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We calculate the O(a') contributions to the renormalization-group P functions in the N = I su-

persymmetric o model with a dilaton. At this order both metric and dilaton P functions are found

to depend nontrivially on the dilaton field and vanish if the dilaton satisfies V„V+=0. By employ-

ing the Curci-Pa8'uti relation it is shown that such dilaton backgrounds in Ricci-flat spaces R„,=O
satisfy the conformal invariance conditions up to this order. The particular class of Ricci-flat, com-

pact, and orientable manifolds naturally emerge as appropriate internal-space configurations con-
sistent with local scale invariance. We further explore the cosmological consequences of these dila-
ton configurations. In a Robertson-%'alker four-dimensional background we find all dilatons satis-

fying V„V,/=0. Except for the constant and the time-dependent dilaton P(t)= —21nt+A, whose

cosmological implications have been already discussed in the literature, additional solutions are
found. These may be of relevance beyond leading order and for nonvanishing background values
for the antisymmetric tensor 8„„.For these solutions, also the cosmic scale factor is at most linear
in time therefore giving rise to either a static or a linearly expanding (contracting) universe.

I. INTRODUCTION

Two-dimensional a. models still continue to attract the
interest of particle physicists because of their close con-
nection with string theories. Their action represents the
motion of the string in nontrivial backgrounds for the
target-space metric 6„, antisymmetric tensor 8„,and
dilaton P which are known to be the massless modes of
the string excitations. The low-energy effective action of
these modes, derived from the string S-matrix dynamics,
yields equations of motion that can be derived from con-
formal invariance of the two-dimensional 0 model. '

Conformal invariance is equivalent to the vanishing of
the reparametrization-invariant P functions P„„13s, P&
which up to diffeomorphisms are the renormalization P
functions P„„,Ps, P&, respectively. ' The nonvanishing
component of the energy-momentum tensor generates the
Virasoro algebra whose central charge P& turns out to de-
pend on P&, P„„. The constancy of P& is guaranteed by
the Curci-Paffuti' equation that relates the derivative of
P~ to P„„,13B. At the fixed points of P„„,Pii therefore, P&
consistently can be taken equal to zero. Conformal in-
variance is intimately connected with the consistent
quantization of string theory and to this effect calcula-
tions of the P functions have been carried out in
numerous works in the case of the ordinary nonlinear o.

model. ' In the supersymmetric tT model P„has been
calculated up to four-loop order " when the dilaton
field is absent. At the fourth-loop order P„was found
not to vanish even on Ricci-flat spaces. " The introduc-
tion of the dilaton field in the supersymmetric case is
rather nontrivial making matter interacting with the
two-dimensional geometry (zweibein). Explicit calcula-
tions of the P functions in the presence of the dilaton field
in the X =1 supersymmetric 0. model do not exist, to our

knowledge, beyond the two-loop order. Because of the
significance of the f3 functions we undertake this problem
and in this work we present a three-loop calculation of
the renormalization-group P functions in the N =1 su-

persymmetric nonlinear cr model in the presence of
metric and dilaton fields. We will use component formal-
ism since the mixing of the zweibein and the matter mul-

tiplet makes it rather difficult to use the otherwise more
economical language of the superfields.

This paper is organized as follows. In Sec. II we briefly

discuss the role of the auxiliary fields of the supersym-
metric nonlinear cr model and we calculate the 0(a' )

corrections to both metric P„„and dilaton /3&

renormalization-group P functions. In Sec. III we discuss
the conformal invariance conditions and show that the
special backgrounds R„„=O, V„V,/=0 which are fixed

points of the renormalization-group P functions satisfy
the conformal invariance conditions at this order. We ar-

gue that these are the simplest possible backgrounds hav-

ing this property. In Sec. IV we carry on to discuss the
consequences of these conditions for Robertson-Walker
(RW) cosmologies. We find all possible dilaton solutions
satisfying V„V,/=0 and discuss their implications for
cosmology. Finally we end up with the conclusions.

II. THREE-LOOP P FUNCTIONS

In order to treat properly the supersymmetric cr model
in the presence of a dilaton field P(x) one has to take into
account the auxiliary fields of both the string multiplet
and the zweibein multiplet A" and H, respectively. These
mix with each other and the auxiliary field part of the ac-
tion is given by'

42 4094 1990 The American Physical Society



42 CONFORMAL INVARIANCE BEYOND THE LEADING ORDER IN. . .

4m.a'S,'„,= d x G„A"A'+2a' &A H

+A."A.'(I „A&+a'P „~)].

