cut, the real part of the generating function be given
by ReF' "(z}= —,

' U'(z) and the spectral density
p(z)= —(1/~)lmF(z) should be non-negative. To see
that this is indeed the case for the class of "positive" po-
tentials, change the integration variable from x to
r =R (x) in Eq. (3.7), which yields

0.5--

ff"(r)
o (z 2 4r )

1 /2 (3.8)

10 20 30

(c}

FIG. 7. (a) Numerical result for R„when U6 has three mini-
ma (N=20, p=1.5, g= —1.010, A. =0.125) and in the interior
of the three-band phase. (b) Numerical result for R„when U6
has three minima (N=20, p=1.5, g= —1.005, A. =0.125) and
in the interior of the three-band phase. {c)Numerical result for
R„when U6 has three minima {N=20, p=1.5, g= —1.000,
A, =0.125). This is at the boundary c of the one- and three-band
phases. Further, the three minima of U6 are degenerate at this
point.

Since 8"(r) is real, for a fixed value of z in the range
~z~ (zi =2&R (1), only the region 0 & r ~z /4 contrib-
utes to ReF'"(z). If we again change the integration
variable froin r to u, r —=u(1 —u)z, one finds
ReF'"(z) =z f o~ du W'[u(1 —v )z ]. On the other hand,
the defining relation WL (R)= f(du /2rri }Uzi (u
+Ru ') can be inverted to give U(P)=f '(du /u ) W[ v ( 1 —u )P ], which implies

U'(P) =2/ f du(1 —v ) W'[v(1 —v )P ] .
0

It follows that ReF' "(z)=—,
' U'(z), as required. Similarly,

for the imaginary part one gets
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(z& z )/4 d&
2

p(z) = f —W' r+2' 0 4
(3.9)

and since W'(r ) & 0 for positive potentials, p(z) automati-
cally satisfies the positivity requirement on the cut.

The quartic potential U4(P) =
—,'pP +—,'gP, with p &0,

g 0, provides an explicit illustration. With
Wz(R )=pR +3gR, (3.6) leads to two solutions

R ~(x)= [—p+(JM + 12gx )' ]/6g. Of the two, only

R+(x) satisfies the requirement that R(x) &0 for
0 ~ x ~ 1, which leads to a well-defined monotonically in-

creasing function satisfying the condition R (0}=0.
Equation (3.9) leads to p(z) = (g /2')(z zo )(z—

~

—z )'
where zf =4R+(1)&0 and zo= —2[@/g+2R+(I)] &0,
in agreement with Ref. 4. In general, for a positive sym-
metric polynomial potential of order 2L, (3.9) can be
evaluated easily, leading to a spectral density
p(z) =PL (z )(z r

—z )', where PL (z ) is a (L —1)th-
order polynomial in z, positive over the region
0& ~z~ &z&. This shows that the scalar Ansatz is indeed
appropriate for positive potentials. Furthermore, since
the above p(z) always leads to regular one-point func-
tions, we conclude that no "double-scaling" limit can
arise in this case.

What will happen for potentials with negative cou-
plings? For instance, for the quartic potential with p &0
and g & 0, of the two solutions of (3.6), once again R+ (x)
satisfies the requirement that R (x ) & 0 for 0 & x & 1. Un-
fortunately, the condition R (0)=0 can no longer be
satisfied, and one can explicitly demonstrate that Eq. (3.7}
no longer represents a solution of the Schwinger-Dyson
equation. The situation gets worse if g &0. First of all,
the original measure for our orthogonal polynomials is no
longer normalizable, and one can no longer be assured of
obtaining a real solution for R (x) for x positive. For a
general potential with some negative couplings, one
might be faced with a function R (x) which is discontinu-
ous over the range 0 ~ x ~ 1. It is also possible that a real
continuous R(x) exists for 0&x &1, but the condition
R(0)=0 is no longer satisfied. For all these situations,
Eq. (3.7) no longer corresponds to a solution of the
Schwinger-Dyson equation and the single-component
scalar Ansatz for the large-N limit of R„ is inapplicable.

A possible alternative approach is to always start with
a positive potential and then analytically continue F"'(z)
into regions involving negative couplings. Indeed, (3.8)
provides such a continuation. In terms of this represen-
tation, F"'(z) always satisfies the Schwinger-Dyson equa-
tion, provided that the upper limit of the integral, R (1),
is real and well defined. It also automatically leads to the
single-band spectral density above. It is clear from (3.8)
that one can analytically continue from the region of pos-
itive couplings to a much larger region even if 8" turns
negative.

However, this continuation process can be stopped by

the following obstacles: R (1) can start to turn complex
or take a discontinuous jump. This always happens if we
continue into the region where the potential becomes un-
bounded from below, e.g., the region p )0 and g & 0 for a
quartic potential. [The inevitability of this outcome can
easily be seen as follows. Note that, in going from Eq.
(3.4) to Eq. (3.6), the N dependence has disappeared.
Since (3.4) is linear in coupling constants A, , it follows
that

R(ax, al. )=R(x,k~), (3.10)

B. Two-component Ansatz and double-band structure

If one wants to deal directly with potentials involving
negative couplings, it is clear that one is forced to go
beyond the scalar Ansatz. We now consider the period-2
Ansatz, namely, that in the large-N limit R„~A (x) for n

even and R„~B(x) for n odd, where x =n /N. We will
first concentrate on the "kinematic" aspects of this two-
component Ansatz before turning to the question of its
consistency and its applicability.

