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For N =2 superconformal coset 6/8 models, supersymmetry operators are constructed in accor-
dance with the spectral flow. Gauge representation operators are also discussed. These are very

powerful in the analysis of spectra in string models. In four-dimensional string theories, which are
constructed via compactifications using N =2 superconformal models, one can use these operators
to obtain all the other massles& spectra, once canonical states are calculated.

I. INTRODUCTION AND SUPERSYMMETRY
OPERATOR IN N=2

MINIMAL SUPERCONFORMAL FIELD THEORY

With the increasing amount of knowledge gained on
conformal field theories in the past few years, it is becom-
ing rather clear that the N=2 superconformal theory
(SCFT) is a special class of conformal theory. In particu-
lar, in the application to four-dimensional string models,
N =2 supercomforrnal symmetry turns out to be a very
powerful tool. It was shown by Gepner that N=2
minimal SCFT can be used for both right and left movers
as building blocks to achieve compactifications [(2,2)
compactification]. ' The central charges of the N=2
minimal series are given by c =3k/(k+2) and these
models can be combined together to get c„,=9 for six-
dimensional compactification. String models thus con-
structed have N=l spacetime supersymmetry and are
solvable. Namely, not only massless spectra (which be-
long to the Es gauge group) of string models but also Yu-
kawa couplings and some higher-point correlation func-
tions can be studied. These are examined in detail for the
three-generation model, the so-called 1X16 model
that is obtained from one copy of k = 1 and three copies
of exceptional (E7)k = 16 sectors.

Subsequently a new class of N =2 SCFT, 6/H coset
models has been constructed by Kazama and Suzuki (KS)
by applying the Goddard-Kent-Olive (GKO) method to
the super Kac-Moody algebra. It is found that the con-
dition for having N =2 superconformal symmetry is that
H contains a single U(1) factor. The Hermitian sym-
metric spaces, which are mathematically classified, are
found to give rise to these N=2 SCFT's. The central
charges of these models can be greater than 3 and some
of them are regarded as different types of extension of
X =2 minimal series. Upon applying Gepner's method,
one expects that N =2 SCFT can provide quite rich va-
cua of four-dimensional string models. From the phe-
nornenological point of view, it would be very interesting
if different three-generation models are found.

A characteristic feature of N =2 superconformal sym-
metry is the existence of the g algebra, which represents
the autornorphisrn of the superconformal algebra. Un-
der this automorphism, the Neveu-Schwarz (NS) and the
Ramond (R) states can be shown to correspond one to
one as ri is continued from 0 to —,

' (spectral flow). In order
to see this aspect, we define the twisted N =2 supercon-
formal algebra by introducing the following boundary
conditions on the supersymmetry generators 6—:

G —(z) = e — '"6—(e 'z ) .

Then the Fourier transforms of the energy-momentum
tensor (L„), supersymmetry generators (6„—), and U(1)
charge generatdr (J„) satisfy. the following relations un-

der the spectral How:

L„' =L„+gJ„+—g 5„o,

CQ'= Q+ n. —
3

(2)

Since the NS and the R states are specified by certain
values of conformal weights and U(1) charges, these two
formulas allow one to obtain the R state from the NS
state and vice versa. This is nothing but a supersym-
metry transformation in string models with N =1 space-
time supersymmetry.

Let us consider this supersymmetry operator in the
case of A=2 minimal models, which has been studied

(G„—)'=6„—+„,
where the operators on the left-hand sides are the ones
twisted by g. The n =0 parts, especially, dictate how the
conformal weight h and the U(l) charge Q of a state
transform under the spectral Aow:

h'=h+gQ+ —g
C

6
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well. ' We are interested in the states that are the repre-
sentations of the gauge group E6 of models, 27, 27 and
singlets. Notice, however, that representations of E6 are
actually specified by those of SO(10)XU(l), which are
linearly realized. Therefore, 27 is decomposed as
10 ]+ 16I yp + 1g and similarily for 27. In N =2 minimal
conformal models, these states are described as primary
states of level k, specified by sets of integers (I,q, s) and
(1,q, s ). For a given level k, the principle quantum num-
ber I is defined to take values in the range 0~1&k and
charge q defined by modulo 2( k +2), respectively. s is
the quantum number that distinguishes NS and R sectors
and is defined modulo 4; s=0, 2 for NS and s=1,3 for R
states. For the computations of massless spectra the
standard range ~q

