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The reparametrization freedom in the choice of time variable in the dynamics of spatially homo-

geneous cosmological models is used to reformulate the field equations as a geodesic flow for a
"Jacobi geometry" in a particular time gauge called the Jacobi time gauge. For the diagonalizable
models this Jacobi geometry is a conformally flat Lorentzian geometry. By choosing variables
which are adapted to the symmetries of the Jacobi geometry, considerable simplification of the field

equations is achieved, and one can explain the existence of a11 known exact solutions in terms of this
analysis, as well as simplify the study of the qualitative behavior of the dynamics. In addition, cer-
tain "hidden symmetries" which arise in the Jacobi formulation lead to a class of new exact solu-

tions.

I. INTRODUCTION

DeWitt' has shown that one can reformulate the vacu-
um Einstein field equations as an infinite-dimensional sys-
tem of geodesic equations with respect to a certain
Lorentzian metric on the space of three-dimensional
Riemannian metrics. He was motivated by the hope that
this reformulation might be a useful model for exploring
various ideas in gravitational theory. Misner then ap-
plied this technique to vacuum cosmological models of
Bianchi types I and IX and to the Kantowski-Sachs mod-
el. The present paper extends this reformulation to those
vacuum and orthogonal perfect-fluid spatially homogene-
ous (SH} Bianchi models (excluding the general Bianchi
type-VI, z9 case) for which a purely Hamiltonian
description exists involving only the metric variables, and
by so doing achieves an elegant geometrical interpreta-
tion of the dynamics of these models.

The geometrization of a Hamiltonian system by trans-
forming it to a geodesic flow is a well-known technique of
classical mechanics associated with the name of Jacobi. '

Examples of how this type of geometric reformulation of
a mechanical system can be fruitful were discussed by
Pin. By computing the curvature of the Jacobi metric,
he obtained a geometrical description of certain proper-
ties of the solutions of various mechanical problems. The
Jacobi reformulation is associated with a particular
choice of time which will be called Jacobi time and in the
cosmological case the Jacobi metric is obtained by a con-
formal rescaling of the finite-dimensional De%'itt metric
using a special choice of the lapse function.

The reformulation of dynamics in terms of a geodesic
problem allows the application of a wide range of well-

known geometrical techniques in the investigation of the
solution space and properties of the equations of motion.
The advantage of the particular geometric formulation

described here for the diagonal cosmological models un-

der consideration is that the Jacobi metric is always con-
formally flat and therefore necessarily implies the ex-
istence of a large family of symmetries to exploit in sim-

plifying the field equations, namely, the whole conformal
group of flat spacetime. In contrast the Ashtekar vari-
ables for the same class of models apparently lead to a
geodesic formulation where the metric does not admit
any conformal symmetries in general.

In two previous papers ' the scale invariance of the
Einstein equations and the symmetries arising from the
autornorphisms of the homogeneity group of certain Bi-
anchi models were studied with the aim of describing
those time gauges which allow those symmetries to be
used in simplifying somewhat the Hamiltonian equations
of motion. The Jacobi time gauge naturally arose in this
context, where it was found that those symmetries which
are e6'ective in simplifying the dynamics lead to both Kil-
ling vectors and homothetic Killing vectors of the Jacobi
metric.

The power of the Jacobi reformulation is that all of the
dynamical information is collected into a single
geometric object in which all the available manifest sym-
metries are retained. The existence of a wide class of al-

ready known exact solutions can be explained by these
obvious symmetries. However, certain "hidden sym-
metries" arise which are not apparent in the usual ap-
proach to the problem, and these not only explain the ex-
istence of the remaining known solutions but lead to en-

tirely new solutions as well. The search for these hidden
symmetries is in fact synonymous with the search for new
exact solutions, a task that has met little success over re-
cent decades. In the Jacobi formulation these hidden
symmetries are associated with both vector symmetries
(Killing and homothetic Killing vectors} and Killing ten-
sor symmetries of the Jacobi metric.

