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We develop the quantization of spherically symmetric gravitational systems using the Dirac for-
malism and the WK B approximation. The particular application is the nucleation of false-vacuum
bubbles, which may have been the origin of the inflationary universe and matter. Consistency be-
tween our results and those obtained by the Euclidean method requires that the latter include
metrics with degeneracies. Our work also raises several other questions of principle, including the
meaning of the wave function and the necessity of topology change. A tentative application of this
work to quantum cosmology indicates that the “Hartle-Hawking wave function” is inconsistent.

I. INTRODUCTION

The vanishing of the cosmological constant is one of
the great mysteries in fundamental physics. Because the
cosmological constant A acts as a source for the gravita-
tional field, many ideas center on some sort of gravita-
tional dynamics. Such ideas have a characteristic prob-
lem: since gravity acts universally on all kinds of energy
density, a dynamical mechanism which sets A to zero
also produces an empty universe, without galaxies or life.
For example, this is true of the recently proposed
Rubakov/googolplexus solution,! ~3 and of several earlier
ideas.*”’

It has been suggested that the observed universe could
have arisen from such an empty or nearly empty state by
a gravitational instability, negative gravitational potential
energy offsetting the positive energy of matter. One ex-
ample of such an instability is the false-vacuum bub-
ble.> 712 A large enough bubble of false vacuum (A >0)
embedded in true vacuum (A =0) will grow, the tenden-
cy of the false vacuum to inflate overcoming the inward
force on the bubble from pressure and tension. This is to
be compared with the familiar process of the expansion of
a bubble of true vacuum,'? in which pressure and tension
compete. In the case of a bubble of true vacuum, gravita-
tion can either help or hinder the expansion,14 while in
the false-vacuum case it is a necessary ingredient.

The growing-bubble solutions in Refs. 8—12 all origi-
nate in singularities, and it has been shown quite general-
ly that a growing false-vacuum bubble cannot develop
classically from a nonsingular initial configuration.!> It
might, however, appear as a result of quantum tunneling.
The “free lunch” process'® produces matter in three
steps, starting with true vacuum (either empty or possibly
containing a small seed for bubble nucleation). In the
first step, a false-vacuum bubble large enough to grow ap-
pears via quantum tunneling. In the second step this
inflates to great size, and in the third a part of the interior
decays to true vacuum plus matter energy.

In this paper we investigate the quantum nucleation of
the false-vacuum bubble, showing that it can occur and
calculating the tunneling amplitude. Because the process
involves gravity and quantum mechanics in an essential
way, it is interesting both technically and conceptually,
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and leads to a number of results beyond our original
motivation. Some of our results have been reported
briefly in Ref. 17.

We will analyze the tunneling process using a Hamil-
tonian approach, rather than the Euclidean path integral.
The first reason for this is that the
Rubakov/googolplexus idea! * is set in a Hamiltonian
framework. The second is that there is a great deal of
confusion about the definition and the interpretation of
the Euclidean path integral for quantum gravity. Indeed,
comparing our results to a recent Euclidean study of the
same process by Farhi, Guth, and Guven'® is very in-
structive.

In Sec. II we review the canonical Dirac quantization
of gravity, and then make the WKB approximation. We
assume that the initial and final states, and the path of
least action, are spherically symmetric, so we can restrict
ourselves to spherically symmetric metrics. There are
other gravitational tunneling processes which are spheri-
cally symmetric, most notably the wormhole.!” We ex-
pect that our method will also be useful in the interpreta-
tion of these. In order to get some practice with the alge-
bra of the WKB approximation, we solve in Sec. III for
the wave function of empty Minkoswski space. This sys-
tem is dynamically trivial, but there are some questions
about the interpretation of the wave function whose
answers are not clear to us. In Sec. IV we introduce the
vacuum bubble in the thin-wall approximation, work out
the constraints and matching conditions, and discuss the
classical motion. In Sec. V we calculate the WKB nu-
cleation amplitude, both for the false-vacuum bubble of
interest here, and as a check, for the true-vacuum bubble
studied by Coleman and DeLucchia with the Euclidean
formalism.'"* In Sec. VI we compare our approach to
other Hamiltonian and Euclidean treatments of this and
similar processes.?’” 2 In Sec. VII we discuss the impli-
cations of our result for topology change and in Sec. VIII
we discuss the possibility of getting a free lunch. We also
make preliminary application of the spherically sym-
metric WKB approximation to quantum cosmology. We
find that the “Hartle-Hawking wave function,” which is a
central part of the ideas of Refs. 1-4, appears to suffer
from an instability similar to the large-wormhole prob-
lem.?* This may doom yet another class of ideas for the
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solution of the cosmological-constant problem. Our con-
clusions are summarized in Sec. IX. In an appendix we
demonstrate that a certain Euclidean spacetime has a de-
generate metric, as explained in Sec. VI.

II. CANONICAL QUANTIZATION AND
THE WKB APPROXIMATION

We will be studying a bubble with external cosmologi-
cal constant zero, internal cosmological constant A;, and
surface energy per unit area u/4m. For generality, we
will consider negative and vanishing A; as well as posi-
tive. The bubble will be assumed to be spherical, with a
wall of negligible thickness. Since Birkhoff’s theorem im-
plies that a spherically symmetric gravitational field has
no dynamics, one would expect that the system could be
reduced to a single degree of freedom, the bubble radius,
with a potential obtained by solving for the gravitational
field. However, this approach leads to pathologies, for
reasons that we will discuss below and in Sec. V. We will
therefore carry out a full-fledged canonical quantization
of the spherically symmetric bubble wall and gravitation-
al field.

The general spherically symmetric metric is

ds’= 3 g.p(t,r)dxdx?

a,B=tr

+R (t,r)*(d6*+sin’0d ¢?) . (1

For the purpose of canonical quantization®2% it is useful
to write this as

ds?=—N'(t,r)*dt*+L (t,r)}[dr + N'(t,r)dt]?

+R (1,r)(d6*+sin’6d ¢?) , )

where N' and N’ are the lapse and shift, L is ds /dr, and
R is the transverse radius. The action for gravity plus a
general matter theory then takes the form

1 VYo
= —_—— \/ —
S Tom fd xVg(R—2A)+Sy

= [dtp,g'+ [drdt(m L+mxR—N'#,~N'#,),
(3)
where M denotes matter, g; are general matter degrees of
freedom, and #, and #, are the generators of ¢ and r

reparametrizations. For the metric (2), the first line of (3)
is

S =g Jdr dtl 2ANLRY(R ~N'R')/N'
—2(LR)*(R—N'R')/N2(N'R)'R'/L
+LN'+L(R—N'R")*/N!
—N'R?/L —ALN'R?*]+S,, .