H is the auxiliary field associated with the multiplet ac-
commodating the conformal factor o. in the gauge

g &
=n &e . Elimination of A", H brings down a four-

fermion dilaton-dependent coupling in addition to the
well-known Riemann tensor coupling. This is given by

~yves.
=

i2 R pvxi A
gvri ( 0)

where

A „„i(p)= [(V V„p)(V„Vip)—(I~~A, )] .1

12(V h)~

(2)

Both tensors R„„&and A„,„& have the same weight un-

der rigid conformal transformations G„,~QG„„. R„,„z
and A„„„zhave the same antisyminetry/symmetry prop-
erties as far as their indices are concerned. Also A„,z
possesses the cyclicity property A„,„&+A„,& + A„&,
=0, the same as the Riemann tensor, but it does not
satisfy the Bianchi identity. The appearance of this cou-
pling is not hard to understand. From Eq. (1) one can
find that the two-point functions of the auxiliary fields
are

straightforwardly the auxiliary fields via their equations
of motions in the action (1). The A „„,i term has been
shown' to contribute to the p function of the metric at
the three-loop order and hence it has to be taken into ac-
count in the conformal-invariance conditions. Its pres-
ence may impose stringent restrictions on the dilaton
background if conformal-invariance conditions are
demanded but for this to be known a complete three-loop
calculation of the p functions should be performed. Such
a calculation can be carried out using covariant tech-
niques developed in Ref. 13 which have been also applied
for the calculation of the p functions of the ordinary 0
model. ' These use the propagation of strings in curved
backgrounds and are suitable for extracting covariant re-
sults directly in configuration space. In this work we
found it convenient to work in momentum space, and in
the conformal gauge g &

=il y, but our results can be
converted to configuration space and in a covariant form
as we shall see.

Our calculation, especially for the dilaton p function, is
greatly facilitated if we rescale the bosonic quantum fields

P as ('=e' ~
g
' while for fermions we rescale as

k"=e' " k". Such a redefinition makes the bilinear
in the quantum field terms be brought into the form

d 2 —
e& n g ag2g b+ e 2uR (2)g ag b

4@a' 4(1 —e)

(A A„) =G
IJ~

(V4})2

~'(w„a) =

a'(HH) =
(VP)'

1

(VP}

G—,I'+ ~' ~" + ", , (4)
(VP)' (VP)' (VP)'

where we have suppressed for simplicity all indices. The
I G term in Eq. (4) with the BI already present in the su-
persymmetric o.-model action yields the Riemann tensor,
and the rest which depends on P gives the A„„„&cou-
pling. This is of course equivalent to eliminating

FIG. 1. Graph giving rise to a four-fermion coupling. The
dashed line denotes auxiliary fields.

as can be found by inverting their mixing matrix. Then
the graph shown in Fig. 1 yields a result for the four-
fermion coupling of the form

——'X'N, '
2

The signature of the d-dimensional world-sheet flat
metric is (+,—,. . . ,

—
) and R' ' is given by

R' '=(1 e}e [2—8 o —e(2o) ] where e=—2 —d. With
such a rescaling all interaction terms in the normal coor-
dinate expansion have a o. dependence of the form e"'
(i'd=integer or half-integer) without involving derivatives
of o. Then a contribution to the dilaton p function may
arise from these factors through quadratically divergent
graphs which when converted to configuration space
yield among other things eB 0 which is essentially eR' '.
Thus these o. dependences may in principle give rise to
contributions to the dilaton p-function p& provided that
the corresponding graph is quadratically divergent and
carries at the same time a 1/e pole. Another contribu-
tion to p& may arise from the eR ' 'g term appearing in

Eq. (5) which is of order e so that when inserted in a bo-
sonic line of a given graph may give a simple pole multi-
plying R' ' provided that the graph itself carries 1/e
pole. These are the sources from which a contribution to
the dilaton P function may arise as well as graphs involv-

ing vertices of the type V„V„+ ' ( "R' ' aris-

ing from the normal coordinate expansion' of the dilaton
term. Before embarking on the details of our calculation
we should remark that the redefinitions performed on the
fields are e dependent. Therefore a counterterm which in
the initial language in terms of the P, A,

' fields has only
poles, when expressed in terms of the g', X' fields may
carry some finite parts from the expansion of the prefac-
tors e" occurring at the vertices which should be taken
into account. These finite contributions cause no addi-
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tional calculational problem since they are determined in
a unique way using the fact that the counterterms in the
general gauge are covariant expressions' of the fields in-
volved. Regarding the calculation itself we should re-
mark that we need calculate only graphs involving at
least one fermion loop since the corresponding pure bo-
sonic contributions have been already known up to
three-loop order. '

During the process of the calculation we will consider
first graphs having two (t)x }fields as external lines which
are logarithmically divergent. These certainly contribute
to the P„„ function if they have 1/e pole but are
not the only ones. Also linearly divergent graphs with
only one (t)x ) as an external leg or quadratically diver-
gent ones without (t)x)'s. at all may in principle con-
tribute to P„„. For instance, a contribution

(1/e)T;r)~'(Q)Q'S(Q')5' '(Q+Q') of a linearly diver-

gent graph, with F(Q} denoting Fourier transform of
F(x), when converted to configuration space yields
(1/e)T, VJS(t)x'. t)xj) which signals a nonvanishing con-
tribution to the metric P function P„„. For the contribu-
tions of the various graphs we use supersymmetric di-
mensional regularization' (SDR). In the process of the
presentation of the various contributions we omit graphs
that have led to either finite results or graphs that when
their subdivergences are substracted out lead to no simple
pole. Graphs involving tadpoles, for instance, have been
found to belong to such a class (see also Ref. 14).