Since P connects only the "nearest-neighbor" even-odd
and odd-even basis states, it is convenient to think of the
Hilbert space as a direct sum of an "even space" and an
"odd space, " i.e., &=&OS&„where % is spanned by
basis states j ~n ), n =2p+rr, p =0, 1,2, . . . I. One can
then arrange P into a 2X2 matrix form where P maps

For the period-2 Ansatz, one finds that

goo=/, , =0, P, o=e ' +B(l)++A(l)e', and

P&» =e ' +A (l )++B(l)e' . Similarly, any operator-
valued function of P can also be arranged in a 2 X 2 ma-
trix form, defined by a power-series expansion in P. In
particular, the resolvent operator C=(z —P) ' now has
four components 0 . In the large-N limit where
[l,8]~0, one finds that the diagonal matrix element
(n ~(z —P) '~n ) —= (2p+cr~(z —P) '~2p+o ) approach-
es the limit f0"(d8/2m. )G (x,8), where

G(x, 8)=[z—$(x, 8)] ' is an ordinary 2X2 matrix func-
tion with

where we have explicitly exhibited the dependence of
R (x) on coupling constants. For a quartic potential with

g &0 and p )0, no real solution can exist for x sufficiently
large. It follows that one can always decrease g~ and p
with g/p fixed so that R (1) becomes complex. Indeed,
this is precisely the condition for developing the standard
k =2 double-scaling limit, which corresponds to the
curve b depicted in Table I and Fig. 1(a).] Another obsta-
cle is that P„(z ), and hence the spectral density, can
turn negative over the branch cut, while R (1) remains
well defined. This invariably occurs when the potential
develops multiple local minima while remaining bounded
from below. For U4 this happens at the line a, which
marks the phase boundary between the one- and two-
band phases.

0
v'B(x )e ' +&A (x)e'

& A (x)e ' +v'B (x)e'
(3.1 1)
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It immediately follows from (3.3) that in the large-X limit the generating function approaches

2~ dg 2Z
F(z) =— dx

2 0 o 2' z~ —A(x) 8—(x)—&A (x)B(x)(e ' +e '
)

2 2i0 —210
(3.12)

The factor of —,
' comes from the conversion of the sum

over p, (n =2p+cr ) to an integral over x, and the factor
2z under the integral comes from the trace over o. =0, 1.
A contour integration immediately yields a general repre-
sentation for the generating function under a two-
component Ansatz:

1F' '(z) =z dx
z —qx —4 x

(3.13)

x =@A(x)+gA (x)[ A (x)+28(x)],
x =pB(x)+gB(x)[B(x)+2A(x)] .

The sum and di8'erence of these equations lead to

2x =( A +8 )[p+g( A +8 )]+gAB,
0=(A —8)[p+g(A+8)] .

(3.14)

(3.15)

If we assume A(x)48(x), the difference equation im-
plies that ri(x) = —p/g. Since A and 8 must be positive,
this means @&0 (we are considering g&0). Further,
g(x ) =x /g; hence,

2

(A —8)'=" —4x . (3.16)

Since the left-hand side cannot be negative and the right-
hand side turns negative for x large and positive, the as-
sumption that A (x)WB(x) must break down for large x.
One concludes that A(x) must equal 8(x) for x)x,
X—:p kg. Thus we have shown that the period-2 Ansatz
is valid only when U4 has two minima and for the range
0 & x & x. [We note at this stage that the tendency of odd
and even recursion coefficients to merge earlier as one de-
creases x is also visible at finite X numerically in Figs.
6(a) and 6(b).]

The question that remains is whether Eq. (3.13), which
follows from this Ansatz, is a solution of the Schwinger-
Dyson equation in this region. The one- and two-band

where we have added a superscript for F(z). Instead of
using A (x) and B(x), we have also expressed (3.13) in
terms of symmetric combinations rl(x) = A (x)+8(x) and
g(x)—= A(x)8(x). As a consistency check, we note that
(3.13) reduces to (3.7) if A (x ) =8 (x ) =R ( x ).

We now ask, under what conditions is the period-2 An-
satz valid? The answer verifies our expectation from the
numerical calculation and from the fact that the scalar
Ansatz applies for positive potentials, that the period-2
Ansatz is valid when the potential has two minima. To be
explicit, let us first concentrate on U4. We will show that
the period-2 structure describes both the one- and two-
band phases in the p & 0, g & 0 region and reproduces the
correct phase boundary and solution of the Schwinger-
Dyson equation. Starting with (3.5), the spherical limit
immediately leads to two coupled equations:

solutions to the Schwinger-Dyson equation are exhibited
in Eqs. (A6) and (A8), respectively. To see that they are
both reproduced from this Ansatz, first consider the case
where x & 1 so that A (x)WB (x) in the entire integration
range. With g(x) = —p, /g, g(x) =x/g, the x integration
can be carried out trivially, leading, for z =

~z +is, to
F' '(z)= ,'U4(—z) imp—(z), where p(z) is given by (AS).
Hence we reproduce the two-band solution below the line
a whose equation is given simply by x(p, g ) = l.

