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We give an example of a generally covariant geometric field theory which leads to the standard
Gaussian and supermomentum constraints but which lacks the super-Hamiltonian constraint. This
theory is closely linked to Ashtekar’s canonical formulation of general relativity. We discuss the
Dirac constraint quantization of our model and comment on the issues which it raises regarding the

quantization of generally covariant systems.

I. INTRODUCTION

While the construction of a consistent quantum theory
of gravity remains an elusive and difficult task, much
effort has been spent in quantizing toy geometric models.
These include, in the order of increasing complexity, the
topological field theories,! lower-dimensional gravity,?
minisuperspace homogeneous cosmological models,*
minisuperspace inhomogeneous systems,® and bosonic
strings.’ The first three of these models are not field
theories but finite-dimensional quantum-mechanical sys-
tems, which unduly simplifies (one is tempted to say trivi-
alizes) the quantization process. As a result, when the
work is done, one may not be any wiser with regard to
the conceptual or technical problems associated with
quantizing a geometric field theory. The remaining sys-
tems, so far as they are tractable, often reduce to a linear
field theory. Quantization of the remaining models, in
spite of all simplifications, still presents conceptual and
technical problems.

In the canonical quantization program, many such
problems center about the question of how to handle the
super-Hamiltonian constraint. Unlike the gauge con-
straints (associated with spatial diffeomorphisms and
whatever internal gauge group the system in question
may have), the super-Hamiltonian generates the dynam-
ics of the system. Its role in the quantization process and
reconciliation with gauge constraints remains highly con-
troversial. The generally covariant geometric field theory
we are going to describe has a surprising feature that
while the gauge constraints are still there, the super-
Hamiltonian constraint is missing. Whereas all the mod-
el theories we have mentioned have a fewer number of de-
grees of freedom than general relativity, our model
theory actually has more: The state functional of our sys-
tem can be prescribed as an arbitrary functional of a
Riemannian three-geometry. Moreover, because the
super-Hamiltonian of the system vanishes, this functional
is the same on every hypersurface. The dynamics of the
system is best described by saying that there is no dynam-
ics. The virtue of the model (in addition to its capacity to
shatter cherished prejudices about the canonical struc-
ture of covariant systems) is this clear separation of gauge
from dynamics. It can help us to realize why and when
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and how the super-Hamiltonian constraint is to be incor-
porated into quantum theory. The model itself is closely
related to Ashtekar’s formulation of general relativity in
terms of the new canonical variables;® its action is a
slight but significant modification of the Samuel action’
for the gravitational field. As such, the model is particu-
larly suitable for clarifying those issues which are specific
to Ashtekar’s formulation, notably, the problem of taking
into account the super-Hamiltonian constraint in the
loop space representation.

We start by deriving the canonical equations of motion
from the covariant spacetime action and showing that
while the supermomentum and Gaussian constraints are
present, the super-Hamiltonian is missing. We explain
this seemingly paradoxical feature by analyzing the
geometric structure of our spacetime. We clarify the
concept of an observable in our theory and proceed with
the Dirac constraint quantization of the model. We dis-
cuss three different representations of the quantum states:
the metric, connection, and loop space representations.
We conclude with a comparison of our model with quan-
tum gravity in Ashtekar’s variables.

II. CANONICAL EQUATIONS OF MOTION

The field variables of our model are SU(2)-valued frame
one-forms e’,(X) and connection one-forms A‘(X). The
internal indices i,j,k,/ run from 1 to 3, i =1,2,3, the
spacetime indices «,f3,7,6 run from O to 3, «=0,1,2,3.
We assume that the frame is regular, i.e., that the three
one-forms e, are linearly independent. (Such an assump-
tion is analogous to the regularity of the metric in
Einstein’s theory of gravitation.) The group manifold
carries the SU(2)-invariant metric §;; and the volume ele-
ment given by the Levi-Civita tensor €;;. The group
metric is used for lowering and raising the internal in-
dices. The spacetime manifold M does not possess any
a priori geometric structure. The only spacetime objects
at our disposal are the alternating symbols 7 *?"® and
M apys- We use the Ashtekar convention: the tilde above
a symbol denotes a density of weight 1, under a symbol a
density of weight — 1. The connection one-forms help us
to form covariant derivatives
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D,0'=3,0'+€; Alo*, (2.1)
whose commutator leads to the curvature two-form
Flog=0 A te Al Al . (2.2)