In Fig. 2 we show all three loop graphs giving rise to a
simple pole with external (t)x) lines. These contribute
only to the metric P function. Each of the graphs shown
contains at least a fermion loop and is accompanied by its
countergraph(s) which involves its lower-order subdiver-

l
I

-X-
&B8x &R 8x

(a2) R 8K(y2) R

/ 'IL

A
R 8x

(c1) (c2) (c3)

iXI
/

I

counter-+ graphs

8x 8r
(e2)

counter-+ graphs counter-+ graphs

( ) (h)
FIG. 2. Three-loop graphs contributing to p„„with external Bx lines. Solid (dashed) lines denote fermions (bosons). Graphs (f)

(g), and (h) are purely bosonlc. Countergraphs with the lower-order counterterms marked by . whenever contribute stand to the

right of the main graph labeled by the same letter.
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gences. However the last three graphs, Figs. 2(fl —2(h),
are purely bosonic and are there for demonstrating how
the supersymmetric cancellation takes place. The contri-
butions of all graphs of Fig. 2 are displayed in Table I.
Particularly for the first set of graphs of Fig. 2, namely,
a, ,a 2 we displayed explicitly their separate contributions
in the conformal gauge to show that their sum a, +a&
can be put in a covariant form (see Table I}. We remind
the reader that finite o contributions, which in order to
save space we do not exhibit here, were necessary for
making all the expressions shown in Table I covariant.
Figures 2(f) —2(h} are purely bosonic graphs yielding sim-
ple poles canceling all but the dilaton-dependent part of
the graph of Fig. 2(d) (see Table I). The mass m appear-
ing within the logarithms in the expressions of Table I is
an infrared regulator. Actually this mass regulator can
be inserted only in one of the Feynman propagators since
two of the momentum integrations can be made to be free
of infrared singularities (Foakes and Mohammedi in Ref.
8). Note the cancellation of these infrared singularities
between graphs a, and az. Cancellation of the infrared
singularities takes place in exactly the same manner be-
tween all graphs and their corresponding countergraphs
of Fig. 2. Linearly divergent graphs with only one (Bx )

at the external leg exist but they yield double poles and
hence are not shown. Quadratically divergent graphs,
without (Bx )'s, which may contribute to P„,will be con-
sidered later when dealing with the dilaton P function.
All graphs shown in Fig. 2 yield a vanishing contribution
to f3„„in the absence of the dilaton field in which case the
dilaton-dependent four-fermion coupling is absent, too.
As we shall see this also holds for the additional contribu-
tions to P„„arising from the three-loop quadratically
divergent graphs entailing to vanishing P„„at this order,

when the dilaton is absent. All this is of course known
from earlier publications (Ref. 11, Ketov in Ref. 10). The
reason for presenting the details of our calculation is in
order to show that the particular methodology we follow
in momentum space and in terms of field components
works perfectly well for the calculation of the metric P
function and soon we intend to employ these techniques
for a calculation of the dilaton P function. The presence
of the dilaton field due to its mixing with the two-
dimensional geometry complicates the situation and
perhaps working with superfields may prove not to be as
easy a task as in the dilaton-free case.

The dilaton P-function P& in the N = 1 supersymmetric
o model, with dilaton present, has not been explicitly cal-
culated beyond the two-loop order, although in the ordi-
nary o model P& is known up to the four-loop order
(a' }. Graphs giving rise to nonvanishing nth-order con-
tribution to P& can be divided into two main classes. In
the first we include the quadratically divergent graphs in-
volving e"' factors from the vertices and also those in-
volving an eR ' 'g insertion in a bosonic line [see Eq. (5)].
In both cases we need to have a graph carrying an I/e
pole as has been explained earlier. Also in that case we
need to consider an (n+1)th-1 opograph for an O(a'")
contribution to P&. The second class of graphs is that
involving only one vertex of the type
a'(V VP)g gR ' ' stemming from the normal coor-
dinate expansion of the dilaton term which already car-
ries a factor a'. Therefore for the O(a'") contribution to
P& we need to consider an nth-loop graph having 1/E
pole. However this latter class of graphs needs no calcu-
lation at all using results from the three-loop calculations
of the metric P function in the absence of a dilaton field.
The reason is that a graph with a a'(V VP)g . gR' '

TABLE I. Contributions of graphs displayed in Fig. 2. All terms should be multiplied by 1/4m. a .

Graph in Fig. 2 Contribution

(a1) l3 1 1 lnm e2eo g g ab (c;d}y~mya+n
12e2 24' 8e abm (c;d) n

(a2) a' — + 8 .„R'1 lnm

(a1+a2) g gaPg g ab (c;d)gamy ~n
1 1

6p2 24m
abm (c;d) n P

(b 1+b2) l3

12m' 8e

(c1 +c2+c3) a'
6e 6e

+

(d) gg bd f ~ W &PX
E

(e 1 +e2)

(f+g+ h)

g gaPg a g bfcdg gamy +n
1 1

E

Their 1/e pole cancels the corresponding pole of graphs (al) —(e2) of Fig. 2

except the dilaton-dependent piece of the contribution of graph (d)
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tex exhibits I /e pole if and only if the same graph but
with the external a'Vk . Vk PR' ' replaced by

F;,k . . . k (R)t)x' t)xj has also a simple pole. In this ex-
igk l k„

pression FJ . . . „(R) stands for a function of Riemann

tensor and its derivatives. For instance when n =3 we
have a dilaton term

&—~R''V V V
6 P] Pp P3

and also a vertex

graphs of the first class, that is, with e"' and R' 'g in-
sertions.