Since this expression is quadratic in velocities, it can be
put in first-order form as in the second line of (3), with

GL’ITi G7TL7TR
Hy=—— —
2R R
1 [[2rrR" ] R%
+— | |==— | —=——L+ALR*|+ ,
2G L L H

4)
‘%r:R’ﬂ-R —Lﬂ"L +7{rM .
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A prime denotes d /dr. The momenta and velocities are
related by

. =$[2(N’LR y/N'—2(LR)*/N']

=L —_ > __NTR! t

T =55 ["2R(R=N'R")/N']
and

R=—GN'm ,R"'+N'R',

L=—GN'ngR ™ '+GLN'm R >+(N'L)" .

The time derivatives of the lapse and shift do not ap-
pear in the action, so there are primary constraints

(r)=m,(r)=0. (5)

These have nonvanishing Poisson brackets with the Ham-
iltonian, leading to vanishing of the Hamiltonian and
momentum densities as secondary constraints:

#, (rim ,mg,p,L,R,q)=0 . (6)

In Dirac’s canonical quantization®> the constraints are
imposed on the state,

Ty yAPVW=H, (N¥=0. (7)

The constraints are first class: classically, their Poisson
brackets close with no central charge. Equations (7) are
therefore consistent in the leading WKB approximation.
At higher orders, there would be the possibility of
Schwinger terms in the algebra, and it is necessary to car-
ry out a more sophisticated quantization such as that of
Becchi, Rouet, Stora, and Tyutin.?’

By the primary constraints, ¥(N',N",L,R,q) is in-
dependent of N‘ and N’, so that it depends only on the
spatial geometry and the matter configuration:

Y(L,R,q) . (8)

The #, constraint is also simple, requiring amplitudes to
be equal for two configurations which differ only by a
reparametrization r’(r). The #, constraint is more com-
plicated, ‘“dynamical,” because it is second order in mo-
menta.

Note that we are distinguishing Dirac quantization
from Arnowitt-Deser-Misner (ADM) quantization.?®
The Dirac wave function (8) involves no fixing of gauge:
it gives the amplitude for all possible time slices and radi-
al parametrizations. In the ADM quantization, the slic-
ing and parametrization are fixed by a gauge choice. For
the radial parametrization a simple gauge choice is
L (r)=1, so that the radial coordinate measures proper
distance. For the time slicing, ADM make various
choices, such as the minimal gauge

mi=Lm, +2R 7z =0 . 9
By making such gauge choices, ADM reduce the system
to its “true” dynamical degrees of freedom. In the case
of the bubble wall, this would leave just the one degree of
freedom expected.

However, the gauge choice must be a ‘“good” one.
There is a difference here between ¢t and r, because of the
dynamical nature of #,. For the radial parametrization,
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it is clear that the choice L (r)=1 precisely fixes the coor-
dinate freedom. It is not hard to find a good time slicing
also, if one is perturbing around a given background as
were ADM. But for our tunneling problem, where the
gravitational field is making a large excursion, it is not
clear how to distinguish a good time slicing from a bad
one a priori. As we show in Sec. V, it turns out that some
of the simplest choices are bad. Therefore we will work
with the full-fledged Dirac formalism.

In the WKB approximation, expand

W(L,R,q)=exp[iZy(L,R,q)/#+0 (#°)] . (10)

To leading order in #, the secondary constraints become
Hamilton-Jacobi equations,

e |50 B3R g L

R,q |=0. (11)

In one-dimensional quantum mechanics, the WKB
equation determines the derivative 82,/8¢ (up to the usu-
al sign choice) as a function of g and the energy E. As we
have noted, the gravitating bubble should, by Birkhoff’s
theorem, have essentially the same number of dynamical
degrees of freedom as one-dimensional quantum mechan-
ics. Correspondingly, we will find in Sec. V that the
Hamilton-Jacobi equations (11) determine, up to sign, all
derivatives of X, with respect to the configuration
L(r),R(r),? (7 is the coordinate radius of the bubble), as
a function of the configuration and of the asymptotic
Schwarzschild mass of the system, M. Again, the equa-
tions are consistent because the algebra of constraints is
first class.

Quantum gravity restricted to spherically symmetric
fields is a version of minisuperspace known as the
Berger-Chitre-Moncrief-Nutku (BCMN) model.?*73° We
should point out that, as long as we are interested only in
the leading WKB approximation, we obtain the same re-
sult whether we restrict to spherical symmetry before or
after quantization. In the latter case there are additional
constraints from angular reparametrizations, and addi-
tional terms in the ¢,r constraints, but these all vanish for
spherical symmetry. At the next order in the WKB ap-
proximation, we would have to consider nonspherically
symmetric fluctuations (as well as the central charges
mentioned above). However, Hamiltonian methods are
clumsy in any case for higher order WKB calculations in
field theory—the path integral formalism is vastly
simpler, if it can be developed. We are using the Hamil-
tonian formalism for conceptual, not calculational,
reasons.

III. EMPTY MINKOWSKI SPACE

We now wish to study the solution of the Hamilton-
Jacobi equations (11). It is useful to eliminate 7y by
forming the combination

G‘n'Lﬂ — i+
RL 7'

Gmp
RL

0="17,+ R o+ Ho

(12)

where
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M= + 2 K| _ART 13
2R ' 2G L 3 (13

The quantity M has a simple interpretation. By consider-
ing a static slice (7 x =0) in the absence of matter (so
that M'=0), Eq. (13) becomes the differential equation
which describes a static slice in Schwarzschild or
Schwarzschild-de Sitter spacetime, with /M the mass pa-
rameter. The constraint (12) is thus a gravitational ana-
log of Gauss’s law.

For practice, we first study empty Minkowski space-
time, with A=0. The radial coordinate runs from O to
oo, with R (0)=0. The condition that the origin be non-
singular determines J(0)=0. The constraint (12) then
implies that M (r)=0, and so

= [(R /L?*—1]. (14)

From this we see that the classically allowed and forbid-
den regions are

Allowed: |[R'(r)|>L(r),

(15)
IR"(r)| <L(r)

Forbidden:

Notice that a given spatial geometry can be classically al-
lowed in some regions and forbidden in others. For our
purposes it will always be sufficient to consider 3-
geometries which are either allowed everywhere or for-
bidden everywhere. In the present case, the allowed and
forbidden 3-geometries have a simple interpretation: the
allowed 3-geometries are precisely those which can be ob-
tained by some time slice through classical Minkowski
space.