When 0)p) —2&g (i.e., 0&x &1), we separate the
integration range in (3.13) into [O,x] and [x, 1]. The first
region contributes —,

' U~(z) —gz (z +2@/g )' . For
[x, 1], we must use the solution A(x)=8(x)=—R(x) of
our earlier scalar Ansatz, so that r1=2R and g=R . This

leads to J ~,"Idr W'(r)/(z 4r)' . —Combining the two,
one finds that

F(2)(z)—J (z 4r )'—
This is easily integrated and yields the correct one-band
spectral density (A6). Note from (3.8) that in this region
F' '(z)=F'"(z); i.e., the two-component Ansatz repro-
duces the earlier single-band structure obtained by an an-

alytic continuation from the positive p region.
A similar situation also occurs for the U6 potential.

For instance, instead of (3.15), we have

2x =q()u+gg+ kq +2A g)+ 2$(g +2A q),
0=(A —8)(p+gg+Ag +2k() .

(3.17)

To illustrate the key features, let us consider a simple sit-
uation where g =0, A, = l. Assume that A (x)%8(x). It
follows from (3.17) that rI +(=—p and 2gg=x. Since r}
and g must be positive, we first note that a two-
component Ansatz is compatible only for p & 0, as expect-
ed. However, even with p fixed and negative, one finds
by eliminating g that g +pri+x =0, which has no real
positive solution for x sufficiently large. One can there-
fore find a value x beyond which one must have
A(x)=8(x). The situation is then identical to that of a
quartic potential. For p sufficiently negative so that
x ) 1, one has A(x)%8(x) for 0&x & 1, and F' '(z) leads
to a two-band structure. Conversely, as one decreases

~ p ~

so that x & 1, one finds that F' '(z) agrees with the analyt-
ic continuation of F"'(z) from the positive potential re-
gion, which describes a single-band structure. This
analysis can also be carried out for g&0. x(p, g, A, ) can
be found by setting r1=2r, g=r into two equations de-
rived from (3.17) for A%8 and eliminating r. The single-
and double-band transition line is given by the condition
x(p, g, A, ) = 1, which is the same as the equation for line a
indicated in Table II and Figs. 4(a) and 4(b).

We briefly comment on the generality of our result.
Note that a relation analogous to (3.10) also applies in the
period-2 case:
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A (ax, aA, ) = A (x, A, ), B(ax,aA, . ) =B(x,A, . } . (3.18)

For potentials bounded from below, at A, suSciently
small, the Coulomb repulsion energy will always over-
come the potential barrier, thus leading to a single-band
structure. This implies that there always exists an x(A, )

such that A(x)=B(x)=R(x) for x)x, where R(x) is
real and well defined. For k small, x &1 so that a
single-band structure is obtained. By multiplying
k ~aA. , a) 1, it is always possible to reach a situation
where x ~cxx ) 1 so that a two-band structure is reached.
The transition line between the single- and double-band
regions is always given by the condition x (A, ) = l.

We close this section by pointing out that the analytic
continuation of (3.8) across the curve x =1 from the x & 1

region remains well defined. However, this continuation
is unacceptable in the region x &1 si.nce the would-be
single-band spectral density is no longer positive there.
On the other hand, if one approaches the curve x=1
from below, the double-band structure, obtained under a
two-component Ansatz, would cease to exist at this phase
boundary. In the next section we discuss the double-

scaling limit and nonperturbative solution as one ap-
proaches the line x = 1 from the two-band side.

IV. NONPERTURBATIVE SOLUTIONS
AND TWO-COMPONENT ANSA TZ

The possibility of a nonperturbative solution to a
large-N matrix model rests on the observation that, al-
though the spherical contribution to the susceptibility g
normally dominates over that from higher genera, there
exist singularities of y such that sufficiently close to them,
singular contributions from all genera are of the same or-
der and their nonperturbative sum can be characterized
as the solution of a certain differential equation. This
nonperturbative "string equation" can be obtained by
analyzing the recursion equation for R„[Eq. (3.4)] in the
so-called "double-scaling" limit. Extensive analyses have
been carried out under the scalar Ansatz, where one ex-
plores the structure of R (x) in an infinitisimal neighbor-
hood ofx =1.