In Figs. 3(al) —3(c) we present three-loop graphs in-
volving at least one fermion loop yielding nonvanishing
O(a' ) contributions to P& and O(a' ) to P„„. The results
from the calculation of these graphs are shown in Table
II. All expressions in this table have been put in a covari-
ant form as was done for the graphs of Fig. 2. As regards
the dilaton P function at this loop order we have found a
contribution, from graphs 3(al) —3(c), that cancels the
corresponding bosonic one of Figs. 3(d) and 3(e) which is
(see Ref. 8)

Previous calculations in the dilaton-free case, " as well as
our previous considerations (see Fig. 2), have shown that
such a simple pole for these graphs does not exist up to
the three-loop order. This proves therefore that the
aforementioned vertices in the supersymmetric o model
yield vanishing contributions to P& up to this loop order
and hence are not considered. Thus we will consider only

4~+' 48

Thus we have found explicitly that the O(a' ) contribu-
tion to P& vanishes in the N = 1 supersymmetric o model,
a result not unexpected. ' Note that graphs 3(al), 3(a2),
and 3(c) contribute to the metric P function. However
their P„„contributions which depend only on the
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/
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FIG. 3. Three-loop graphs [(al) —(e)] yielding nonvanishing contribution to dilaton and metric P functions. Graphs (d) and (e) are
the bosonic contributions. Four-loop graphs [(fl)—(t2)] contributing to the dilaton P function. Other four-loop graphs, among them
bosonic, exist but are not shown as their contribution cancels in the final result.
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geometric elements of the target space cancel against the
corresponding bosonic ones of graph 3(d) leaving out a
nonvanishing contribution to p„ through the four-
fermion coupling A„„,z(P).

Our next task is to proceed to the four-loop O(a' ) cal-
culation of the dilaton p- function p&

'. To this effect we

need all four-loop graphs having I/e singularities with
e"' at the vertices or R' ' insertions. The vertices
a'V' . Vpg . . gR' ' do not contribute to p& for reasons
that have already been stated. In Figs. 3(fl) —3(i2) we

give all graphs with at least a fermion loop which con-
tribute to p&

'. Their contributions are listed in Table II.
Notice that all four-loop graphs of Fig. 3 depend on the
dilaton field p through the coupling A„„,q(p). Other
four-loop graphs not depending on P do indeed exist;
however their contribution to p& cancels against the cor-
responding bosonic one exactly as in the three-loop case
and hence are not shown. Because of the nontriviality of
the calculation we wrote separately the contribution of

the three first loop graphs Figs. 3(fl)—3(f3), and as well as
their sum put in a covariant form (see Table II). This is

in order to reveal the mechanism of the cancellation of
the infrared singularities lnm /e and also to show how

the various contributions are added to yield a covariant
result. Collecting everything together we find the follow-

ing result for the three-loop contributions to the
renormalization-group p functions:

+ —,'[A,b,d „R' ' . .,+(P~v)]},

p(3) — i G p~p(3)
6

Both p& and p„, are nonvanishing at this loop order since

A „„,z ( P )WO in general. They only vanish when

A„„„z=0 which is obviously satisfied if the dilaton obeys

V„V„/=0. Such a relation yields that g„=—V„P must be a

TABLE II. Contributions of graphs displayed in Fig. 3. All terms should be multiplied by 1/4~a .

Graph in Fig. 3

(a1+a2)

Contribution

g apR R abed gamy +n
1 1 3

24 ' 4EE
abed; m; n 13

g R R abcdR (2)1
abed

(b1+b2)

(c)

(d+e)

a' — &—g R R'b'dR "1

24 g abed

gaPT Tabcd y +my +n~ 3

E

of graphs (a1)—(c) depicted in Fig. 3

,4 1 lnm '
a'

16E 8E
e ea (e ecrR ab™)ya(e eo R cd

)T

3 23 + lnm e2eoR ablmR cd y2(e eo T )
] 6E2 8E

Im e abed

They cancel the R' 'RR and R;R; 8g8g contributions

(f2) r4 1

4E2

3 lnm

8E
R ablmR cd y2(ceo TIm abed

(f3) s4 1

4E2

2

[y R abbayaR cd
Im

+2E(8'Rah™)R', 8 o]T b„.
(f1 +f2+ f3) a'4 1

g Rah™Rcd T R(2)
16E

bn abed

(g1+g2)

(h1+ h2)

(i1+i2)

+ terms not contributing to P~&
'

R ablmR cd T R (2)3

16E
Im abed

g TabcdmT R (2)3

16E
abed; rn

+ terms not contributing to P&
'

4 + Tabcd;mr R (2)9
16E abed; m
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Killing vector of the D-dimensional target space. %e
shall come to this point later.