When we rotate the internal vectors w' by an angle
A=(8;;A’A/)!"? about an axis A'/A,

w'—w'+e, Awk, (2.3)
the connection forms change by
A, — AL +D_A’ (2.4)

for D,w' to transform as an internal vector.

We shall study the field equations which follow from

the action

S[efz,Ag]=%fMd4Xﬁ“B”5ege{3Fkys[A]eijk . @3
The action (2.5) is invariant under spacetime
difftomorphisms DiffM as well as under the internal
gauge group SU(2). Its choice is motivated by its close
analogy with the Samuel form’ of the action for
Einstein’s theory of gravitation in the Ashtekar vari-
ables.® Indeed, if we replace the SU(2)-valued frame
fields e, by the SO(3,1)-valued frame fields (i.e., the triad
by a tetrad) and the curvature F g by the curvature of the
self-dual part of the spin connection [which makes F 4
complex and effectively valued in SU(2)], the action (2.5)
becomes the Samuel action.

We shall analyze the spacetime field equations in the
next section. Here we are concerned with their canonical
form. We cast the action (2.5) into a canonical form by
performing its 3+ 1 decomposition. We assume that M
has the topology R X Z, where Z is a compact space. We
choose the spacetime coordinates X*=x%=(¢t,x% such
that t €ER and the leaves ¢ =const of the time foliation
have the topology of =. (Unlike general relativity, M
does not carry a Minkowskian metric and hence it does
not make any sense to stipulate that the leaves be space-
like.) Next, we introduce a number of auxiliary quanti-
ties. Let

ﬁ abc — ﬁ Oabc (2.6)
be an alternating symbol in £ and
e= iT] beelefele 2.7)

3!

the determinant of the triad e;. Because the frame e’ is
assumed to be regular, 0. The triad

~ abc

ef=1n%¢, efe} (2.8)
represents a frame which is dual to e/. Indeed,

g'=eef, with efe} =5} and efe/=8/. (2.9)
Further, we introduce

N%:=elef (2.10)
and

A=A —N%4}, (2.11)
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and call
H,:=F' e/~ A.G, =3, Ajg’— A.3,2’ , (2.12)
G;:=—D,e/=—3,2/—¢; Alef . (2.13)

With all these abbreviations, it is easy to check that the
action (2.5) assumes the form

LesNG A= | di | dPx(ef A;—N°H,—A'G;) .
s[45,25N° A= [ dt [ dx (2! 4] .—AG)

(2.14)
Because the frame e, is regular, one can freely vary the

newly introduced variables Al e/, N% and A' instead of
the old field variables 4/ and e). We see that the action
(2.14) has the canonical form if we identify g/ with the
momentum canonically conjugate to 4,. The variation
of the multipliers N? and A’ yields the constraints

H,=0=G, , (2.15)
while the variation of the canonical variables 4} and @/
leads to the Hamiltonian equations of motion

‘a

g (x)={e(x),h}, Alx)={Al(x),h} . (2.16)

The Hamiltonian
— — 3 a T 3 ] al
h —HN+G,\—f2d x N%x)H,(x)+ fzd x Al(x)G;(x)
(2.17)

consists of the constraints smeared by the corresponding
multipliers.