—s~ ~I is employed. The conformal
weight h and the U(1) charge Q of such right-moving pri-
mary states are given by

a, = [—q+ —,'(k +2)s] .
1

&k(k+2)
The parafermion part of the operator S(z) is the identity;
hence, S(z) is simply realized by the free boson. There-
fore, in the product of S(z) with a primary field, the free
boson charge is given by the sum of the charge of each
boson. States obtained by these shifts of q and s have the
conformal weight h =—'„which is the correct value for the
R states. In this way all superpartners, which belong to
the representation of E6, are obtained by this supersym-
metry operator.

On the other hand, it is an easy matter to show how
the shifts of q and s are understood in terms of the spec-
tral flow. Regarding the conformal weight and U(1)
charge to be h

' and Q' for the primary state given by

l, q;+1 s;+1
l(l +2)—

q s
4(k+2) 8

(3)

q +-
k+2 2

'

and similarily for the left mover. Let us assume a
compactified theory constructed by tensoring r minimal
models, so that

c„,= g 3k;/(k;+2)=9 .

The massless states then are given by r sets of integers
(I;,q;, s;) and (I;,q;, s; ), denoted by

l, q,. s;

q;

Suppose that a massless NS state is given by

l; q; s,

l; q; s;

which has h =h =
—,
' and Q=Q = —1, the scalar 10, of

27 under the decomposition. One can then show that the
holomorphic operator

0 1 1

0 0 0

which has conformal weight h =—'„creates a R state when

acting on this NS state. By considering the operator-
product expansion of

0 1 1

0 0 0 and

one can derive that the effect of S(z) on a primary state is
to shift the quantum numbers q; and s; as q;~q, +1 and
s,-~s;+1. This is easily seen from the fact that the pri-
mary fields of N =2 minimal models are represented by
the product of a ZI, parafermion field and a free boson
with charge

one can derive the right-hand sides of Eqs. (1) and (2) for
rj= —,

' and s =0 with the use of +3k, /(k, +2)=9. Espe-
cially, for those states with h =

—,
' and Q = —1, the sum of

the first two terms in Eq. (1) is vanishing, leaving h = —', ,

which is the required conformal weight for massless
states in the R sector. From this argument, one can re-
gard the primary states with s =0 as the canonical ones
from which all other states are obtained consistently with
the spectral flow. This choice of the canonical states
turns out to be convenient, for example, in the study of
higher point correlation functions in terms of selection
rules. In Ref. 2, sca1ar 10's are computed explicitly with
the use of the P method.

One may wonder that this supersymmetry transforma-
tion can also be derived from the modular transformation
property of the character y~, (r,z) of a primary state
(I,q, s ), where r is the torus parameter and z is a variable
that measures the U(1) charge. [Notice that g~, is non-
vanishing for 1 +q +s =0 (mod 2), so the above shifts are
consistent with this condition. ] Since the modular trans-
formations change U(1) charges of states as well as
boundary conditions, NS and R states interchange with
each other. It may not be, however, straightforward to
show these shifts of q and s in terms of the character. In-
stead, one may find it easier to check the consistency of
this supersymmetry transformation using the character
y' (r,z) of the corresponding SU(2) Wess-Zuinino-Witten
(WZW) model. The WZW model is related to the N =2
minimal models through the parafermion and another
free boson, and this relation allows one to calculate corre-
lation functions in N =2 minimal models. The index m is
related to those of ininimal models by m =(q —s)/2.
Therefore, the changes of q and s in the supersymmetry
transformation leave the index m unchanged in the parti-
tion function of the WZW model.

In the analysis of spectra in four-dimensional string
models compactified via coset models G/H, it is obvious
that the supersyrnrnetry operators are also very useful.
As is expected, these operators reflect the structures of
coset G/H. In the next section, we construct the super-
symmetry operators for coset models obtained by KS. In
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Sec. III, we also discuss that the gauge representation
transformations can be constructed in a similar way.
Since we are specifying the representations of E6 in terms
of those of SO(10)XU(1), it is necessary to have such
operators that relate 10 &, 16&&z, and 1z of SO(10). Such
operators are antiholomorphic, namely constructed from
the left-moving (bosonic string) sector, which is responsi-
ble for the generation of gauge groups. Section IV is de-
voted to discussions.