III. CONFORMAL INVARIANCE
AT THE THIRD-LOOP ORDER

X „„,=e' " [ic(B+8a)d Hcd] . — (8)

This gauge choice makes the mixing term (7) disappear;
the field H appearing in (8) is the auxiliary field of the
zweibein multiplet. Eliminating H as before but taking
into account the ghost term Hcd above yields a ghost La-
grangian which when V„V„/=0 receives the simple form

Xs„„,=e' " [ic(8+ger )d +A(cd ) ],
A = 1/( V„P)2 .

As stated in the beginning the dilaton dependence of
the P functions is solely due to the auxiliary fields of the
rnatter and zweibein multiplets which get mixed in the
supersymmetric Lagrangian of the 0. model when the di-
laton field is introduced. The auxiliary fields being non-
dynamical can be replaced via their classical equations of
motion and the resulting theory is described only by the
dynamical degrees of freedom. After imposing the super-
conformal gauge g &

= i) y, g =i y ~ ( P denotes the
gravitino field) the conformal factor a and the Majorana
spinor y transform as members of the same supermulti-
plet under the special world-sheet supersymmetry, rem-
nant of the general coordinate transformations (GCT)
and supersymmetry which the original Lagrangian
possesses. 's The auxiliary field H appearing in Eq. (1)
completes the cr multiplet so that the special two-
dimensional supersymmetry algebra closes. As far as P
functions and conformal invariance considerations are
concerned, ~ is not considered quantized but is rather
treated as an external classical field exactly as in the ordi-
nary o model; therefore its superpartner y in the super-
symmetric model should be handled in the same manner.
However one can pose the question whether correct
treatment of the conformal invariance conditions requires
that both o and y fluctuate about some background
values 0.0,yo. If it turns out that this is indeed the case, it
would mean that the quantum effects of the two-
dimensional world-sheet geometry should be taken into
account. The only case that this ceases to take place and
the quantum effects of the world-sheet geometry do not
affect the P functions, and therefore the conformal invari-
ance conditions, is when V„V„/=0. At first sight this
condition while making the expression of Eq. (6) vanish
does not, at the same time, make o and y decouple in the
classical Lagrangian. Therefore even in this case one
may fear that they alter the results for P functions. Start-
ing, for instance, with the field y there exists in the La-
grangian a mixing term

~=a'(V„P)k "8y (7)

which seems to contribute if g is considered quantized.
One then uses the special supersymmetry of the world
sheet to impose the gauge fixing y=O which is imple-
mented by a set of Majorana commuting ferrnions c,d
whose Lagrangian is

The additional coupling in (8 ) where four ghosts partici-
pate was explicitly found not to contribute to the P„„,P&
beta functions. In fact all relevant graphs were found to
involve at least one derivative of A which is zero because
of the condition V„V„/=0. The only graph not involving
derivatives of A but A itself is a four-loop graph with
only ghost lines connected at three different four ghost
vertices which may in principle contribute to P&

'. How-
ever explicit calculation of this and its associated
countergraph, involving the lower-order counterterms,
yielded a vanishing result. Therefore the gravitino mode

y indeed decouples and does not contribute to the P func-
tions at this order. An analogous type of behavior is ex-
pected for the conformal factor cr when it is considered
quantized. In fact there is a mixing term a'( V„P)g Clo in
the Lagrangian which is actually the supersymmetric
part of the coupling (7). Therefore we conclude that dila-
ton backgrounds satisfying V&V„Q=O have the virtue
that the quantum effects of the world-sheet geometry do
not interfere with the quantum effects of the target-space
geometry as far as conformal invariance is concerned and
can be safely ignored. Notice that it is only in this case
that the renormalizations of the target-space metric G„,
do not depend on the dilaton field in the supersymmetric
cr model. This has been assumed in works where the
Curci-Paffuti equation for the supersymmetric cr model
was derived' and probably has to be reconsidered in case
P is an arbitrary background not satisfying V„V„/=0.

Note that V„V,Q =0 along with R„„=O are fixed
points of the renormalization-group P functions up to
O(a' ) and also satisfy the conformal invariance condi-
tions to order a' . In order to check whether these are
consistent with conformal invariance to order a' one has
to take into account the diffeomorphisms whose contribu-
tions at this order are in general nonvanishing. To find
the effect of diffeomorphisms one may use the Curci-
Paffuti equation ' which is certainly valid in the super-
symmetric case when P satisfies V„V /=0 as we have
remarked. In fact in this case the Curci-Paffuti equation
is identical in form with that of the ordinary o. model.
Then following a procedure similar to that described in
Ref. 14, and using the fact that the two- and the three-
loop contributions to the P functions vanish one can find
in a straightforward manner that at this loop order the
diffeomorphisms vanish too. This was perhaps expected
on the grounds that at this loop order the P functions re-
ceive contributions from only the one-loop effects and the
diffeomorphisms are known to vanish at the one-loop or-
der. Therefore R„„=O,V„V„Q=O are backgrounds con-
sistent with superconformal invariance up to the third or-
der in the string slope parameter a'. In addition, owing
to the nontrivial character of the P-function dependence
[see Eq. (6)] on the dilaton we may argue that these are
the simplest possible background fields up to this order.
A simple solution to these equations is obtained if the
space is flat, G„=g„,and the dilaton depends linearly
on the space-time components, that is, P=ii"y„. Solu-
tions of this type satisfy the conformal invariance condi-
tions and have been proposed as backgrounds bearing
special features which may also be important for cosmol-
ogy. ' ' However Minkowskian background for the tar-
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get space is not the only possible solution available. The
dilaton condition V„V,/=0 yields V„g,=O for the vector
g„=VIP and hence Vzg„+V+„=0. Therefore g„, de-
rived from the potential P, is a Killing vector of vanish-
ing covariant derivative. Nontrivial spaces adopting such
Killing vectors do indeed exist. In fact according to a
theorem due to Bochner the particular class of compact
and orientable Riemannian manifolds having vanishing
or negative Ricci tensor can adopt Killing vectors of only
this kind. Therefore product spaces M XS with M
the d-dimensional Minkowski space and S a Ricci-flat
compact and orientable manifold, naturally emerge as
backgrounds satisfying the conformal invariance condi-
tions up to 0(a' ).