While the 3+1 decomposition of the action is most
easily performed in the adopted system of coordinates
X%=(t,x9), the equations hold on an arbitrary one-
parameter family of embeddings:

RXZ->M:(t,x)>X"=X%t,x) . (2.18)

By inverting the mapping (2.18), we obtain ¢ and x° as
scalar functions on the spacetime manifold M:

t=t(X), x=x%X). (2.19)

The hypersurfaces ¢t =const are the leaves of the time fol-
iation and the curves x “=const are the world lines of the
reference frame. All our equations remain valid if we in-
terpret the variables as appropriate projections with
respect to the mappings (2.18) and (2.19). Thus, 7 %% of
Eq. (2.6) becomes

ﬁ“bc=t,5ﬁ5"ﬂ”x“'axbﬁxc,y s (2.20)
Al and e! are defined as the projections
Al:=AX°,, el=e X, , (2.21)

~a

the momentum ;" is given by Eq. (2.8), and the deter-
minant € by Eq. (2.7). The multiplier

I=efe! X @ (2.22)
is a projection of the vector X “=3X%/dt which is
tangent to the reference line x“=const. The geometric
meaning of the second multiplier A’ is best revealed when
we introduce the vector density
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a1 _apys ik
0 “——517“ 0 gele s €k (2.23)
orthogonal to the triad e, This vector density does not
depend on the foliation (2.18). However, when we want
to turn & ¢ into a vector, we must rely on the foliation as
an auxiliary element. By projecting # “ into the normal

t , to the foliation, we get the scalar density
e=t _u“ (2.24)

,a

ut=ue, t u*=l1 (2.25)
We can then write
A=Au". (2.26)

It is easy to check that, in the adopted system of coordi-
nates X *=(t,x ), Eq. (2.24) reduces back to Eq. (2.7), and
Eq. (2.26) to Eq. (2.11). The rest of our equation can be
checked in exactly the same way. The geometric insight
obtained by the explicit introduction of the mappings
(2.18) and (2.19) will be helpful when comparing the
canonical equations with their spacetime counterparts.

Let us continue with the discussion of canonical for-
malism. The Hy piece of the Hamiltonian generates,
through the Poisson bracket (2.16), the change of the
canonical variables A4/ and &’ under infinitesimal
difftomorphisms N €& Diff 3. Indeed, Eq. (2.12) assigns
to H, the form which is needed to generate
diffeomorphisms of the three covector fields 4. and their
canonical conjugate vector field densities &/. Similarly,
the G, piece of the Hamiltonian generates, again through
the Poisson bracket (2.16), the rotation (2.3) of the triad
e/ and the accompanying inhomogeneous change (2.4) of
the connection A!. The constraints (2.12) and (2.13)
mean that we are dealing with a gauge theory under the
transformations Diff2 and SU(2). The constraints (2.15)
are first class because

{Gi(x), H,(x")} =G,(x)8 ,(x,x")=0 . (2.27)

A (classical) observable in such a theory is any functional
O[ A4,,2,] of the canonical variables which is invariant
under Diff¥ and SU(2):

{0,H,(x)}=0={0,G;(x)} . (2.28)

We shall discuss examples of observables in Sec. IV.
Since there are six first-class constraints and nine
configuration variables per space point, naive counting
reveals three local degrees of freedom.

Other than H, and G,, there are no constraints. In
particular, there is no super-Hamiltonian which would
evolve canonical variables from one hypersurface to
another. Our theory has infinitely many degrees of free-
dom, plenty of gauge, but no dynamics! The phase space
and the constraints are actually the same as those for
3+1 gravity in the Ashtekar variables except that the
Hamiltonian constraint is missing. This comes both as a
surprise and a puzzle since one expects that there will be
a first-class constraint associated with every continuous
symmetry of the action. Because the spacetime action
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(2.5) is invariant not only under spatial diffeomorphisms
DiffZ, but under all spacetime diffeomorphisms DiffM,
one expects to find a Hamiltonian constraint side by side
with the supermomentum constraints H, =0. Its absence
requires an explanation which we shall give by studying
the spacetime field equations in the next section.