In the allowed region, solve Eq. (14) for 7; and then
use the #f, constraint mz =L /R' to obtain

‘/ 2 2
=n— GL R L
(16)
7o —pR2+RR"—R'L'/L —L’
R G\/R 12_L2 ’
where n=+1.3!
Now integrate the Hamilton-Jacobi equation,
5,= fo“dr[5L<r)7rL(r)+5R(r)wR(r)] . (17)

An easy way to do this is first to integrate with respect to
L (r), along a path of constant R (r), to L (r)=R’(r) (the
boundary between allowed and forbidden 3-geometries).
Then, holding L(r)=R’(r), integrate to a standard
configuration like L(r)=1,R(r)=r. The second leg
makes no contribution, because the momenta vanish.
This gives

26471:-’G7-f0°°dr[R V'R>—L?—RR'arccosh(R'/L)],

(18)
where the arccosh is defined to be positive.
In the forbidden region, the momenta are

iﬂL=n’%\/L2~R’2 ,
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,R"*+RR"—R'L'/L —L?
GV'L-R" '
The integral of Eq. (17) is

i’lTR

-n

izgn'z.’é.fowdr[]z V/L?—R"—RR'arccos(R'/L)] ,

(20)

where O=<arccos=<w. As usual, the decreasing wave
function

WP~ g0 @1
connects to a linear combination of the two allowed wave
functions. As already noted, the determination of the
prefactor, the next WKB correction, is a difficult task
which we will not attempt.

The calculation which we have just done is only a
warmup; we would like to pause and raise a few questions
about the result. In particular, does the wave function
that we have calculated mean anything? One is tempted
to say no, because this system has no dynamical degrees
of freedom. In the ADM approach, this would be made
explicit by a gauge choice, such as L(r)=1,m;(r)=0.
On the other hand, once a measuring apparatus is added,
the combined system does have dynamics—the question,
whose answer we do not know, is whether it is possible to
devise an apparatus whose own quantum fluctuations and
gravitational effect are small enough to allow the wave
function of the empty vacuum to be observed.

In this same vein, there is a simple example which
shows that the wave function, for gauge degrees of free-
dom, should not be taken too seriously. This is the wave
function of the string, in Minkowski spacetime. For ex-
ample, the tachyon wave function is

: , -1 ’
e:k-xoe —(/2) [ [x*a)l3, X ()
’

V(X)= (22)

where X#(o)=X{+X'"(0). Lorentz invariance forces
the wave function for X'° to be a wrong-sign Gaussian.
Thus we clearly cannot interpret Eq. (22) literally as a
probability amplitude. As has been discussed many
times, there is a very close analogy between the embed-
ding time in string theory and the scale of the metric in

1

i
|
|
|
|

FIG. 1. A spatial geometry on the boundary of configuration
space. Figures 1, 2, 4, and 5 show fixed 8, ¢ slices through vari-
ous spatial geometries. In each figure, the transverse radius R is
given by the orthogonal distance from the vertical axis, while
radial proper distance L dr is measured along the curve.
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general relativity. So it is not even clear that the decay-
ing exponential (21) is the correct choice for the Min-
kowski vacuum.*

We would like to raise one final conjecture. This con-
cerns the question, does topology change occur in quan-
tum gravity? In particular, is there some argument
which shows that the consistency of the theory either re-
quires it, or forbids it? Consider a 3-geometry like that
shown in Fig. 1, in which R (r) doubles back to zero: it is
on the boundary of configuration space. This is in the
forbidden region, but the wave function for this 3-
geometry does not vanish. Thus, there is the possibility
of probability flowing out through the boundary. We
conjecture that it is not possible to make the Hamiltonian
density self-adjoint entirely within the one-universe sec-
tor, but that we need to adjoin a two-universe sector in
which the teardrop in Fig. 1 has broken off entirely, and
so on. This is similar to the original derivation of the
Rubakov-Callan effect, monopole catalysis of baryon
number violation.’®> In that case, even without
knowledge of the short-distance theory (the monopole
core), conservation of probability guarantees that ca-
talysis must occur.

IV. THE FALSE-VACUUM BUBBLE

We now extend the previous discussion to include the
vacuum bubble, whose parameters were described at the
beginning of Sec. II. We work out the constraints and
matching conditions, and review the relevant results
about the classical motion of the bubble.

The action for the bubble plus gravity is

_ 1 VIR A T
S 167G fd *xve R 837G fimeriord *ve
K d34
47 Y wall
= ——l——fd“x\/ER—AI-fdtf?drN’LRz
167G 2G 0
—p [ dt RAN2—-L2F+NP]2, (23)

where 7 is the coordinate radius of the bubble and a caret
on a function (such as R) indicates that it is to be evalu-
ated at ?,ﬁ =R (7). From this we derive the Hamiltoni-
an and momentum densities

GL 77'%‘ G7TL 7TR 1

7{ = J— +_
Ar) SR? R °G

+6(?—r);\—éLR2+8(?—r)(L 24 2R42
(24)
H,(r)=R'mg—L7my, —8P—r)p ,
where p is the momentum conjugate to 7, and
Ez(ﬁ2+u2L2§4)1/2.

In the interior of the bubble, MM (r) defined by Eq. (13)
with cosmological constant A; is r independent, while in
the exterior U (r) with zero cosmological constant is 7 in-
dependent. The condition that the origin be nonsingular
fixes M(0)=0. If we study a system of definite mass M,
we also have the boundary condition M(w )=M. Now
knowing J(r), we can solve Eq. (13) for the momenta:
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2 — — .
r<?, T 2 2 3 ’
(25)
R2 R" 2GM
2 — _ it
r>p, m=a [T =1

The vanishing of the densities (24) also provides matching
conditions at the bubble wall. We will take the geometry
at the wall to be as smooth as possible. The constraints
are consistent with the spatial geometry L (7),R (r) being
continuous at ? and the momenta 7 (r),7g(r) being free
of 8 functions there. With these assumptions the con-
straints imply the following discontinuities at the wall:

ATTL:_% 5

2 (26)
AR'=—SE

R

It is also useful to write the results (25) and the match-
ing conditions (26) in terms of the two-component vectors

' G, (r)
Vir)= R'(r) X G \r) ’
L(r)" R(r)
8 27
Vu= |52
R’
The solution (25) to the constraints now takes the form
A;R%(r)
r<?, V:-V(r)=1-— # ;
(28)
2GM
% V. —<uMm
r>7, Vir=1 R’
with the Lorentzian dot product
VV'=V, VI —V,V) . (29)
Also, by definition,
V-V =p?L?R* . (30)

The matching conditions (26) are simply
V(P+e)—V(@P—e)=—V,, . (31

Equations (28), (30), and (31) have an obvious SO(1,1)
symmetry, arising from the coordinate invariance. They
give five conditions on the six components of V(?+¢€),
V(?—e¢), and V,,, fixing these vectors up to an SO(1,1)
rotation. It is convenient to make such a rotation so as to
set p =0, corresponding to the rest frame of the wall. In
this frame, one can solve for the remaining components,
giving
RiG—e)=ML ——L——‘li(k—l)

uR?
R'(P+e)= MALZ GLRp 5 1y, (32)
KR 2

i (P—€)=m1(?+e)

254
-‘—"u—f—[(Zp—1—}»)2+8p—4(p/Gz,u.M)2/3] ,
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where