II. SUPKRSYMMKTRY OPERATORS IN
N =2 COSKT MODELS

N =2 coset models G/H are shown to be associated to
a special kind of Kahler manifold called a Hermitian
symmetric space. The models in this coset construction
are given in Table I with the central charges for a level k.
In order to study spectra of compactified string models
one needs to construct primary states that are specified
by the conformal weight h and the U(1) charge Q. For
this purpose, it is noted that the super Kac-Moody alge-
bra associated with a coset G/H are regarded as the ordi-
nary Kac-Moody algebra of 6 X SO(dimG/
H)/H where the Kac-Moody system SO(dimG/H) is
represented by the fermions at the level k =1. The pri-
mary states of N=2 SCFT are then given in terms of
those of Kac-Moody algebra of the groups G, H, and
SO(dimG/H). The conformal weight h and U(1) charge
Q are expressed as

h = [(A A+2pG A) —(A. A, +2pH A, )]+—,'A A,
2(k +g)

( 1/2 jdim G /H
Q= —

k+ (pG pH) ~+—
k+g 1=1

where A is the highest weight of a highest-weight state
~A) of the affine algebra of 6, and similarly for A, . For
the level k, A is given in the form

A=+ n, A, ,
i=0

where gn, =k. pG (pH) is the half-sum of the positive
roots of 6 (H), pG= —,'g &oa. A denotes the highest

weights of SO(dimG/H) at level one, and are either sing-
let (Ao), vector (A„), spinor (A, ), or antispinor (A ).
The spacetime property of a primary state is determined
by the highest weight A, namely, singlet and vector for
the NS sector and spinor and antispinor for the R sector,
respectively. This is the generalization of the quantum
number s in the case of N =2 minimal models.

We first remind the reader that the class of coset mod-
els 6/H under consideration is characterized by the fol-
lowing set of algebraic identities, which are written in
terms of the quantities in the definitions of h and Q:

++ pH

ca+ '0,'+ =a+ PG =gA 'A

where g is the dual Coxeter number of 6 and
a+ =nG —aH. Furthermore, the central charge c of each
model is simply expressed in terms of the spinor weight
of SO(dimG/H) as

C=
12k A,

k+g (10)

The first identity implies that the direction of the charge
Q is orthogonal to that of pH (orthogonality condition).
In the second indentity, the appearance of the spinor
weight of SO(dimG/H) is due to the existence of the
N = 1 spacetime supersymmetry where the spinor weight
is necessary to obtain R states from NS states, as we dis-
cuss below (supersymmetry condition). These two identi-
ties are explicitly checked for all the coset models. It is,
however, not proved in general that these two identities
are also the sufFicient conditions for having N =2 super-
conformal symmetry. See Ref. 9 for some more discus-
sions.

In the construction of spacetime supersymmetry opera-
tors, we restrict ourselves to the class of operators re-
garded as the generalization of that of N=2 minimal
models. Namely, we assume that the supersymmetry
operators are realized as transformations achieved by the
appropriate shifts of the U(1) charge and the change of
level of one highest weight of SO(dimG/H) in the right-
moving sector. Under this circumstance, the spectral
flow, Eqs. (1) and (2), are considered as two conditions for
two parameters: the shift of the U(1) charge q=2a+ )I,

and the coeScient of it in the contribution to the confor-
mal weight. Hence they are uniquely determined. We
show that the supersymmetry operator can be expressed
in a model-independent way for the N =2 coset models.

Let us first consider the spectral flow of the charge Q
of a primary state. As g changes from 0 to —,

' (the flow

from NS to R sector), suppose that the charge changes
from q to q+5q as well as that the singlet weight Ao of
SO(dimG/H) is replaced by the spinor weight A, . The
charge thus obtained should be identified with Q' in Eq.
(2):

TABLE I. Hermitian symmetric spaces and central charges c (level k).