III. SPACETIME FIELD EQUATIONS

By varying the action (2.5) with respect to the field
variables e, and A4, we obtain the field equations

fijk(e'ngB7+e£Fkra+e;;FkaB)=o 3.1)

and

ejilelDgek tehDy ek +e!Dief)=0. (3.2)

Their projection into = by means of X* ,X? , X7 _ yields
the constraints (2.13). Because we are interested in the
dynamics rather than in the constraints, we should study
a projection transverse to 2. We thus multiply Eq. (3.1)
by the vector density (2.23) orthogonal to the triad e’

€jefoF "p=0, with Flu=F'su". (3.3)

Because F kﬁy is antisymmetric in By, F kB is orthogonal
to # 8, which means that it necessarily lies in the space
spanned by the triad e;§:

HF kIZF kﬁ:F klefg . (34)
Equation (3.3) thus amounts to
e,jkﬁ'kle{aeé]=0 . (3.5)

The basis e{ae g] is antisymmetric in j/ and hence Eq. (3.5)
can be satisfied only if F;;:=¢€;; F k. is symmetric in jl.
However, there is no tensor F;; which is antisymmetric
in the first pair of indices and symmetric in the second
pair of indices. As a result, F;;; and therefore ¥ and
F kB must all vanish. The field equations (3.1) thus imply
that

F* g1 B=0 . (3.6)
By the same reasoning, Eq. (3.2) implies that
Dqepii P=0 . 3.7

The direction # “ plays a prominent role in our theory.
Its flow lines define a privileged frame of reference. They
thread the spacetime and traverse the embeddings
X*=X%x). In the & ® reference frame, those points on
different embeddings which are connected by the same
flow line count as the same point of . Keep the foliation
t(X) fixed and relate an X * frame of reference to the & ¢
frame. This is done by decomposing the deformation
vector X ¢ into a component u ¢ in the direction # ¢ and a
component N*=N“X“ along a leaf of the foliation:

X=u*+NX*, . (3.8)
The component u* is given by Eq. (2.25), and the spatial
vector N° by Eq. (2.22). To check the first statement,
multiply Eq. (3.8) by ¢ ,. To check the second statement,
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multiply Eq. (3.8) by e’ef. For N*=0, the X ¢ reference
frame coincides with the & * reference frame.

The decomposition (3.8) is the closest we can get to the
standard lapse-shift decomposition of a pseudo-
Riemannian spacetime. The triad field e, endows our
spacetime manifold with a covariant metric

gaB:=8,»jef1e{; . (3.9)
This metric stays the same when the triad is rotated.
However, because it is constructed from a triad rather
than from a tetrad, the metric (3.9) is degenerate. The
direction in which the metric becomes degenerate is or-
thogonal to the triad:

gapll P=0 . (3.10)

Because the triad itself is regular, g, does not have any
further degeneracy and its signature is (0, +,+,+).%

The vector u“® is orthogonal to the hypersurface
X*=X% x) because

8apX® ,uP=0. (3.11)

Indeed, it is orthogonal to every hypersurface which
passes through the point X because u“ is the degeneracy
direction. With respect to the foliation ¢(X), ¥ ¢ is nor-
malized by the condition

tu®=1.

(3.12)

The normal component u#“ of the deformation vector
X % in a pseudo-Riemannian spacetime is defined by the
same equations, (3.11) and (3.12). In such a spacetime,
one can further split « “ into the lapse function N and the
unit vector n* u*=Nn% It is this last step which be-
comes impossible in our spacetime, because u“ has zero
length with respect to the degenerate metric (3.9). The
lapse function has no place in our scheme, while the shift
vector N? is still well defined.

With this geometric picture in mind, we ask how the
triad e, and the connection 4’ changes along the flow
lines of u*. Equations (2.1), (2.2), (2.26), (3.7), and (3.12)
help us to evaluate the relevant Lie derivatives. We get

Leb=€, Nek (3.13)

and

L,A,=D_A". (3.14)

The Lie transport along u “ thus amounts to a rotation by
A’ of Eq. (2.26). Any SU(2)-invariant quantity construct-
ed out of the field variables e/, and A, remains the same
along the flow lines of u®. In particular, the spacetime
metric (3.9) does not change:

L,g.,3=0. (3.15)
The intrinsic metric
8ab =gaﬂxa,aXB,b (3.16)

in the comoving frame of the observer # ¢ is thus the
same on every transverse hypersurface. In other words,
every transverse hypersurface has the same intrinsic
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geometry. There is no dynamics of geometry in our
spacetime.