A
=t =M (33)
3G GuR

From the result (32), one can derive certain key
features of the classical motion. These classical motions
have been extensively studied in Refs. 8-12; we w111 use
the notation and terminology of Ref. 12. First, 73 is al-
ways positive as R—0 and R >, corresponding to
classically allowed motion. Now vary M, holding fixed
the other parameters p and A - One can see that for M
sufficiently large, M > M, 7% is positive for all R: there
are no turning points. The classical bubble emerges from
an initial Schwarzschild singularity and inflates
indefinitely (or the time reversed process). This is the
type E trajectory.'>? For M <M_, there is a range
R, <R< R, in which 7% is negative and classical motion
is forbidden. The turning radii always satisfy

Rg<R, <R, <R, , (34)

where Ry is the Schwarzschild radius 2GM, and R, is
the de Sitter radius \/ 3/A,. For R< R, there is a classi-
cal solution in which the bubble emerges from a
Schwarzschild singularity, expands to R, and then col-
lapses to a Schwarzschild singularity, the type 4 /B tra-
jectory. For R > R, there is a solution in which the bub-
ble contracts from infinite radius to R, and then
reinflates, the type C /D trajectory.>*

At the turning point 3-geometries, all momenta vanish,

'TTL(r):ﬂ'R(r):ﬁzo. (35)

Equation (25) can then be integrated to determine R (r):
the interior of the bubble is a static slice of de Sitter
space, and the exterior is a static slice of Schwarzschild
space. The signs of R'(? —€) and R'(? +€) in the turning
point 3-geometries are significant. If R'(?+¢) is positive,
R (r) increases monotonically in the exterior. If it is neg-
ative, then R (r) decreases to Rg before increasing to
infinity: this is a Schwarzschild wormhole, or Einstein-
Rosen bridge. If R'(? —e) is positive, the interior is less
than half of a three-sphere; if it is negative, the interior is
more than half of a three-sphere. We now quote the fol-
lowing results,'? which can also be deduced from Eq. (32).
There are two masses Mg and M, at which the character
of the turning point changes, and these are ordered

Mp<Mg<M, . (36)

For the inner turning 3-geometry, R'(? —¢) is always
positive, while R'(? +¢€) is positive for M < M (type A4)
and negative for M > M (type B). For the outer turning
3-geometry, R'(?—e) is positive for M > M|, (type D)
and negative for M <M, (type C), while R'(?+€) is al-
ways negative: there is a Schwarzschild wormbhole.

V. QUANTUM NUCLEATION

Spacetimes C, D, and E, with inflating false-vacuum
bubbles, have past singularities. In Ref. 15, this was
shown to be a general result: any classical spacetime with
such a bubble must have a past singularity. On the other
hand, the type A subcritical bubble may have a nonsingu-
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FIG. 2. Two turning geometries. (a) The subcritical seed
geometry. (b) The critical bubble, which subsequently expands.

lar past. Although in the present case the type A trajec-
tory emerges from a singularity, there are various ways to
avoid this: endowing the bubble with global or gauge
charges so that it becomes a nontopological soliton, or ar-
ranging that the thin-wall approximation breaks down at
R >>R s- In the latter case, the analog of trajectory type
A would describe the bubble forming from, and then
breaking apart into, ordinary quanta.

The process in which we are interested is the tunneling
of the “buildable” type A bubble from the inner turning
point R,, through the forbidden region, to the outer
turning point R,, from which it evolves classically on the
type C or D trajectory. This would be a quantum viola-
tion of the classical no-go theorem, and would initiate the
free lunch process. The two turning-point 3-geometries
are shown in Fig. 2. In Fig. 3 we show the Schwarzschild
geometry outside the bubble as a static slice on the
Kruskal diagram. The bubble wall starts in ordinary
spacetime, region I, and appears to tunnel through the
Schwarzschild wormhole to region III. (Actually, for
reasons to be explained in the next section, we do not
think about the tunneling in quite this way.) Classically,
region III is causally disconnected from region I, so this
is a quantum violation of the usual causal structure.

We will calculate the WKB wave function for the bub-
ble plus gravity, and identify the ratio of the wave func-
tion at the inner and outer turning points as the first ap-
proximation to the tunneling amplitude.®®> The ratio is
obtained by integrating the Hamilton-Jacobi equation
along any smooth path connecting the initial and final 3-
geometries. In order to verify that there is no subtle bar-
rier to the tunneling process, we will first construct ex-
plicitly one such path; however, the calculation of the
amplitude will not depend on the details of the path. We
will choose the path so that

L(r)=1 (37

and
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black hole singularity
R°
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JAYA
2
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white hole singularity

FIG. 3. A Kruskal diagram of Schwarzschild spacetime, with
a static slice indicated by the bold line. The exterior of the sub-
critical seed bubble corresponds to right of the point 1 on the
slice. The exterior of the critical bubble corresponds to the
right of point 2. The bubble expands in region III.

R(r)

a

r<? im (r)=K(R)

e (38)
R(r)

a

r>%: im (r)=K(R)

Here, a and b are any constants greater than 1, and
52
K(R >=n'ﬂg—[ 4(p /G UM
—(2p—1—1)2—8p]""2. (39)

This is consistent with the solution (32) of the matching
conditions, and the argument of the square root is posi-
tive in the forbidden region.

To see that the condition (38) fixes the 3-geometry,
combine it with the solution (25) to the constraints, giv-
ing

r<? R'*+V,(R;R)=0,

~ (40)
r>?. R"*+V,(R;R)=0,
where
221 D2

V,(R;ﬁ)=-—l+—1—\‘R2+ G KA(R )R2u~2 ,
3 4R2¢1 A )
41

~ 2GM | G*K*R?)

Py= -2b-2
Vo(R;R)=—1+ R 2R .
These can be thought of as representing conservation of
energy for a particle moving in a potential, the potential
changing at “time” r =?. The radius R of the wall ap-
pears as a parameter in the potential. The boundary con-
ditions

R (0)=0, R'(0)=1, (42)

together with the jump condition AR’'= — Gyﬁ following
from the matching condition (26), completely determine
the motion of the particle—that is, the 3-geometry. Fur-
ther, the equation, and its solution, depend in a smooth
way on the radius R. When I’{\=RI’2, K (R) vanishes
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and the 3-geometry just defined reduces to the turning-
point 3-geometry. Pictorially one can imagine interpolat-
ing between Figs. 2(a) and 2(b) by expanding the radius R
while pinching in the outer geometry to form the
Schwarzschild wormhole.