In the next section we shall check whether the special
backgrounds under discussion are consistent with
Robertson-Walker cosmologies and comment on their
cosmological implications.

IV. COSMOLOGICAL IMPLICATIONS

The equations

R„=O, V„V„/=0, (9)

as we have shown are consistent with conformal invari-
ance of the supersymmetric o model in the presence of
the dilaton up to the third order in the slope parameter
e'. Backgrounds satisfying these equations are the sim-
plest possible and arguments supporting this were given
in the previous section. Particular solutions satisfying
Eqs. (9) are consistent with Robertson-Walker cosmolo-
gies as have been shown elsewhere. ' In these considera-
tions the dilaton was assumed to depend linearly on the
space-time components of the target space whose metric
was taken flat satisfying trivially therefore the condition
for Ricci flatness R„„=O. In the absence of an antisym-
metric field B„such solutions are consistent with con-
forrnal invariance, actually to all orders. In fact at any
order the P functions depend on the geometric elements
of the target space, which vanish in a flat space-time, and
on the dilaton field through expressions involving at least
the second covariant derivative of it. The latter also van-
ish when the dilaton is a linear function of the space-time
coordinates resulting to vanishing p functions. Back-
grounds which satisfy Eqs. (9) do not always lead to a flat
target-space metric and the previous all-order argument
does not hold any more. Although perfectly legitimate
the Minkowskian background G„=g„ is not the only
solution available and we think that for a more complete
study one should exhaust all the possibilities offered by
the set of Eqs. (9). After all the initial aim was to study
the motion of the string in nontrivial backgrounds
6„&g„.It is our intention therefore in this section to
examine all the solutions offered by the system of Eqs. (9)
without committing ourselves to a necessarily fiat target
space assuming however that the four-dimensional metric
is of the Robertson-Walker form. We will not assume ei-
ther any particular dependence of the dilaton on the
space-time coordinates and in this respect we take into
account all solutions consistent with Robertson-Walker
cosmologies.

R„(g)= 2(D—„—QD„Q+g„„D p), (10a)

D„D„P=D„PD„P "D—qPD P,
2

(lob)

where D„refers to the metric g„„and D is its four-
dimensional D'Alambertian. Equation (10b) when con-
tracted by g" yields

D P= DqPD—
P . (10c)

In a Robertson-Walker metric the line element ds can be
expressed as

ds =dt a(t)g, (x—)dx'dxj,

where a(t) is the cosmic scale factor. The second of Eqs.
(10), which actually stems from the dilaton condition
V„V„/=0 yields the following set of ten partial
differential equations when the Robertson-Walker metric
of Eq. (11) is adopted:

(12a)

(12b)

(12c)

The indices i,j run from 1 to 3 and the overdot(s) stands
as usual for differentiation with respect to time. Equation
(12a) is solved immediately giving

8;P =ae ~K, (x),
with EC;(x) a function of the space variables x, which in
turn yields

P = —
in[a (t)f(x) + b (t)], (13)

where K; = r);f. Plugging E—q. (13) into (12b) and taking
the time derivative of both sides of it we arrive at

(e ~)' =0 (14)

from which it follows that

a(t)=a2t +a&t+a0,

b(t) =b, t'+ b, t+ b, ,
(15)

provided that f (x)%0. The case f (x)=0 will be con-
sidered separately in the sequel. The demand that P as
given by (13), with a and b having the form given by Eqs.
(15), satisfies Eqs. (12b) and (12c) restricts the form of the
functions a, b, and f as we shall see.

In order to proceed to our analysis we distinguish two
cases.