Moreover, we can choose the gauge in which even the
field variables e’,, 4, themselves will not change along
the flowlines of # . Equations (3.13) and (3.14) deter-
mine the change of e’ and A/, when A’ is given, but they
leave the choice of A’= A/u® itself arbitrary. By choos-
ing A/=0, we ensure that e/, and 4/, are Lie propagated
along the flow lines of # *. Their projections on an arbi-
trary hypersurface which is parametrized by the comov-
ing coordinates of the & * reference frame are thus always
the same. This is exactly what the Hamilton equations
(2.15)=(2.17) predict: when we put A’=0 and stay in the
comoving coordinates of # * (i.e., put N°=0), &/ and A;
are constants of motion. When we choose a different A/,
we subject &7 and 4 ; to a rotation, and when we choose a
different reference frame, we subject 7 and A/ to a spa-
tial diffeomorphism.

This resolves the mystery of the missing super-
Hamiltonian. The super-Hamiltonian is missing not be-
cause the hypersurface is stuck and cannot move from a
spot, but because the field equations predict that the
SU(2)-invariant dynamical variables must be the same
everywhere along the flow line of # ¢ The super-
Hamiltonian is thus expected to produce no change; the
super-Hamiltonian which definitely does not produce any
change is one which is equal to zero. It is more accurate
to say that the super-Hamiltonian vanishes than to say
that it is missing.

IV. OBSERVABLES

In Sec. II, we have defined an observable as a dynami-
cal variable O[ 4/,,] which is invariant under DiffS
and SU(2), i.e., which has vanishing Poisson brackets
(2.28) with the constraints. Because the super-
Hamiltonian of our dynamical system vanishes, any ob-
servable O is also a constant of motion; i.e., its value is
the same on any transverse hypersurface. This distin-
guishes our theory from a truly dynamical theory, as
Einstein’s theory of gravitation.’

It is easy to give examples of observables. Let us first
discuss such observables which depend only on the field
momenta &. The simplest of them is the volume

O[E,-"]=f2d3x €=f2d3x(Qabcé[“éjbé,fe”k)l/z 4.1)
of the hypersurface 2. Another class of such observables
is obtained by taking the metric

8 (X)=8;e5¢f , 4.2)

finding its Riemann curvature tensor R,,.,;(x),
differentiating it covariantly on X, forming any scalar
®(x) out of g,5,R .4, and covariant derivatives of R, ;4
up to finite order, and integrating this scalar with respect
to the volume element &:

ofef]= [ d’xe(x)0x) . 4.3)
One can conceive of more complicated observables, e.g.,
those formed by a double integration of scalars or tensors
connected by a kernel, such as the world function or a
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product of parallel propagators. Thus, if Q(x,x’) is the
world function on 3, i.e., the integral of g, dx °dx® along
the geodesic connecting x with x’, and ®(x) an arbitrary
scalar as in Eq. (4.3), the double integral

ol 1= [ d’x [ d*x'2(x)(x)x,x )2 (x )P(x")
(4.4)

is an observable. Of course, on a compact = there may be
more than one geodesic connecting the points x and x’
and we run into difficulties of specifying which one is to
be taken when defining the world function.

Second, let us discuss observables which are construct-
ed solely from the field coordinates 4. One such observ-
able is provided by the Chern-Simons functional

o[4}]= f2d3x TS AL, + e AL A[AL) . @5)

Indeed, the dual to the curvature two form, i.e., the
“magnetic component”

E ia:= %;’7 achibc (4.6)
of the field helps us to construct other examples of ob-
servables which are closely parallel to those constructed
from the “electric component” &/ of the field. There is a
“magnetic volume”