The Hamilton-Jacobi equation is now

83,="56% fowdr[SL(r)'n'L(r)+8R(r)1rR(r)] . @3

To integrate, first hold fixed 7 and the geometry in a
neighborhood of the wall, while varying L and R else-
where. With the momenta given by Eq. (25), this gives

iZE"=y(F,+F+F,), (44)

where

Fi=< [[ar[ RV I*=A,L'R7/3—R"

—RR'arccos(R'/LV 1—A;R?/3)],
45)

Fo=éf;dr[ RVI2—2GML/R —R”

—RR'arccos(R'/LV'1—-2GM /R )],

and where F depends only on the geometry at the wall.
The forms of F; and F,, are determined in the same way
as the similar results (18) and (20) for empty Minkowski
space. Again, the inverse cosine is defined to lie between

T
2G
T
26
L

2G

F/[R,—R,]+Fo[R,—R,]=

Also,

2M —Gp*R3(A—1)
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0 and 7. To obtain F‘, allow a variation of L (r) and R (r)
which is nontrivial at the wall, with the result

aﬁzsﬁ% arccos[R'(P—e)/LV 1—A,;R?/3]

—arccos[R'(P+€)/EV'1—2GM /R 1} .
(46)

The right-hand side comes from a total derivative in re-
lating 8F; » /8R to [8Rmg. In Eq. (46), 8F depends on
the geometry only through the value of R. In particular,
R’'(P+e€)/L was determined in terms of R in the solution
(32) to the matching conditions. Thus, F is obtained by
integrating Eq. (46) with respect to R. We have not con-
sidered variations of 7, but the integrability of the equa-
tions ensures that this will be correct, and one can check
it explicitly.
In all,

nWFT[R, —R,1=L(F,[R, R, 1+ Fo[R, R, ]

+F[R,—R,]), 47)

where [R,—R;] means the difference in the quantity
evaluated at the two turning-point geometries. The in-
tegrals F; , simplify greatly at the turning points. The
first term vanishes, and the arccos is 0 if R’ >0 and 7 if
R’'<0. Thus, F;, get contributions only where the
geometry “‘back tracks”:

(R3—R3?), M>My,
(R¥—R2%), Mg>M>M, , (48)

(R}—RE), Mp>M .

M —Gu*R3*(A+1) (49)

Py
—R arccos

R o o
ﬁ‘[Rz‘Rd:—é‘ R,ZdR R arccos

The right-hand side of Eq. (47) is negative for '=—1.
The tunneling probability is

P~e—Z(F,[RZ—RI]+F0[R2—Rl]+F[R2—R1])/ﬁ

(50)

Let us relate this result to our earlier work.!” There we
made a different choice of interpolating geometries,
namely the minimal gauge. In particular, this fixed
my, g =0 inside the wall. Unlike the choice (38) described
above, the geometry defined by the minimal gauge is not a
continuous function of R for all values of the
parameters—it only works for M greater than some mass
M, where Mg>M >M,,. In Ref. 17, only the range
Mg >M > M was considered. The present choice of in-
terpolating geometries works for arbitrary values of the

2uR 1—A;R?*/3

2uR*V1—2GM /R

[
parameters.

The forms given for F, Eq. (10) of Ref. 17 and Eqs. (46)
and (49) above, differ, but it is easily seen that they are
equivalent. The inverse cosines in Eq. (46) are just the
angles @7 defined by the vectors V(? —¢) and V(?+¢) (in
the Euclidean plane, because we are in the forbidden re-
gion). The minimal gauge and the gauge (38) differ by an
SO(2) rotation at the wall. Both expressions for F involve
6~ —6" which is an SO(2) invariant. With the minimal
slicing, 8~ vanishes.

It is interesting also to consider the case A; <0, so that
the exterior, A=0, is false vacuum. We take M =0, cor-
responding to the spontaneous decay of the false vacuum,
which was studied by Coleman and DeLucchia!* using
the Euclidean bounce method. Then the solution (32) to
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the matching conditions becomes
R’(?—e)=G—f’2§—H—(|M+l) ,
R’(?+e)=£;ﬁ‘li(|k|—l) , (51)
Tri(?—e)=7ri(?+e)=ﬁé§2-(|k|—1)2—1/4G2 .

J

Re GRu(|Al+1)
F[R.—0]= “dR |arccos— AT ) _are
N fo 2V 1+|A|R%/3
=fm|~1>*'dx arccos2+x2(|k|—1)
0 2V 1+ |Alx?

T

2GR A(A =12

The tunneling amplitude,
YFY[RC] :eZF[RC —0]
\PF+[O]

agrees with Coleman and DeLucchia.

) (53)

14,36

VI. COMPARISON WITH OTHER WORK

We have studied the false-vacuum bubble using Dirac
quantization. As we have noted, there are two natural al-
ternatives: reduction to a single quantum mechanical de-
gree of freedom, as in the ADM method, and the Eu-
clidean bounce method. We consider the former first.

The Dirac quantization, describing simultaneously all
possible ways of choosing space-time coordinates, con-
tains a large amount of redundant information. We
could reduce this to the expected single degree of free-
dom by gauge fixing, choosing a family of spatial

configurations parametrized by a single variable y,
?(y), L(r;y), R(r;y). (54)

The momentum conjugate to y is given by the chain rule,

., =, L(r) 3R (r)
py=5§p+f0 dy ay’ 7 (r)+ ay’ mr(r) . (55)

The constraints give just enough information to solve for
p, in terms of y and the Schwarzschild mass M. Invert-
ing gives the Schwarzschild mass

My,p,), (56)
which, up to the usual ordering problems, is the global
Hamiltonian for the system.

A seemingly natural choice of slice is to take the
geometry to be static de Sitter inside and static Min-
kowski outside, with the wall radius R being the dynami-
cal variable y. This is the choice made by Berezin, Ko-
zimirov, Kuzmin, and Tkachev,? and in the Hamiltonian
treatment of Farhi, Guth, and Guven.'®3” There are,
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The region R <R is forbidden, and R > R is allowed,
where R-=1/Gpu(|A|—1). Notice that the critical ra-
dius diverges when |A|=1. For |A| <1 the tunneling is
actually impossible:!'* the turning geometry is not a bub-
ble of true vacuum in false, but a compact space, half true
vacuum and half false.

The tunneling amplitude is now obtained immediately
from the results (45) and (46). In this case, F; and F,
vanish at both turning points, and

GRu(|A|—1)
COS 2

however, some problems with this choice. First, it is im-
possible when R <Rg or R >R,. Second, in the range
Rg <R <R p there are four branches, depending on
whether the spatial geometry includes more or less than
half of the de Sitter sphere, and more or less than half of
the vacuum Schwarzschild space. The process that we
are interested in, tunneling from a type A trajectory to
type C or D, involves tunneling from one branch to
another, and it is not clear how this can be addressed in
this gauge. Reference 18 discusses extensively the patho-
logies of the Hamiltonian obtained in this slicing.

An alternative choice of gauge is the one that we have
used in the preceding section, Eq. (38). This assigns a
unique spatial geometry to each radius R, and the Hamil-
tonian has the expected character, allowed regions
R <R, and R> R, separated by a forbidden region. By
construction, the tunneling amplitude in this reduced
quantum mechanical system is identical to that which we
have obtained. However, our description of the slicing
has necessarily been somewhat implicit, and so we are un-
able to give the Hamiltonian in closed form. Notice that
the radius R increases monotonically from R, to R, on
our path, and never drops to the Schwarzschild value Rg.
The wall thus does not tunnel through the Schwarzschild
wormbhole; rather, space bulges inward around it to form
the wormhole. Both the wall and the geometry tunnel.