SU(m +n)/SU{ m ) X SU(n) X U(1)
SO( n +2) /SO(n) XU(1)
SP(2n)/SU(n) X U(1)
SO{2n)/SU(n) X U(1)
E,/SO(10) x U(1)
E,/E, x U(1)

c =3kmn/(k +I +n)
c =3kn/(k +n )

c = 3kn (n + 1)/2( k + n + 1)
c =3kn {n —1)/2(k +2n —2)
c =48k/(@+12)
c =81k/(k +18)
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q+5q
k+g

the following two operations: the change of the highest
weight

k gA,' —5q +g gA,'+ +
k+g k+g k+g
—

q c
k+g+6

and

q ~q+2a+. a+ .

(12)

(13)

h'= [C2(A) —C2(A, ') —yq ]2 k+g
—2yq(5q ) y(5q—}'
2(k +g ) 2(k +g )

Upon choosing y=1/(25q)=1/(4a+ a+), the second
term becomes Q/2, which is identified with the second
term in Eq. (1) for il= —,'. With the use of Eq. (10), the
last two terms are combined to give

if the shift of q is given by 5q =2a+ a+. Note that, in
the last equality, we used the identity Eq. (9) and the fact
that for the spinor weight of SO(2n) (dimG/H always
turns out to be an even integer), 2A, =+A„since the

quantity just depends on the number of the components.
Next in order to determine the contribution of the U(1)

charge q to the conformal weight h, let us separate the
U(1) part from H to write H=H'X U(1) and express h as

h= 1

2(k +g) [C (A) —C (A.') —yq ],
where C2(A) is the quadratic Casimir constant for G,
Cz(A, ') for the H' and y is the coefficient of the U(1) part
which is to be determined. Regarding h as the conformal
weight for a primary state in the NS sector, we perform
the shift q as determined above as well as add the spinor
weight —,

' A„with the result being considered as h ':

And the conformal weight is given as

h = C~(A) —C2(A, ')—
2 k +g (4~~~ )

+—,'A (14}

G/H =SU(m +n)/SU(m) X SU(n) XU(1),

which is one of the extensions of the N =2 minimal mod-
els, and determine the supersymmetry operator. First, in
order to calculate the sum of the positive roots of
SU(m +n), we introduce the (m +n)-dimensional ortho-
normal basis e;:

e;=(0,0, . . . , 1,0, . . . , 0),
where "1" is in the ith position. The simple roots of
SU(m+n) are then given by a;=e; —e;+i
(i =1, . . . , m +n —1) and are normalized as a; =2. The
half-sum of the positive roots, pG, which has the Dynkin
coefficient (1,1, . . . , 1), is given in the basis e; as

m+n m+n m+n m+n
2

'
2

'
2

'
2

Actually, the U(l) charge q =2u+ A, is determined once
the highest-weight state A=+,n, i, is ,specified. In order
to calculate q in terms of n;, one needs to examine each
model separately.

We now consider some examples. Let us take the
Grassmannian model

2(k+g) 2(k+g) ' + + 24

Therefore, we understand that the group-theory identity
Eq. (9} arises as the consequence of the requirement of
the X =1 spacetime supersymmetry. It would be rather
obvious that, by repeating this procedure, one is able to
get all of the superpartners of a multiplet, as in the case
of the N =2 minimal models.

Summarizing, the supersymmetry operator is given by
I

Next in computing the half-sum of the positive roots of
the subgroup 0, pH, we have to assign the simple roots
such that the Cartan subalgebras of SU(m) and SU(n} are
commuting. In the Dynkin diagram of SU(m+n), we
can simply choose the first m —1 roots for those of
SU( m ) and the last n —1 ones for SU(n ), and the remain-
ing mth root obviously replaced by U(1). pH and then

a+, in this choice of roots, are calculated in this basis e;
to be

m —1 m —1

2
'

2

m —1 n —1 n —1 n —1 n —1

2
'

2
'

2
' '

2 2

a+ PG PH

n n m
2' ''' 2' 2

'''''
where, in the expression of a+, n /2 for the first m entries
and —m/2 for the last n. The Kac-Moody system
SO(dimG/H) is actually SO(2mn) and the spinor weight
is the m n component vector A, =

—,
'

( 1, 1, . . . , 1 ); hence,

A, =
—,'mn. With the dual Coxeter number g =m +n for

m " n —1 +1 i—
2 - 2

n m —1a+.pH
=—g +1 i-

i=1

=0.