In this section we discuss nonperturbative solutions at
a phase boundary of the two-band phase using the
period-2 Ansatz, where the R„ in the large-N limit ap-
proach two distinct functions A (x) and B (x) for n even
and odd, respectively. We have learned from our spheri-
cal analysis in the last section that the line x(A, )=1 is a
boundary between the one- and two-band phases with the
region x & 1 corresponding to the one-band phase and
X & 1 to the two-band phase. We will be interested in the
behavior of A (x) and B(x) near x =1 when the cou-
plings approach the line x =1 from the two-band phase,
because the singular contribution to the free energy (3.1)
is determined from this behavior. Since A (x) and B(x)
are not equal for x &x, it follows that to develop a
double-scaling limit appropriate for approaching the
singular line from the two-band phase, we must insist on
having A(x)WB(x) for x & 1, but in such a way that as x
approaches unity from above (i.e., the couplings ap-
proach the singular line), and A (1) and B(1) approach

each other.
Let us begin by first considering the simplest situation

where a two-component Ansatz is relevant, namely, the
quartic potential U4(P)=(p/2)P +(g/4)P, with @&0
and g & 0. Let us denote R„by A„ for n even and 8„ for
n odd. To go beyond the spherical limit, we must keep
track of higher-order terms in 1/N in a simultaneous ex-
pansion about x =1.

As in the one-band phase, we define a scaling variable t
by x =1 c t—and, in this case, two scaling functions f (t)
and h (t) by

3gr +pr=1, 2gr+p=0 . (4.2)

By eliminating the parameter r, we find a nontrivial
scaling is possible only on the single line p= —2&g, as
expected. [Note that the signs of p and g are uniquely
determined since r &0 must hold. We also note that the
second constraint will be absent if one assumes that
h (t) =0, which corresponds to the scaling limit appropri-
ate for the one-band phase. This is consistent with the
fact that the susceptibility is actually nonsingular when
approached from the one-band phase. ]

Expanding next to the order e and after enforcing
(4.2), one obtains two equations which determine scaling
functions f and h:

—t = (4rf h), 0=2f—h—rh" . —
r 2

(4.3)

After eliminating f (t) and appropriately rescaling t and

h, one arrives at the Painleve II equation for h(t):

th =h ——'h" .
2

(4.4)

This string equation has been identified more naturally in
a treatment for large-N unitary matrix models.

One gains a better physical understanding of the func-
tion h(t) by examining the expression (3.1) for free energy
in terms of R„. One finds that in the double-scaling limit
the singular part of the susceptibility y(t) = I"'(t ) is pro-
portional to h (t). The critical exponent for the suscepti-
bility can be determined by examinin~ the asymptotic be-
havior of h(t) for large t; h(t)- t(v1 —,', t ~ + . )—

A„+~ =r+6 f(t +j e}+eh(t+j e) for n j even,
(4.1)

B„+~=r+ e f(t +j e) eh (t—+j e) for n+j odd,

where e=N '~ . Starting from (3.5), we write down two
separate equations for even and odd n, x =n /N-1 e t-
In the large-N limit, one makes use of (4.1) and expands
f(t+j e) and h(t+j e) in Taylor series around t. One
could at this point set the coupling constants to take on
their critical values. However, we prefer not to do so.
Instead, we demonstrate that this critical line emerges as
a necessary condition for the consistency of our scaling
law [Eq. (4.1)] in a double-scaling analysis.

From the structure of (3.5) and from our scaling Ansatz
(4.1), it is clear that sum of the even and odd equations
contains terms with even powers in e and their difference
contains only terms with odd powers in e. Expanding to
the order e, one obtains two constraints on the coupling
constants:
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These equations define a line in the four-dimensional
coupling-constant space, which can be parametrized as

4 2 2
g=, A.=, v=

3f r

1

3r
(4.5)

Two scaling functions can next be determined by the sys-
tem of equations

r t=h —8rfh +16r f —,'r (h')—
——'r hh" + —"f"

3 3

0=8fh —16rf h —4rh(h') 4rh h"—
——"r'&"h +-'r'h ~4~

iinplies that g(t) —t(1 —,', t—~+ ). The leading

term, representing the tree level, tells us that for this
solution k = 1, as is also easily determined from the tree-
level analysis described in Sec. II. To distinguish (4.4)
from those previously obtained under a scalar Ansatz, we
shall refer to (4.4) as belonging to a class of "type-II"
string equations.

We are now in the position to analyze the ease of U6.
The tree-level analysis tells us that there is a phase
boundary between the two- and one-band phases. We ex-
pect again a type-II solution as one approaches this
boundary from the two-band side. Starting from the re-
cursion relation (3.4) for U6 and using the same scaling
assumption, [Eq. (4.1)], one finds that the same Painleve
II equation (4.4) is reached if the coupling constants satis-
fy the two equations

10k,r +3gr +pr = 1,
6kr +2gr+p=0 .

These two equations represent a surface in the phase
space. Eliminating r, we recover precisely the equation
for a in Table II. We also note that the value k =1, to
which the solution (4.4) corresponds, again agrees with
the large-X analysis.