4.7)
Further, if the “magnetic metric”

h=(B)"'8;B“B " 4.8)
turns out to be nondegenerate, we can go through the fa-
miliar steps of forming its curvature tensor, the world
function, etc., and defining the counterparts of the “elec-
tric”” observables such as (4.3) or (4.4).
Finally, we can write observables which depend both

ong;and 4,, as

O[A;,éi“]=f2d3xg§2. 4.9)
While the constraints (2.12) and (2.13) make it difficult to
construct nontrivial scalars out of &’ and F',, because
they imply

Fi,et=o0, (4.10)
once we pass to the level of curvature tensors of g,, and
h,,, we can easily construct observables such as

o[4l,e'1= fzdz'x eR,,[g]h . 4.11)
These examples can be proliferated ad infinitum. The
problem which remains unsolved, however, is a construc-
tion of a complete commuting set of observables.

There is another set of functionals on the phase space
that are invariant under the SU(2) gauge transformations
but not under spatial diffeomorphisms DiffS. These are
the T variables based on loops that were introduced for
3+1 gravity!® and which have exactly the same form in
our theory.
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Let v be a curve in = with end points x,, x;, and 7, &
be the Pauli matrices, where 4,B are the matrix (spinor)
indices. The holonomy U[¥] of the connection A4/ is an
SU(2) matrix defined by

B

’

U[?’]AB(xo,xl )=

x .
Pexp Ifxondxu,;(x)f,.

(4.12)

where P denotes path ordering. When ¥ is a closed
curve, one can take the trace of this matrix and define the
first of the loop variables:

T[y1=Tr(U[y) .

Further, one can start inserting & =277 ,® at selected
points x|, x5, . .

. on the loop ¥ and define the variables

(4.13)
B

T[yl(x)=Tr{U[y]e%x,)} , (4.14)
Tab[?’](xhxz )=Tr{U[y(x¢,x,)& “(x U [y]1(x,x0)

XeUx)U[y](x,5,x9)} , (4.15)
with obvious generalization to 7”s containing any number
of € insertions. These variables form a closed algebra
under Poisson brackets and are invariant under the
Gaussian constraint. A particular representation of this
algebra has been used in quantum gravity.

V. QUANTIZATION

To quantize our system, we turn the canonical vari-
ables A4!(x) and &/(x) into operators satisfying the Dirac
commutation relations

1 i 2b N1 — i sb '

T[A,,(x),ej(x )]1=878,6(x,x") . (5.1
By substituting these operators into the classical expres-
sions (2.12) and (2.13), the supermomentum H, and the
Gauss variable G; are also turned into operators:
2 ~ ~; b S ~ ~; 2b
H,(x)=H,(x;A4,,g;], G/(x)=G;(x;A4,,g]. (5.2)
By the standard algorithm of the Dirac constraint quanti-

zation, the classical constraints (2.15) are then imposed as
restrictions on the physical states ¥ of the theory:

H,(x)¥=0=G,(x)V . (5.3)

The states ¥ in the Schrddinger picture refer to a given
embedding X %(x), i.e., to an instant of time. Because the
Hamiltonian (2.17) is a linear combination of the con-
straints, the Schrodinger equation tells us that the state
function in the Schrodinger picture actually does not de-
pend on the embedding. Because the classical theory
does not predict any dynamics, this is quite understand-
able and it is not puzzling as in theories with nontrivial
super-Hamiltonian. Whatever inner product is chosen in
the space of physical states (5.3), this product is con-
served in the dynamical evolutions. The virtue of our
model is that by making the dynamics trivial, it focuses
attention on those aspects of quantum gravity which are
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purely kinematic. It enables one to pinpoint those as-
pects of quantum gravity which the inclusion of a super-
Hamiltonian constraint sets apart from the quantum
theory of our spacetime, with its degenerate metric and
lack of dynamics.