It is not clear how to distinguish a good gauge from a
bad one a priori, and so we have avoided this by working
in the gauge-invariant Dirac formalism. However, we
would like to make a few remarks. When fixing gauge in
the Lagrangian formalism, the definition of a good gauge
is straightforward: it intersects each gauge orbit once. A
problem in the Hamiltonian formalism is that the Hamil-
tonian is second order in momenta, so it does not gen-
erate orbits in configuration space. On the other hand, if
one goes to phase space, the Hamiltonian acts as a first-
order operator and does generate orbits. Thus, from the
phase space point of view, the Hamiltonian would seem
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to be on an equal footing with the spatial momenta, and
not singled out for special treatment. This seems to be
the point of view of Ref. 38. However, we would like to
offer the objection that, unlike the other gauge genera-
tors, the Hamiltonian does not simply fiber the
configuration space: the Hamiltonian flow in general has
a nontrivial structure, with different kinds of motion in
different parts of phase space. We conjecture that it is
this property, rather than the (possibly representation-
dependent) second-order form of the operator, that
identifies the Hamiltonian as “dynamical.”

We now consider the Euclidean bounce approach.
Farhi, Guth, and Guven!® have shown that there is no
Euclidean bounce corresponding to the nucleation of the
false-vacuum bubble, if the spacetime is required to be a
manifold. This is surprising, because, given our Hamil-
tonian formulation, there is a canonical way of construct-
ing a Euclidean solution. In Eq. (38), we have described a
family of geometries which interpolate between the two
turning points. The geometries are parametrized by the
bubble radius R:

#(R), L(r;R), R(r;R). (57)

Introduce a parameter 7, which will become Euclidean
time, and choose any function R(7) which increases
monotonically from R, to R, as 7 runs from O to 1, with
a,ﬁ vanishing linearly at the end points. Now Eq. (57)
gives the wall coordinate and the spatial components of
the metric as functions on Euclidean spacetime:

?(r), L(r,7), R(r,7). (58)

The rest of the geometry, namely the metric components

N7 and N', is obtained by solving the relation between

momenta (known from the solution of the constraints)

and the time derivatives of the spatial metric [from Eq.

(58)]:

9,R=—GN7im; R '+N'R’,

9,L=—GN'imgR '+GLN"im R *+(N'L), (59
N7ip

\/_Lbﬁ2+L4H2R4

There are similar equations for the 8,7, 3,7, and 3.9,

but these are automatically consistent with Egs. (59) due

to the constraints.®*> The Euclidean Einstein equations

are just the vanishing of the Hamiltonian and momentum

densities, which hold by construction.

How is this consistent with the result in Ref. 18? It is
shown in that paper that a bounce solution is possible, if
a certain pathology is allowed. Namely, the bounce is
double valued: in the exterior region r >?, the mapping
of the bounce spacetime into static Schwarzschild space-
time is partly two-to-one. However, we prefer an alterna-
tive description: one can unfold the bounce spacetime by
a one-to-two mapping. The resulting spacetime is single-
valued but still has a pathology: the vierbein is degen-
erate along the fold, and its determinant changes sign
from one side to the other.

Returning to our canonical construction of the bounce
solution, there is indeed no guarantee that the vierbein

3P=—N"+
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we construct is nondegenerate. The determinant of the
vierbein is N'LR?, so the issue is the sign of the Euclide-
an lapse N". Examination of Fig. 15 of Ref. 18 shows
that the fold runs from the initial surface 7=0 to the final
surface 7=1 along a curve r(7) which lies in outside the
wall, r,(7)>7(7). In the Appendix we show that this
same behavior holds for the bounce we derive from Eq.
(59): the Euclidean lapse changes sign between r =7 and
¥r— .

In Ref. 18, a plausible prescription was made for the
action of the multivalued bounce. The result agrees pre-
cisely with the WKB amplitude (50).

How are we to interpret this result? From the Euclide-
an point of view, it is not clear whether we should include
such degenerate geometries. We might even suppose that
there are two theories of gravity, one which allows only
nondegenerate metrics and one which includes all
metrics. However, the Hamiltonian approach gives an
unambiguous answer. We have simply integrated the
constraints, and have obtained a definite value for the
amplitude to tunnel between the saddle points. No bar-
rier or other ambiguity is encountered along the path of
tunneling, and if the parameters describing the bubble are
small compared to the Planck energy then all curvatures
are also small and so semiclassical Einstein gravity is
presumably valid. Thus, such degenerate bounce solu-
tions must be admitted. The Euclidean lapse, with its
usual behavior, plays no role in the Hamiltonian treat-
ment. It is an auxiliary quantity, derived in order to give
a Euclidean description of the process.

It has also been argued from a very different point of
view that degenerate geometries should be allowed in
quantum gravity.** Our result is further evidence for
this. We should note, however, that the discussions in
Ref. 40 were for Minkowski geometry. Further, the con-
nection between the Euclidean bounce formalism for tun-
neling, and the more general Minkowski or Euclidean
path-integral representations of transition amplitudes and
Green’s functions, seems to be understood only rather
poorly and indirectly, even by the experts. The general
significance of our result is therefore unclear.

Euclidean solutions which contained false-vacuum re-
gions were also considered in Ref. 21. However, these
are closed spacetimes, without initial and final hypersur-
faces. Their interpretation is therefore unclear, but it
does not seem to correspond to the process that we have
considered.

We should point out the close similarity between the
free lunch process (which can repeat within each bubble
of true vacuum) and the self-reproducing universe of
Linde.”? He has considered extensively the analog of
false-vacuum nucleation, but in a chaotic-inflationary po-
tential. That is, a quantum fluctuation may produce a
large potential-energy density in a region of spacetime,
which then inflates before rolling down the potential. We
have considered an old-inflationary potential—not be-
cause of a particular interest in this potential, but because
the thin-walled spherical bubble is very simple and allows
a fairly precise calculation. It seems likely that in any po-
tential which allows inflation, a false-vacuum region can
be produced by quantum fluctuation.
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VII. APPLICATION: TOPOLOGY CHANGE

The evolution of the false-vacuum bubble from the
turning geometry of Fig. 2(b) is quite interesting.®”!?
The bubble grows and the Schwarzschild wormhole col-
lapses, leading to the spatial geometry shown in Fig. 4(a).
The universe has two causally disconnected pieces. One
is a closed space with the false-vacuum bubble and a
true-vacuum region containing a black hole. The other is
an infinite universe in the true-vacuum state, also con-
taining a black hole. The black holes are at the opposite
ends of the Schwarzschild singularity. If the black holes
subsequently decay completely into ordinary quanta
through Hawking radiation, we reach Fig. 4(b), in which
the two universes are not only causally, but also topologi-
cally, disconnected.*!