I

SU(m + n ), the identity Eq. (9) is easily checked,

a+ a+ =
—,'mn(m+n ) =g XA, ,

as well as Eq. (8),
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(15)

then, the charge q =2a+ k is calculated to be

m+n —1

q=ng in;+m g (m+n —i)n; .
i =m+1

(16)

This means that once a NS state is obtained by specifying
n, , q, and singlet weight Ao, the corresponding R state is
simply gotten by the set of numbers n;, q+ —,'mn(m +n )

and A, .
A simpler but important subgroup of the Grassmanni-

an manifold is the complex projective spaces

G/H=SU(n +1)/SU(n) XU(l) .

The central charges of the series are given by c=3kn/
(k +n +1), and are relatively small; hence, those models
have a potential to describe a variety of four-dimensional
string vacua. With the choice of the orthonormal basis e,
as before, the half-sum of the positive roots and a+ are
given by

n n n n———1 1 ————
PG 2~2 ~ ~ ~ ~ ~ 2~ 2

r

1 1 1 n

2 2' 2' 2

From these, the shift of charge is given by 5q =2a+ o.+=—,'n (n + 1) and the conformal weight h is

h = C~(A) —C~(A. ') — + —,'A
1

2 k+g n n+1)

For n = 1 we easily see that the supersymmetry operator
is gotten as 5q =1 and the expression of the conforrnal
weight h becomes that of % =2 minimal modes [hence
deleting Cz(A, ')].

For other coset models the supersymmetry operators

Note that the summation is vanishing separately for
SU(m) and SU(n).

From the expression of a+, the amount of shift 5q and

y are obtained as

5q =2a+.a+ =
—,'mn (m + n ),

1

mn (m +n}
One can also be convinced that the central charge is
correctly reproduced by the formula Eq. (10).

Now, in order to write the charge q in terms of the
highest weight A=gn, k;, le,t us consider the simple case
where A=A, . This actually turns out to be an important
case. By putting A=A, in the formula of conformal
weight (we consider the NS sector, A =AD), we simply get
h = —Q/2. This is nothing but the condition for chiral
primary states, which are of the prime interest in study-
ing spectra of models (for example, 27 and 27 of the E6
gauge belong to this class). The fundamental weights A, ;
are defined by

are calculated in a similar way, and pG and u+ are sum-
marized in the appendix.

III. GAUGE GROUP REPRESENTATION OPERATORS

In this section we consider the left-moving (bosonic)
sector, from which the structure of gauge groups arises.
Again we concentrate just on the part compactified by
the %=2 superconformal models.

We are interested in the spectra that are the represen-
tations of the gauge group E6 although the full group in
this compactification scheme is generally given by
E6XU(1)' ' X Es. The states belonging to E6 are
specified in terms of the representations of SO(10)XU(1)
as mentioned before; i.e., 27 is decomposed as
10,+16,&z+ Iz. The purpose is to construct the opera-
tors that relate those different states of SO(10) representa-
tion.

Let us again consider the N =2 minimal models, since
the discussion can be easily extended for coset models.
Introduce the antiholomorphic operator S' '(z) given
by

0 0 0
g (27)(z ) 0 1 1

0 0 0
27(z )—

0 —1 —1

With this preparation, in order to construct the gauge
representation operators for the coset models, we need to
check whether the shifts of the U(1) charge q and the
highest weight of SO(dimG/H), in the left mover, repro-
duce the changes of the U(1) charges of the SO(10) states
as required. Suppose that 10, of SO(10) (we consider
27) is chosen as the canonical states that are given by
some fundamental weights, A and A, of G and H and the
singlet weight of SO(dimG/H ); i.e., the charge Q is given
by

k+g (17)

Consider the shift of U(1) charge given by 5q =2a+ a+
as well as the replacement of the singlet weight by the
spinor weight. Then the change of Q of a primary state is
computed as

One can then show, as in the case of the supersymmetry
operator, that the action of S ' '(z) on a state in the 10
of SO(10), for example, shifts the quantum numbers of
left movers as q~q+1 and sos+1, giving a state in
the 16i&z of SO(10). By applying this operator twice, one
gets the lz of SO(10). The key point is that the U(1)
charge of this operator is Q =

—,
' and Q =0 for tensor-

product theories with c„,=9; therefore, the U(1) charges
of the states 10 1, 161&&, and 1& change correctly under
this transformation. States of 27 in representations other
than 10i of SO(10) are obtained by defining an analogous
operator:
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5Q= — +g A,k+g