Are there nonperturbative solutions involving a two-
band phase which correspond to higher values of k?
Since the critical exponent of pure 2D quantum gravity is

y„„=—
—,', the case of k =2 is of special interest. In our

tree-level analysis for U4 and U6 with A. &0, no transition
surface with a k =2 singularity was found when ap-
proached from a two-band phase. It is actually not
difficult to directly examine the P potential
Us(P)= —,'pP +—4igg + —,'AP + —,'vP, for the possible ex-

istence of a k =2 solution using our current procedure.
Starting from (3.4), we again apply the scaling law
x=1 e t, e=N—'~, and R„+J scaled as in (4.1). One

first finds that this scaling is consistent if the coupling
constants satisfy the system of equations

35vr +10kr +3gr +pr=1,
140vr +30kr +6gr+p=0,
30vr +6k,r+g =0,
6vr+A, =O .

Note that f(t) can be eliminated easily since an identical
factor involving f enters in both equations, which leads
to a single equation for h(t) B. y rescaling t~2 ~ t and
h ~2' ~ rh, one finds another type-II equation for h (t):

th =h' —='h(h')' ——'h'h "+—'h"' .
3 3 6 (4.7)

2kt ~—&/(2k+ ]) (4.8)

with A„+, , B„+ given by (4.1). This scaling will be con-
sistent along a one-dimensional line in 2k-dimensional
coupling-constant space given as a solution of a system of
2k equations for 2k couplings and one parameter r. We
expect critical couplings to be such that for even k the
coupling of the term with highest power P

" to be nega-
tive. The singular part of susceptibility will be described
by a function h, where h (t) satisfies a diff'erential equa-
tion of order 2k. We expect them to be the same string
equations as in unitary matrix models which are related
to the modified KdV hierarchy.

V. PERIOD-q ANSATZ
AND MULTIBAND STRUCTURE

In this section we consider a q-component Ansatz for
the eoeScients R„and discuss its relation to the multi-
band structure of the matrix model.

Let us assume that R„has a period-q structure in the
large-N limit so that R„~A (x), x =n /N, where o =n

By examining the asymptotic behavior of h (t), one
verifies that this solution corresponds to k =2. Interest-
ingly, this k =2 type-II equation has again been obtained
previously from unitary matrix models.

At this point we remark on the structure of zeros of
b, (z) at points of the coupling-constant space where
Painleve-II-type solutions have been obtained. Note
from Tables I and II that for both U4 and U6 at a, where
we have a Painleve-II-type solution, we have four zeros of
A(z) merging at the origin. For the Painleve-II-type solu-
tion (4.7), one can check again that at (4.5) a number of
zeros coalesce at the origin (in this case the number of
coalescing zeros is eight, due to the higher potential).
This is similar to the behavior seen in the k = 1 and 2 uni-

tary matrix models when two ends of the arc merge.
Also, for Hermitian matrix models, k =2 solutions
(whether Painleve I or II) seem to appear when a double
zero coalesces with the single zero that forms the outside
edge of the band [e.g., at the line b in Table I and II, and
on the line (4.5) in Us]. This outside edge is absent in the
unitary case due to periodicity. It would be interesting to
identify a general correspondence, if any, between the
nonperturbative equation and the tree-level structure of
the zeros, and between the latter and the critical ex-
ponent.

We end this section with a few remarks on the double-
scaling solution for the two-band phase for general k. Al-

though we do not have a general proof, we expect the fol-

lowing to be true. To obtain the scaling solution corre-
sponding to a given value of k, one must start with a
model in at least a 2k-dimensional coupling-constant
space, i.e., U4k. The scaling law would be
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(modq), q) 3. This corresponds to a q-component An-
satz .In the large-N limit, the free energy (3.1) becomes

1
I ~const ——g f dx(l —x)lnA (x) .

0
(5.1)

F'q'= —f dx g f G (x,8),
0 0 2%

(5.2)

where G (x, 8) is a diagonal element of [z —P(x, 8)]
The q Xq Hermitian matrix P(x, 8) has matrix elements

We can again consider our Hilbert space as a direct sum

of q subspaces %,%=8~, where each A is spanned

by {~n ), n =qp+a, p =0, 1,2, . . . j. Therefore, C can be
written as a q Xq matrix where each component 0
maps S to S . In the large-N limit, under a q-

component Ansatz, the generating function
(1/N)g„(n~d n ) becomes

(x,8)=+A (x)5 .+,e'

++A (x)5,e (5.3)

(5.4)

It can be checked for consistency that (5.4) reduces to
(3.7) if all three A's are equal.

It is not difficult to simplify (5.2) for q up to 6. For
completeness, we provide formulas for q =4 and 6:

where o =1,2, . . . , q (modq).
It is convenient to use symmetric combinations

ri(x}=+~,A (x) and g=—gq, A (x). For q=3, (5.2)
can be greatly simplified, and one obtains

z~ dHFI '(z) =— dx
3 o o 2m' z(z q)——v'g(e ' +e ' }3i 9 —3i 8

3z —7)(x )
dx

3 o {z [z —ri(x)] —4((x) j'

I4) z & 4z 2&(x )

4 o {[z —g(x)z +(~(x)] —4((x) j
'i

(,) z 6z' —4'(x )z'+ 2(6(x )F' '(z)= — dx
{[z —ri(x)z +(6(x)z —e6(x)] —4(6(x) j

'~

(5.5)

(5.6)

where f4= A, A 3+ A, A4, (6=g', A A

e6= A
&

A 3 A 5+ A z A4 A 6. (g' denotes that the sum
runs over all nonadjacent pairs of A 's. For q =6, there
are nine distinct pairings of this type. ) It is also easy to
check that both (5.5) and (5.6) reduce to F' '(z) or F' '(z)
in appropriate limits where some A 's are equal.