It has been proposed in recent years that topology-
changing processes (wormholes) in quantum gravity have
profound effects on observable physics. But we have no
theory for calculating and interpreting these effects—in
fact, we cannot even answer the basic question, whether
topology change occurs at all. In Sec. III we made one
conjecture as to why topology change might be required.
The process shown in Figs. 2(a), 2(b), 4(a), and 4(b) is
perhaps a more forceful argument. We have now estab-
lished that the first step, quantum nucleation, occurs. We
believe our argument for this step is conclusive: as noted
in the preceding section, we need apply quantum gravity
only in regions where the curvature is small compared to
the Planck scale. The second step is purely classical.

The controversy may lie in the third step, black-hole
decay. The final stages of this process involve large cur-
vatures, where gravity is not well understood. It is a pos-
sibility that the decay terminates with a stable Planck-
sized remnant of the black hole, so the two universes
remain topologically connected as in Fig. 4(a). Neverthe-

Schwarchild singularity

a)

T

(b)

FIG. 4. (a) A spatial geometry following Fig. 2(b): the bubble
has expanded and the neck has collapsed. (b) A still later
geometry, after black-hole evaporation.
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less, we believe that one can argue for the necessity of to-
pology change. The stable black-hole remnant looks
externally like a particle, and so by general principles one
believes that it must be described by a quantum field.
This has a number of consequences. One is that the rem-
nant can be produced in other ways than black-hole de-
cay. For example, high-energy gravitons could scatter
into a remnant-antiremnant pair. Further, the remnant
produced from the false-vacuum bubble can annihilate
with an antiremnant, completing the process of topology
change.

Even if the above arguments are correct, we have only
argued that the topology of a spatial slice can change:
spacetime is still simply connected. The main effects of
wormholes appear only if spacetime becomes multiply
connected. We have no argument that this is necessary.
To conclude, we would like to emphasize that a con-
clusive argument that quantum gravity requires topology
change would also be a starting point for the calculation
and interpretation of such amplitudes.

VIII. APPLICATION: THE FREE LUNCH

We have seen that the inflating false-vacuum bubble
can indeed be produced by quantum tunneling. We now
ask whether this can serve the original purpose, produc-
ing matter via the free lunch process. The first issue is
the rate, which is suppressed by a factor of e ~Z, where B
is given by Eq. (50):

B=m(R —Rg)pck > (60)

with R roughly the mean of R, and R,. For a bubble
much larger than the Planck scale (necessary for our
semiclassical calculation to be accurate) the tunneling
rate is exceedingly small. Of course, the order of magni-
tude of B could have been written down without a de-
tailed calculation. The main point of our work has been
to show that the tunneling occurs at all—something un-
clear in the Euclidean and ADM approaches. The size of
B may not be a problem. First, our observed universe
may in fact have grown out of a Planck-sized, Planck-
density bubble. This would be much harder to treat
quantitatively, but there is no reason to think that the
qualitative result would be different. Second, the zero-
matter, zero-A state preceding the free lunch could have
persisted for an arbitrarily long time, so any finite nu-
cleation rate would be sufficient.

The second issue is the necessity of the seed bubble. As
the mass M of the seed is taken to zero, the tunneling am-
plitude (50) goes to a finite limit, so the seed does not
seem to be necessary. On the other hand, in this limit the
turning-point geometry of Fig. 2(b) becomes degenerate.
The neck shrinks to zero size, and the universe outside
the neck is perfectly flat, with no evidence that nucleation
has occurred. This process is indistinguishable from the
birth of a false-bubble universe from nothing: the latter
process and the production via nucleation must be treat-
ed in a unified way.

We turn now to our pet A=O0 theory, the
Rubakov/googolplexus.! ~3 The issue is to extend the
theory from the homogeneous universes studied in Refs.
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1 and 2 to universes which are inhomogeneous, but for
simplicity spherically symmetric. One then asks whether
the probability distribution for A in universes which con-
tain an inflating false-vacuum bubble has a strong peak at
zero (as it does in empty universes, but not in homogene-
ous warm universes). The idea of a “hot spot” in an oth-
erwise empty universe was also raised by Rubakov.*?
Cline® has also suggested an inhomogeneous
Rubakov/googolplexus model, and argues that a A=0
peak is consistent with the existence of local hot spots.
We have not yet generalized the
Rubakov/googolplexus to universes containing false-
vacuum bubbles; we need to extend the formalism to in-
clude creation and destruction of zero-size bubbles, and
also pair production of finite-sized concentric bubbles.
However, already for spherically symmetric empty
universes we will encounter a potentially severe problem.
Consider a universe with the topology of a sphere,

0<r=<m, R(0)=R(m)=0. (61)

With cosmological constant A and no matter, the
Hamiltonian-Jacobi equations integrate readily, as in Sec.
III. In the forbidden region, R'>/L*<1—AR?/3, the
wave function is

¥ =exp- L [ "dr RLVI=AR?/3—R7/L*

—RR'arccos(R'/LV'1—AR2/3)] .

(62)
For spatial geometry a three-sphere of radius a,
L(r)=a, R(r)=asinr , (63)
the forbidden region is*’
a<R;p=V3/A (64)
and the wave function reduces to
WP =exp [T [1—(1—A;a2/372] | . (65)

2AG#

The wave function W¥~, which falls with a, has been
interpreted* as describing tunneling from nothing, a =0,
to a de Sitter universe in the allowed region ¢ >R;. On
the other hand, generic boundary conditions at @ =0 lead
to a linear combination of W * and W¥~. At the turning
point a =R, the growing wave function ¥ dominates,
and the magnitude in the classical region is

37
2AG#

exp . (66)

This is the Hartle-Hawking wave function; that is, this is
the wave function obtained from the no-boundary as-
sumption plus contour prescription of Ref. 45. If some
mechanism (wormholes, antisymmetric tensor field, etc.)
turns A into a dynamical variable, then the amplitude
(66) implies that the probability is concentrated entirely
at A—0". This is the idea of Hawking.* In third-
quantized gravity, the setting for the
Rubakov/googolplexus theory, the object ¥, which we
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have referred to as a wave function, becomes an expecta-
tion value

v{(U¥lU), 67)

where |U ) is the third-quantized wave function and ¥ is
the universe field. In spite of the extreme change of for-
malism, the final probability distribution is much the
same as in the second-quantized theory, and for our
present purposes it will be sufficient to regard ¥ as a
wave function.