We shall describe now three different representations
of the quantum theory (5.1)-(5.3). These are the metric
and connection representations (which correspond to the
momentum and position representations in ordinary
quantum mechanics), and the loop space representation.
The last representation will be constructed along the lines
used for the 3+1 Einstein’s theory of gravitation by
Rovelli and Smolin. '

A. Metric representation

As contrasted with the metric representation in the
standard Dirac-:ADM  (Arnowitt-Deser-Misner) ap-
proach, where the spatial metric on a spacelike hypersur-
face is a coordinate variable on the phase space, the
metric (or triad) representation in our model (as in
Ashtekar’s version of canonical gravity) is the momen-
tum representation. To satisfy Eq. (5.1), the momentum
variables ~Jb(x) are turned into multiplication operators
and the coordinate variables A/(x) into variational
derivatives acting on the space of functionals W[&j ]:

A

e.

L (x)=2)(x)X, Ai(x)=i8/82}(x) . (5.4)

The constraint operators (5.2) are factor ordered so that
the action of A4(x) precedes the action of ’éj(x) With
this factor ordermg, the quantum constraints (5.3) are
equivalent to the statement that the physical states are in-
variant functionals of &/(x) under the action of SU(2) and
DiffS groups on the arguments &/(x). Any SU(2)-

invariant functional of &/(x) can depend on &7(x) only
through the metric g, (x):

XW[E(x)]=0=¥=V¥[g,,(x)] . (5.5)

The Gauss constraint thus ensures that the triad repre-
sentation is actually a metric representation. The super-
momentum constraint then ensures that the state func-
tional W[g,,] is the same for all metrics connected by a
spatial diffeomorphism, i.e., that it depends on the three-
geometry g rather than on the metric: ¥ =W¥[g]. There
is no other restriction on the physical states. The func-
tionals (4.1), (4.3), and (4.4) which were given as examples
of classical observables are thus simultaneously examples
of physical states in the metric representation.

The Schrodinger representation automatically carries
with it an appropriate concept of an inner product. Such
a product should be defined only for the states which
satisfy the constraints (5.3), i.e., for the physical states
Y[g]. Itis given by the functional integral

(w,|9,)= [ Dg¥i[g]¥,lg]

over all three-geometries. All classical observables
should be represented by operators which are self-adjoint
with respect to the inner product (5.6). In a theory with a
vanishing super-Hamiltonian, the conservation of the
inner product in time is no issue.

(5.6)
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B. Connection representation

In the connection representation, Eq. (5.1) is satisfied
by defining A i (x)and gf(x) as the operators

~ . ~b

Aj(x)=Al(x), &;(x)=—i8/8A4}(x)

: (5.7)

acting on the functionals W[ 4] of the connection. The
constraint _gperators are now factor ordered so that the
action of &;(x) precedes the action of Al I(x). With this
factor ordermg, the quantum constramts (5.3) are again
equivalent to the statement that the physical states
W[ A.] are unchanged by the action of the SU(2) and
Diff3 groups on the arguments A4/(x). The functionals
(4.5) or (4.7) are examples of such functionals.

A well-known set of solutions W[ 4] of the Gauss con-
straints are the traces of the Wilson loops formed from
the connections. These solutions are parametrized by
closed curves in 2. Unfortunately, their transformation
properties under diffeomorphisms are nontrivial and we
do not know how to construct out of them, combinations
which are invariant under Diff2.

When we denote the equivalence classes of connections
under SU(2) and DiffZ groups by A, the inner product of
two physical states W,[ A] associated with the
Schrodinger representation (5.7) can be formally written
as

(v,|¥,)= [DAVI[A]¥,[A] . (5.8)
Again, its conservation in time is not an issue. Classxcal
observables O must be represented by operators O which
are self-adjoint with respect to this inner product.

C. Loop space representation

In the previous two subsections, the first step in obtain-
ing a quantum theory was to find a realization of the fun-
damental canonical commutation rules (5.1) in a suitable
representation. The approach used in this section in-
volves finding a linear representation of a noncanonical
algebra. Such an algebra is available on the classical
phase space of our theory and it is identical to that used
for general relativity. This is the algebra of the (Gauss-
law-invariant) T variables defined in the preceding sec-
tion.