It is a priori unclear for which potentials a particular q
Ansatz would be appropriate in the large-N limit. It is
plausible to assume that a large-q Ansatz would involve
situations where a large number of local minima exist.
For our current applications, we are primarily interested
in situations where a three-band structure can occur. We
have seen in Sec. III that, generically, when a potential
has a pair of degenerate local minima, a two-component
Ansatz becomes operative. The simplest generalization is
one where a potential has three degenerate minima, e.g. ,

I

for cr=1,2, 3. Assuming that at least one pair of A 's

are distinct, it follows that (5.7) leads to a pair of indepen-
dent equations:

Ari +gri+p=0, g=x/A, . (5.8)

However, these two conditions are incompatible for x
sufficiently large. (Since A must be positive, as g in-

creases with x without bound, q must also increase with
x, which is not compatible with the first condition. )

Therefore, we are again faced with a situation where
there exists an x, beyond which all three A (x) must be-
come equal. Setting r)=3ro and g=ro in (5.8), one finds

that
' ]/2

(5.9)

x = A [p+gri(x)+Ay(x) ]+A/(x), (5.7}

U (y) 9 yz+ g pc+ p6 pz(pz pz)z
2 4 6 6

The minima occur at /=0, and /=+go, where
P„=—3g/4k= —4p/g. That is, for A, )0, we restrict
ourselves to the surface g = —&16pA, /3, p) 0, g &0. In
Fig. 2(a) the intersection of this surface with the I-III
transition surface c is marked as P. Our numerical result
in Fig. 7 suggests a period-3 Ansatz when U has three
minima. We demonstrate below that, for this highly
symmetric situation where the minima are degenerate, a
period-3 Ansatz as formulated above indeed leads to a
correct description of the three-band structure.

Under the period-3 Ansatz, (3.4) in the spherical limit
leads to three coupled equations which, when expressed
in terms of g(x) and g(x), become

For x ) 1, with g = —&16@k/3, (5.4) can be integrated
easily and one obtains F' '(z) = ,' U6(z) i ~p(—z),whe—re

p(z)= A(z —ro)[(z —r, )(z —rz)(r3 —z )]'1

2&

(5.10)

and the r's satisfy 0 & r] & f'0 & rz «3, ~&~&~3 4~~,
r&+r2r3=6ro, and r, r2+r2r3+r3r, =9ro- The positive2

normalized spectral density (5.10) represents a three-band
structure and solves the Schwinger-Dyson equation when
the potential has three degenerate minima, as can be
checked from (Al) and (A2).

For x & 1, FI '(z) can be shown to agree with F"'(z)
obtained by analytic continuation, thus describing a one-
b'and structure. The transition between the three- and
one-band phases occurs at x=1, where ro ~& =rp:~'.
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This corresponds to the line

(5.1 1)

which has been marked as the point P in Fig. 4(a).
Surprisingly, we find that the three-component Ansatz

as formulated above is incompatible for U6 away from
the situation of three degenerate minima. Although (5.4)
would produce a real analytic function F(z) having the
structure of a three-band phase, it turns out that in gen-
eral ReF(z)A —,'U'(z) on the cuts. It is apparent that to
produce an acceptable three-band solution everywhere,
one needs to generalize the Ansatz. This will be discussed
in another publication.

Finally, in this section we discuss a double-scaling limit
around the point P and present the corresponding non-
perturbative solution. %'e have learned from the planar
limit analysis in Sec. II that the nature of the singularity
at P corresponds to k =1. This and the previous discus-
sion of the period-3 case suggest the scaling Ansatz

A„'+' =r+E f(t+j c)+cab(t+j e)

for n+j =3p+1,
A„+J =r+c f(t+j e)+ebb(t +j e)

for n+j =3p+2,
A„'~ =r+ e f(t +j e) e(a+ b )h (—t +j e)

for n+j =3p,
where t is defined by x =1—e t and e=X ' . a and b
are any nonzero real numbers. The results to be de-
scribed do not depend upon the choice of a and b; in par-
ticular, a =b is allowed. One can next write down three
recursion relations for the A„', o. =1,2, 3, and expand

f(t +j c) and h (t +jE) in Taylor series as usual. Of these
three equations, only two are independent, which we
choose to be the sum of the three and the difference of the
first and the third. Keeping terms up to the order e, one
finds that the coupling constants satisfy

10K,r +3gr +pr = 1,
9Ar+3gr+p, =, 0,
4k.r+g =0 .