The 0.-model metric G„ is related to the physical
metric through the rescaling

Gpv=~ gj v ~

where we have rescaled in this section the dilaton as
P~P/2 in such a way that the string-loop expansion pa-
rameter is e~. Using this, Eqs. (9) take on the form
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A. f=const

This covers the f =0 case, left out from our considera-
tions so far, and the dilaton turns out to be a function of
the time only. The set of Eqs. (12) yields then

2

l. a&%0

In this case by a shift in the time variable we can al-
ways put az =0. Then by defining

%=a,f+b,

2
(16a) the system of Eqs. (18) takes the form

—P+P+(ina) /=0 . (16b) g
' ~.+~/+ =a1+ 4a 1&0~2 (19a)

An immediate solution of these equations is the trivial
solution /=const which we do not consider. Actually
this has been considered in Ref. 21, and leads to a static
universe since the scale factor a(t) turns out to be a con-
stant. In this / =const case it is not possible to infer the
form of a (t) by the second of Eqs. (16) but we have to ap-
peal to the first of Eqs. (10). When /%const Eq. (16a) is
solved giving

(19b)

We shall work in a coordinate system in which the three-
metric tensor has the well-known form

g„,=(1—kr ) ', gee=r, g&&=r sin 8, (20)

where the constant k is the space curvature. In a
straightforward manner one can verify that the r 0 and ry
components of Eq. (19b) give

P= —21n(t+c)+A, (17a)
'P=rV(8, 8)+o(r), (21)

from which in view of (16b) it follows that

a(t) =c onst X t . (17b)
where V depends on the angles 8,p and o(r) is a function
of the radius r In vi.ew of this from the rr part of (19b) it
follows that

We are allowed throughout to a shifting of the time coor-
dinate and thus the constant appearing within the loga-
rithm in (17a) is unimportant. The solution given by Eq.
(17a) has been already obtained in Ref. 21 by assuming
however that the dilaton has only a time dependence.
Here it was derived as one of the solutions of the equa-
tion V„V„/=0, which in principle may provide us with
additional solutions. The time-dependent dilaton given
by Eq. (17a) is consistent with Eq. (10a) provided that the
three-dimensional curvature k is either vanishing or posi-
tive depending on whether one has a vanishing or a non-
vanishing background value, respectively, for the an-
tisymmetric tensor field H„,&.

We next proceed to consider the second case.

B. f%const

In this case P is a function of both space and time. To
decide on the existence of solutions consistent with the
Robertson-Walker metric we require a systematic
analysis of the system of Eqs. (12). Using Eq. (13), Eqs.
(12b) and (12c) receive the forms

g '~d; fd,f=[(af+b) —2(af+b)(af+b)],
V, V~f =g,"[(a —aa )f+(ab ab)] . —

(1ga)

(1gb)

The first of these does not have any time dependence as
expected unlike the second whose right-hand side (RHS)
depends on time. Since its LHS is t independent so must
be the RHS. By using Eq. (15) this implies

ap(aif+bp) =0 .

o. ——o —aeo= —+acr V (e —=g„„).I I I 2 A. — 2 (22)

This gives the result V is a constant and thus 4' is a func-
tion of r only, unless a, +k=0, in which case the
coefficient of V in Eq. (22) vanishes. It is only in this case
that V can have a nontrivial O, y dependence. It is an
easy task for one to verify that the 4=%(r) case is in-

compatible with the 88 component of Eq. (19b) and also
Eq. (19a} so that it only remains to consider the case of
having a i +k =0. Since a i@0 this is only relevant for
spaces having negative curvature k &0. It is not difficult
to verify that with a, +k =0 one has a unique solution to
the system of Eqs. (19) resulting in a dilaton

P(r, t ) = —ln j t [a.r+ C( 1 —kr )'~ ]+bt t+ b' j,
a(t)=a, t (k= —a] (0), (23)

where the constants b, b', C appearing in (23) as well as
the constant vector a are constrained by

a'
C =4bb' ——.

k

Other equivalent solutions are obtained by a shift in time.
Whether this is compatible with Eqs. (10a) is an issue that
will be discussed later. At the moment we can only re-
mark that the equation V„V„/=0 for the dilaton field
does not give only the solution shown in (17a).

We next pass to consider the case of a static universe
a] =0.

Therefore we see that a2 must be necessarily zero since
otherwise f would be a constant. Thus the cosmic scale
factor is a linear function of the time corresponding to ei-
ther an expanding (contracting} universe, when a, WO, or
to a static universe in the case that a1=0. We will con-
sider these two distinct cases separately.

2. ag =0

By a shift in the time variable we can now put, for con-
venience, the constant b&=0. Then the system of Eqs.
(18) gets the forin



42 CONFORMAL INVARIANCE BEYOND THE LEADING ORDER IN. . . 4103

(24a)

(24b)

where iLO
= —2a oh 2 with 4=aof.

In this case too, with 4 defined as above, it can be
shown in exactly the same manner as before that 4 is of
the form given by Eq. (21) while a(r) now satisfies the
equation

o."——o' —k e =—V
2 2

(25)

with

a(t) =ao, aoWO and k =0, a =8 +4AC (26)

and all that follows from this by a shift in time.
Therefore we have seen that in addition to the trivial

solution )=const and the time-dependent dilaton solu-
tion in Eq. (17a) the condition V„V„Q=O in a Robertson-
Walker four-dimensional background yields two addi-
tional space- and time-dependent solutions given by Eqs.
(23) and (26). To be acceptable as solutions these should
also satisfy Eqs. (10a). However in a Robertson-Walker
metric the Ricci tensor components Rp vanish

(i =1,2, 3) and this in view of Eq. (10a) gives $8, /=0.
Therefore either P is a function of time or P is constant.
Thus in the absence of the antisymmetric tensor field B„,
the solutions in Eqs. (23) and (26) are excluded. This
means that when B„=Onecessarily the dilaton must be
a function of time, only having the form given by Eq.
(17a) and the curvature k should vanish. Thus the as-
sumption of a dilaton field which depends only on time is
mandatory when 8„„=0. However when B„„WO Eq.
(10a) relating the four-dimensional Ricci tensor to the di-

laton gets modified and its RHS receives contributions
dependent on the H„& field which are nonvanishing.