The steps involved in constructing a quantum theory
are (1) obtain a linear representation of this algebra that
reduces in the limit #—0 to the classical Poisson algebra
on the phase space, (2) define operators on this space that
represent the Diff2 constraint, and (3) obtain the kernal
of this constraint to extract the physical states (according
to the Dirac prescription). Note that we need not define
the Gaussian constraint on the space since the represen-
tation basis is, by construction, invariant under this con-
straint.

The above steps have already been carried out for gen-
eral relativity and so we only summarize the results here
and refer the reader to Ref. 10 for details.

A linear representation of the T algebra is provided by
considering complex-valued functions a[y] (=a[y " '])
of loops 7, and defining the action of the operators 7" on
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this basis. As a simple illustration, consider two loops
B,y that have a common point. The definitions are

Tlyla[Bl:=alyUB], (5.9)
T [y 1(x)a [Bl:=#ATy,B)(x)
X(a[yeBl—alyeB~ '] . (5.10)

Here
ATy, Blx)= [ dt BU& (y(5),B(1))

where s,t are parameters that run along the loop,
x =v(s), and B°t) is the tangent vector to B at the pa-
rameter value . The composite loop yo 3 is obtained by
first transversing ¥ and then 8. The function a evaluated
on the union of ¥ and Bis a[y UB]. It satisfies the rela-
tion a[y UBl=a[yeB]+a[yeB '] which reflects a rela-
tion between SU(2) holonomies. It is straightforward to
check that the commutator algebra that follows from
these definitions reduces to the Poisson algebra in the
classical limit.

These definitions are generalized in a straightforward
way to higher T’s, and to loops with multiple intersec-
tions.

There is a natural action of DiffS on a[y]. For
¢ €EDiffZ, the operator U(¢) is defined by

Uplalyl=alé 'v], (5.11)

where ¢ '-y is the image of y under ¢. The states in-
variant under Diff2 must satisfy

U(gla[yl=aly]. (5.12)
Since the diffeomorphism invariant information in a loop
is the way that it is knotted, the solutions to (5.12) are
functions of the knot classes of the loops and are denoted
al[K(y)].

The physical states for the theory in this representation
are therefore these functions of knot classes, a[K (y)],
and their generalizations to multiloops, the link classes.
The issue of the inner product in the loop representation
is not clear to us. Since the knot classes form a countable
basis, one could formally postulate that the inner product
be one that makes states corresponding to different knot
classes orthogonal. This issue will be discussed further in
the following section.
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V1. DISCUSSION

Having completed the discussion of the quantum
theory for our model, we turn now to a comparison of the
metric, connection and loop representations. Following
this, we compare the loop space representations for gen-
eral relativity and the present model.

The metric and connection representations may be
thought of as being related by a formal functional trans-
form, analogous to the ordinary Fourier transform be-
tween the coordinate and momentum representations.

Since we have obtained the physical states in the
metric and the loop representations, the questions of
their equivalence and transformations between them
arises. Is there a well-defined functional transform that
maps states of one space into states on the other? Anoth-
er associated question is what is the inner product in the
loop representation associated with (5.6)? The answers to
these questions may provide a natural association of
three-geometries with knot classes of loops and possibly
provide an inner product for the physical states of gen-
eral relativity in the loop representation.

The physical states for general relativity form a subset
of the states for our model. This subset is selected by im-
position of the super-Hamiltonian constraint of general
relativity, and is expected to consist of specific linear
combinations of states based on intersecting loops. 12
Those states of quantum gravity that are based on
smooth nonintersecting loops occur in our model as well.
This suggests that such states, by themselves, cannot dis-
tinguish the presence or absence of the super-
Hamiltonian constraint.

A further difference in the phase-space variables of our
model and general relativity is that the coordinate vari-
able for the latter is a complex SU(2) connection, and the
Ashtekar formalism includes an associated reality condi-
tion. This information has to be fed into the loop space
representation in order to distinguish it further from our
model (in which A/ is real). A proposal is that this be ac-
complished in the choice of inner product on the loop
space, since the issue is one of specifying the hermiticity
properties of operators. '3
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