These equations specify a line in the coupling space
which can be parametrized in terms of r by

1

r3

This is precisely the equation of the line P [Eq. (5.11))
that lies in the I-III phase boundary c; this shows that P
is the only line at which the above double-scaling Ansatz
is consistent. This agrees with our direct analysis using
(5.4).

Expanding to order e, we obtain two equations for the
two functions f and h which have the same structure at
the critical couplings as those found in Sec. IV. Eliminat-
ing f (t), we obtain the 0 =1 Painleve II equation for
h(t), [Eq. (4.4)]. Just as for the phase boundary between

the one- and two-band phases, the singular part of the
susceptibility is proportional to h . Again, we note that
the k =1 Painleve II solution is obtained at that point in
coupling-constant space where a double zero of A(z) gets
sandwiched between two coalescing bands (i.e., four zeros
of b, coalesce; see diagram for c in Table II), as in the case
of the phase boundary a.

VI. CONCLUDING REMARKS

We return to the questions raised in the Introduction
about the k =2 pure gravity solution. This solution is
obtained as one approaches line b (Table II, Fig. 4) from
the one-band phase. Note that line b lies partly in the ex-
istence domain of a two-band phase and wholly in the ex-
istence domain of the three-band phase. Thus three-band
solutions necessarily coexist with the k =2 one-band
solution (the latter will be referred to as the "pure gravity
solution" ), a fact that was also noted in Refs. 16 and 17.
Since the three-band phase does not have a unique solu-
tion, there actually coexist at b a one-parameter family of
three-band solutions, which, as discussed in Sec. II, can
be labeled by the difference of the chemical potentials in
the central band and sidebands, or by the location +ra
of the double zero of h(z) [see (Al) and (2.5)].

Of these, consider the specific three-band solution
(which we denote IIID) for which ra=r, (i.e., the single
zero of p is always coincident with the edge of the central
band). This particular phase reaches its own phase
boundary at the line b, where its sidebands vanish. (The
phase boundaries of IIIQ are b, c, and e.) We therefore ex-
pect this three-band solution III0 to possess a double-
scaling limit at b and hence provide a nonperturbative
solution that coexists with pure gravity at b. Using the
method described in Sec. II, we have found that the criti-
cal exponent for IIIQ approaching b is given by k =1.
This solution has the same free energy as the one-band
solution at b, which can be seen by inspection of the dia-
gram for b in Table II. However, this solution is not the
dominant three-band solution close to b. The reason we
expect this is that since r0 = r, for this solution, it follows
by the argument indicated in Sec. II that the chemical
potential for the central band and sidebands for this solu-
tion are very different, and hence this is unlikely to mini-
mize the free energy. The dominant solution at b is likely
to be a three-band solution with all bands of finite length.
Such a solution will not exhibit double scaling at b.

For the one-band phase one intuitively expects that
precisely at the boundary b the net energy barrier for an
eigenvalue to tunnel out of the central band is zero. On
the other hand, at a finite distance from b this barrier is
O(X). The situation has been analyzed in Ref. 17 where
it has been shown that in the double-scaling limit of the
one-band phase, the barrier for a single eigenvalue to tun-
nel through is of order 1. This means that all along the
path of double scaling the pure gravity solution can tun-
nel into IIIO. In view of this fact and the above observa-
tion that III0 is likely to exhibit a nonperturbative solu-
tion at b, possibly of a new type, it is of interest to identi-
fy this solution and interpret what the coexistence means
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for the nonperturbative string theory. Another interest-

ing solution to be analyzed is the k = 1 solution from the
three-band phase at y where the one-band phase gives the
k =3 multicritical solution corresponding to the Lee-
Yang model.

A beginning in this direction has been made in this pa-
per. In Sec. V we have exhibited one nonperturbative
three-band solution at a specific point on the boundary c.
However, our treatment does not cover the phase IIIO at
b. Among other things, one needs to understand how the

one-parameter freedom in choosing a three-band solution
reflects itself in the Ansatz for the R„.

We note here that all the k =2 solutions found in Her-
mitian one-matrix models so far arise either when the po-
tential is unbounded from below [e.g., line I3 approached
from the one-band phase in U~ and line given by (4.5) ap-
proached from the two-band phase in Us], or when the
solution that gives rise to k =2 behavior is subdominant
(as for the line b approached from the one-band phase in

U6). This is not the case for unitary one-matrix models
where a dominant k =2 solution seems to be possible in a
well-defined model due to the periodicity of the potential.
The implications of the present analysis of the phase
structure for unitary models will be discussed elsewhere.
The questions raised in this paper are also relevant for
multimatrix models and the d =1 model. It is of interest
to determine what new features in the phase structure
arise when these models are regulated by a well-defined
potential.

In other approaches to 2D gravity, at this stage there
does not seem to be any evidence of phases related to
multiband phases of the matrix model. However, it
would be worthwhile to explore, for example, whether
there is a phase of topological gravity that is related to
the Painleve II equation which seems to appear in multi-
band phases of the Hermitian matrix model and in uni-

tary matrix models.
To summarize, we have discussed the multiband phase

structure of Herrnitian one-matrix models from two dis-
tinct viewpoints: the large-S Schwinger-Dyson equation
and the orthogonal polynomial method. We have given a
systematic way of comparing the two approaches and
demonstrated in examples how periodicity in the recur-
sion coefficients gives rise to rnultiband structure. Fur-
ther, we have identified the double-scaling limit for two-
and three-band phases at specific boundaries and ob-
tained nonperturbative solutions which were not previ-
ously known to exist for the multiband phases of the Her-
mitian matrix model.