Now consider the amplitude for the spatial geometry
shown in Fig. 5, two spheres of radius a =R joined by a
small neck:

L(r)=2R;, R(r)=Ry|sin2r|+8R(r). (68)

Here 8R (r) is some function of order R . <<Ry, that
smooths out the geometry near the neck at r =7 /2. The
neck makes only a small contribution —A~—R2_, to
the integral in the wave function (62). The total ampli-
tude is

A
2AG#%  G#H

exp |2 . (69)

As A—0, this configuration seems to be much more like-
ly than the single large sphere. We should be a little
careful, however, because of the uncertainty (expressed in
Sec. III) about interpreting the wave function in the for-
bidden region. The geometry (68) is almost classically al-
lowed, but the momenta near the neck are Euclidean.
This is easily remedied if there is any sort of matter in the
theory. By the gravitational Gauss’s law (12), adding a
small amount of matter near the ends »r =0, 7 allows M (r)
to vanish at O and 7 (required because these are smooth

FIG. 5. Two de Sitter universes, at the turning radius, joined
by a Schwarzschild wormhole.
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points), and still to take a nonzero value M, at the
neck. There is then a turning geometry with the neck a
Schwarzschild wormhole of radius 2GM ., correspond-
ing to two de Sitter spaces joined by a Schwarzschild
geometry. In the Hartle-Hawking wave function this is
far more likely than the single de Sitter space. In the
Rubakov/googolplexus, the corresponding statement is
that there are far more universes of this type than of the
single de Sitter type.

Similarly, the amplitude for k spheres joined by small
necks is

37 A
2AG#H (k I)Gﬁ )

exp |k (70)

The sum over k diverges, indicating that the distribution
is dominated (in this spherically symmetric ansatz) by an
infinite chain of spheres and necks. This is not fatal in it-
self, because an observer in one universe sees only his lo-
cal de Sitter space, plus two black holes. Now let us relax
the spherical symmetry, and allow Schwarzschild
wormholes to be inserted anywhere. The divergence in
the sum over k makes the distribution difficult to define.
Let us cut the sum off at some large value of k (the
Rubakov/googolplexus would suggest the value
k... ~e>™"). Now consider a point p in one of the de
Sitter spaces, and compare the amplitude for the
geometry at p to be smooth with that to find a
Schwarzschild wormhole end (black hole) at p. In the
latter case, there is a suppression factor e ~4 but a com-
binatoric factor O (k,,) from the possible locations of
the other end of the wormhole. As k., — « (or even
—e*™/A) the combinatoric factor overwhelms the
suppression. We conclude that the Hartle-Hawking wave
function predicts that black holes are dense in spacetime.
This is the best case: it could be that it is too divergent to
make sense at all.

This is very similar to the large wormhole problem,**
except that we are always talking about the geometry of
space, not spacetime. It seems very probable that any as-
sumptions about quantum gravity which lead to the
famous e >™/?? will give rise to such pathologies.

Those familiar with the Euclidean approach to the
Hartle-Hawking wave function will be surprised by our
conclusion, because the single de Sitter sphere is believed
to be the gravitational instanton of least action. Howev-
er, we have argued in Sec. VI that consistency with the
Hamiltonian approach requires the inclusion in the Eu-
clidean path integral of saddle points with degenerate
metric. We have also in that section shown how the Eu-
clidean solution can be constructed from the Hamiltonian
description of the tunneling.

IX. CONCLUSIONS

Using Dirac quantization, we have shown that the
inflating false-vacuum bubble can be produced by quan-
tum tunneling. We have seen, in Sec. VI, why the ADM
and Euclidean bounce methods give ambiguous answers.
In the latter case, consistency with the Hamiltonian re-
quires the inclusion of Euclidean spacetimes with
indefinite metric. Along the way we have raised several

4053

questions about the formal structure of quantum gravity,
including the significance of the amplitude to find a for-
bidden geometry (Sec. III) and the sense in which the
Hamiltonian constraint is special (Sec. VI). We have pro-
posed two tentative arguments for the necessity of topol-
ogy change (Secs. III and VII). Applying our results to
quantum cosmology, we find a possibly fatal divergence
in the Hartle-Hawking wave function, and a severe prob-
lem for the Hawking and Rubakov/googolplex theories
of the cosmological constant. We believe that all of these
points merit further development.

ACKNOWLEDGMENTS

We would like to thank E. Farhi and A. Guth for the
seminars which inspired our interest in this problem, and
for discussions of their work. We would also like to
thank many of the participants of the Aspen Center for
Physics for their comments, in particular S. Coleman, G.
Horowitz, A.Strominger, L. Susskind, and W. Unruh.
This research was supported in part by the Robert A.
Welch Foundation and NSF Grant No. PHY8605978.
J.P. was supported in part by the A. P. Sloan Foundation.

APPENDIX

In this appendix, we show that the Euclidean solution
whose construction was described in Sec. VI must be de-
generate in places. To be precise, we will show that the
Euclidean lapse N7, which determines the sign of the
determinant of the vierbein, is positive on the world line
of the bubble but negative in some part of the exterior of
the bubble (or vice versa).

First, recall some features of the geometry, Egs. (37)
and (38). The radial coordinate is defined by L (r)=1, so
that r is equal to proper radius, the geodesic distance from
r =0. The momentum p vanishes, while im; () is nega-
tive definite (for W ~) and falls rapidly to zero at infinity.
Also, R increases monotonically with 7.

In Eq. (59), combining the results for 9,7 and
d,R (7 +¢€) implies that

N'=—RO.R /Gif, . (A1)
The right-hand side is positive definite. Incidentally, it is
not hard to show from Eq. (59) that N" and N are con-
tinuous at the kink.

Now consider a spherical shell of transverse radius
R,>>R,. The proper radius of the shell is ry(7), defined
by R[ry(7),7]=R,. At R,, the geometry is essentially
flat three-space, because of the rapid falloff of 7, . There-

fore, R (r,7)—r +&(r) for some function {(7). Thus,
ro(7)=Ry—{(7). From the 3R equation,
—‘Nr(ro,’r):_a,g=a,}‘0 . (AZ)

In other words, — N'(ry,7) is the 7 derivative of the prop-
er radius of the R shell. On the other hand, it follows
directly from the 97 equation that —N’(r) is the r
derivative of the proper radius of the bubble.

Finally, integrate the 9,L equation, at fixed 7, from
#(7) to ro(7). Using the relation mg = —bm; /R from Eq.
(38) gives
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—N"(rg,7)+N"(7)

= [arl b +1Gim, (r ) /RUP W 7). (A

The left-hand side is, by the preceding paragraph, the
time derivative of the proper distance from the bubble to
the R, shell. It is obvious by inspection of Fig. 2 that
this proper distance undergoes a net increase, precisely
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because of the bending in of the neck (note that proper
distance is measured along the curves in Fig. 2).
Equivalently, the increase is equal to the proper distance
from point 1 to point 2 in Fig. 3. Thus, the left-hand side
is positive for some, if not all, 7. On the other hand, the
quantity in square brackets on the right-hand side is neg-
ative definite. Therefore the lapse N7(r,7) must be nega-
tive in part of the exterior. Q.E.D.
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