Therefore in order to proceed to a complete investiga-
tion of this issue we require knowledge of the P functions
up to third-loop order in the presence of the antisym-
metric tensor field B„.Lacking such a calculation in the
supersymmetric cr model we cannot give a firm statement
concerning the compatibility of the solution given by Eqs.
(23) and (26) with Robertson-Walker cosmoiogies in con-
junction with eonformal invariance requirement. Howev-
er if we rely on the one-loop results for the P functions we
can show that the solutions under discussion are incon-
sistent with Eq. (10a). In fact the condition P „„=0for
the antisymmetric field P function is solved by the duality

as can be seen by considering the rr component of Eq.
(24b). When the three-dimensional curvature k is
different from zero, V has to be constant in which case 4
turns out to be only a function of the variable r. Then the
88 component of (24b) and Eq. (24a) can be satisfied only
if 4 is a constant which cannot happen since we have as-
sumed fAconst. Therefore it only remains to explore
the k =0 case. Skipping all the irrelevant details one can
verify that the system of Eqs. (24) gives rise to a dilaton

P(r, t)= —ln a r+Cr t2—+Bt+ A
C

ap

transformation H„, -e„„B&band Eq. (10a) is modified

by receiving contributions on its RHS depending on the
axion field b. The dilaton backgrounds given by Eqs. (23)
and (26) always lead to a Ricci-flat four-dimensional
space [R„„(g) =0] because of the fact that in both cases
we have a, +k =0. Then the system of Eq. (10a) is easily
proved to be incompatible with having a real axion field.
Based on the one-loop results therefore we can say that
even with an antisymmetric field present the dilaton con-
dition V„V„Q=O in a Robertson-Walker four-dimensional
background is consistent only with a time-dependent dila-
ton of the form —21nt+A, , and non-negative space cur-
vature. Therefore the ansatz of a time-dependent dilaton
used in the literature ' comes out naturally from the con-
dition V„V,Q=O which, following arguments presented
in the previous section, gives the simplest and most plau-
sible dilaton backgrounds consistent with conformal in-
variance.

We find it unlikely that these results will be modified
by higher-loop effects although a rigorous proof of this
assertion has to await until the full three-loop results for
the P functions, when 8„„is present, are known. At any
rate one can observe that even with the additional solu-
tions we have found, the situation is not altered as far as
the expansion rate of the universe is concerned and we
are led again to an either linearly expanding (contracting)
or a static universe.

V. SUMMARY

In the N =1 supersymmetric o. model with a dilaton
field present we have calculated the O(ct' ) contribution
to the renormalization-group P functions. We have
found that both metric P „,and dilaton g' beta functions
at this order depend nontrivially on the dilaton field, be-
ing vanishing if the dilaton satisfies V„V,/=0. As a by-
product of our calculation we have explicitly found that
the O(a' ) corrections to the dilaton P function vanish as
has been previously claimed in the literature by employ-
ing other indirect arguments. This along with the fact
that P „,, receives no O(a ) contributions indicates that
backgrounds respecting local scale invariance to first and
thus to second order in the Regge slope a' do not neces-
sarily satisfy the conformal consistency conditions
beyond that order. The special backgrounds R„=O,
V„V„/=0 satisfy the conformal invariance conditions up
to two-loop order and are shown to be also consistent
with conformal invariance to next loop order. A basic
tool in proving this is the Curci-Paffuti relation which
can be safely used in its well-known form in the super-
symmetric model as well as when V„V„Q=O. Because of
the nontrivial character of the dilaton dependences of the
P functions we argue that the aforementioned back-
grounds are the simplest and most plausible ones con-
sistent with local scale invariance. The particular class of
Ricci-flat compact and orientable Riemannian manifolds
naturally offer as internal spaces for string theories.

We have furthermore explored the consistency of these
special backgrounds with Robertson-Walker cosmologies.
In a four-dimensional Robertson-Walker background we
found all dilaton solutions satisfying V„V„Q=O. Except
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the trivial constant solution and the time-dependent solu-
tion of the form —2 lnt+1, whose cosmological implica-
tions have been previously discussed in the literature, ad-
ditional solutions exist which require a nonvanishing
background value for the antisymmetric tensor field B„.
From the reality of the axion field it follows that these are
inconsistent with conformal invariance to leading order
in the slope parameter a' and may be relevant only if
higher-loop effects are taken into account. This gives fur-
ther support to conclusions reached in the literature
where the dilaton is a priori assumed to depend only on

time. In any event these solutions do not alter the situa-
tion regarding the behavior of the cosmic scale factor
yielding either a static or a linearly expanding {contract-
ing) universe.
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