Tote added. After the completion of this work, we be-
came aware of Ref. 35, which also discusses the two-band
phase at the tree level from the orthogonal polynomial
method, using a technique that is different from ours.

APPENDIX A: DETERMINATION
OF PHASE BOUNDARIES

We present an example of the determination of phase
boundaries by considering the case of a U6 potential hav-

ing a three-band phase. Using the schematic representa-
tion [Fig. 4(c)], one finds that

b, (z) = A, (z —ro ) (z r—
, )(z —r, )(z —r, ), (Al)

A, [2ro(r&+r&+r3)+rQ

+r, r~r3]=kg —4A, ,

(A2)

+(r, rz+r~r3+r3r, )]=g +2@A,

—
A, (2ro+r, +r&+r3)=2gA, .

Every solution of (A2) for the r's gives a solution of the
Schwinger-Dyson equation or, equivalently, a solution for

p satisfying (2.1). This means that there is a one-
parameter family of three-band solutions, which we may
label by the value of ro. We also note that (2.3) and (Al)
allow one to determine m~, m4, etc., in terms of the r's

and the couplings, e.g. ,

wz= — —g ——[ro(r&r&+r&r3+r3r~ )

+2ror)rpr3] (A3)

When one reaches a phase boundary of the three-band
phase, the zeros of 5 collide, reducing the number of un-
knowns from four to two (see Table II). Equation (A2)
then a11ows a complete solution as well as provides a con-
straint among the couplings which is the equation of the
surface constituting the phase boundary. For example, at
c we have ro = r

~

= r& Equation. (A2) then gives

1
0

—2g ——,r3 = (
—2g+o3),co 1

4 '
5A,

(A4)
co = [8(3g —10pA, ) ]' ',

and it provides the equation sho~n in Table II. For this
case,

where r, 's, 0(r, ~ra ~rz r3, describe the locations of
the zeros of b, . As is apparent from (2.5); in the above
configuration the central band consists of
z E ( Qr,—, Qr, ), and the two sidebands

(+Qr~, +Qr3). By comparing the coefficients of z, z,
and z of this expression with that from the right-hand
side of (2.4), we obtain three equations:

A, [ro(r i+r3+r3)+2ro(r] r3+r3r3+r3ri
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and p=0 otherwise. Equations for other phase boun-
daries are obtained similarly.

At this point we also write down for convenience of
referring in the text the expressions for p(z) for the one-
and two-band phases in U4 when p(0 and g )0, ' ob-



42 MULTIBAND STRUCTURE AND CRITICAL BEHAVIOR OF. . . 4121

tained by solving the Schwinger-Dyson equation. For the
one-band phase depicted by the first diagram in Fig. 3(a),
we have

p(z)= g(z ro)—(r, —z )' for O~z ~r, ,
1

2m

where

(A6)

=2fp=
3g

U =2—p —— &0, r, = (
—p+v))0,

2 3g

where

(AS)

( 2+ l2g )I/2

[p(z) is zero outside the region displayed. ] For the two-
band phase depicted in Fig. 3(b),

1p(z)= gz[(z r, )(rz —z—)]' for r, ~z ~r~,

tersects c at the line P [see Fig. 2(a)]. For purposes of this
calculation, we choose a path of approach that lies in the
plane A, = —,'; hence the coordinates of P are p, = —', ,

g, = —1, and k, =
—,'. To be in region III near this point,

one can parametrize g=g, —t, t ~0. Then, along the
curve of approach, p= —', (g, t )—.

To determine k we need wz as a function of p, g, and k
in the three-band phase. As noted in Appendix A, this
requires making a choice of ro. From (A4) one finds that
ro must take on the value —g, 14K., at the critical point.
We choose the particular solution with ra= —g/4A, all

along the curve. This special choice is motivated by the
desire to compare with results from the method of or-
thogonal polynomials in Sec. V, but is not necessary. We
expect other choices to give the same result for k. With
this choice, r, , rz, r3, and wz are determined from (A2)
and (A3) as functions of t This . calculation was done by
using MAcsYMA. For small t it was found that

1
r, =—(

—
IM

—2&g ), r =—
(
—p+2&g ) .

g g
(A9)

~, = —","' —10214t

—(344064&3—49562341)t +O(t ) .

APPENDIX B: DETERMINATION
OF CRITICAL EXPONENTS

Consider approaching the phase boundary c from the
three-band phase along the surface g = —",pk, which in-

No singular terms in t were obtained. This means that
when c is approached at P from the three-band phase, we

have k =1. The same method gave wz-t, corre-
sponding to k =3 when the curve y was approached
from the one-band phase.
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