2kA,

k+g
c 3

6 2

where we made use of the previous relation gA,'=2A,
and Eq. (10). Hence this operation can be identified as
the group representation transformation by which 16&&z

and 1z are obtained, and similarly for 27. It is obvious
that this construction is also valid for any tensor product
theories with c=9. The gauge representation operators
in the coset models have the same structure as the super-
symmetry operators.

to the Kahler manifold, which can be decomposed into a
product of models each of which is based on a Hermitian
symmetric space. "

APPENDIX

We summarize some results for the coset models that
are not considered explicitly in the text. The expressions
for po and a+ (and pn if necessary) are given in the basis

e;, from which the identities are easily checked.
(1) G/H =SO(2n+2)/SO(2n ) XU(1)

pG=(n, n —l, n —2, . . . , 2, 1,0),
a+=(n, 0,0, . . . , 0) .

(2) G/H =SO(2n+1)/SO(2n —1)XU(1)

IV. DISCUSSION PG=
n —1 n —3 n —5 3 1

2
'

2
'

2
' '2'2

We have constructed supersymmetry and gauge group
representation operators in the context of N=2 coset
models, using the fact that the models are characterized
by group-theory identities. The operators considered
here are the generalization of those of the N =2 minimal
models and obtained in a model-independent way. On
the other hand, it may be possible to construct such
operators of different types, still consistent with the spec-
tral flow, which in general change n; in the definitions of
the highest weights of 6 and H. However, one of the as-
pects that is not fully discussed in the N =2 coset models
is the field identifications of primary states. Even for the
known four-dimensional string models constructed via
N=2 minimal models, the analysis of the spectrum be-
comes complicated due to the field identifications derived
from the property of the partition function. In the coset
models the field identifications originate in the outer-
automorphism of Dynkin diagrams, which interchanges
the highest weight representations of groups. Therefore,
it is not clear whether such supersymmetry operators
that also depend on n; can be constructed consistent with
the field identifications.

It is also shown how the characteristic identity Eq. (9)
results from the spectral flow, in other words the ex-
istence of N =1 spacetime supersymmetry. Although all
the N=2 coset models are found to satisfy this relation
explicitly, this requirement of the spectral flow is in-

herently independent of the construction of Hermitian
symmetric spaces. It is not clear yet that these algebraic
identities are the necessary and sufficient conditions to
have N=2 superconformal symmetry. However, from
the point of view of general discussion that the N = 1

spacetime supersymmetry implies the N =2 superconfor-
mal invariance, ' these identities are nothing but the con-
ditions for having N =2 superconformal symmetry.
Hence, the set of equations (8)—(10) may be regarded as
the criteria for constructing new N=2 coset models.
One can choose some G and H to check the identities. It
turns out that the orthogonality condition is relatively
easy to be satisfied; on the other hand, examples that
satisfy the supersymmetry condition are not found yet.

Finally, we note that our result can also be applicable

n —1
y0& ~ ~ ~ y 0 o

(3) G/H=SP(2n)ISU(n) XU(1)

pG= —(n, n —l, n —2, . . . , 2, 1),1

2

1pn= —(n —l, n 3, n ——5, . . . , 1 n), —

a+= (n+1, . . . , n+1) .
1

2&2

(4) G/H =SO(2n )ISU(n) XU(1)

pG=(n —l, n —2, . . . , 2, 1,0),
a+= —,'(n —l, n —1, . . . , n —1) .

For the following cases with exceptional groups, we re-
gard E6 and E7 as the subgroups of E8 and assign the
roots appropriately, for convenience. The roots of E8 are
chosen to be

a, =
—,'(e, —e~ —e3 —e~ —es —e6 —e7+es),

aq=e7 —es, a3=e6 —e7, a4=e~ —e6,
0'5=e4 eg, Q6=e3 e4

A7 =e p e3, o.'8 =e 7 +e g

(5) G /H =E6/SO( 10)X U( 1)

pG (ei e~ e3)+4e~+3es+2e6+e7

p~ =4e4+ 3e5+2e6+e7

a+ =4(e, —ez —es ) .

(6) G/H=E7/E6X U(1)

pG —:(ei ez)+5e3+4e4+3es+2e6+e7

a~= —'„(e, —e~)+9es .
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