Roughly speaking, exact solutions can be divided into
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those which arise as particular solutions of special cases
and those which come from special cases which are fully
solvable. The known particular solutions are related to
the existence of a timelike homothetic Killing vector,
arising from the scale/automorphism symmetry, and cer-
tain properties of the conformal factor. The solutions
representing fully solvable cases are associated with the
existence of Killing symmetries which give rise to enough
constants of the motion to completely integrate the geo-
desic equations. They also lead to a reduction of the di-
mension of the dynamical problem even when they are
insufficient to lead to a complete integration of the geo-
desic equations. Homothetic symmetries, on the other
hand, lead to constants of the motion which are explicitly
time dependent ' and are therefore not as effective in re-
ducing the system.

The known exact solutions of the Killing symmetry
class can be broadly divided into two subclasses, the vec-
tor and tensor solutions, depending on whether they arise
from Killing vectors or Killing tensors in the Jacobi
geometry. All previously known solutions of this class
except the Bianchi type-VIII and -XI vacuum locally ro-
tationally symmetric (LRS) solutions are vector solutions.
It appears that all solutions of the vector class have been
found. However, new exact solutions of the tensor class
will be described in a subsequent series of papers. Simi-
larly, the homothetic symmetries can be divided into vec-
tor and tensor cases, lending the same category names to
the corresponding solutions. It is still unclear whether
homothetic Killing tensors arise in this problem.

The present study examines the models under con-
sideration on a case-by-case basis, finding new metric
variables which are adapted to the symmetries of the
Jacobi metric. For the Bianchi types I through VII the
symmetries which will be examined are the isometrics
and homothetic symmetries discussed in previous
work, ' while for the locally rotationally symmetric
models of Bianchi types VIII and IX, the choice of new
variables is determined by the Killing tensor which exists
there. In all cases these new variables lead to consider-
able simplification of the field equations.

However, it should be emphasized that although the
Jacobi time gauge is extremely useful for analyzing the
SH field equations, other time gauges also prove useful
for many purposes. In fact, the freedom to choose
different time gauges is in itself a powerful tool in the in-
vestigation of dynamical systems and it is important to
keep an open mind and use any time gauge which
simplifies the analysis of a given problem. When adapt-
ing the dependent variables to the available symmetries of
the Jacobi metric, one is also led to other interesting time
gauges. In particular, the Killing tensor symmetries sug-
gest new time gauges in which a separation of variables
occurs. Similarly, a timelike homothetic Ki11ing vector
leads to the existence of a monotonic function, and adapt-
ing the time gauge to this function leads to a simplified
qualitative description of the dynamics. An example of
this is given in Appendix B. Therefore the Jacobi formu-
lation provides a vehicle both for finding a useful in-
dependent variable as well as in suggesting useful depen-
dent variables.

II. THE JACOBI METRIC

Given a metric

dS =g ~pdg dg

a Hamiltonian H of the form

H = ,'g ~—(q)p~&+U(q)

(2.l)

(2.2)

%~ =NT+NV =NT ——' (2.4)

which must be constrained to vanish. We introduce an
effective Hamiltonian, called the Jacobi Hamiltonian, by

HJ =%~+ ,' =NT=( —2V) '—T

,'V 'g ~p~& =—
—,'—J ~p~&, (2.—5)

which defines the contravariant components J p=Ng p

of the Jacobi metric

c&J =J pdg dg =N g pdg dg' (2.6)

It follows that the constant of energy of the Jacobi Ham-
iltonian is —,, giving a reformulation of the problem so

describes the trajectory of a particle moving in the
geometry of this metric under the influence of a force
field corresponding to the potential energy U. If this po-
tential U is constant, i.e., no force is present, then sub-
tracting this constant leads to a purely kinetic Hamiltoni-
an with the same equations of motion. Their solutions
represent affinely parametrized geodesics of the metric.
When the potential is not a constant, one can convert the
Hamiltonian to a purely kinetic form by scaling the Ham-
iltonian so that the potential term becomes a constant.
One then has a geodesic flow with respect to the corre-
sponding conformally rescaled metric. This process is
equivalent to a certain reparametrization of the indepen-
dent variable.

Let V = U —E, where the constant parameter E may
be interpreted as the constant of energy for the original
Hamiltonian system. Introduce the new Hamiltonian
%=H Ewhich —satisfies the constraint %=0 and a
second rescaled Hamiltonian %z =N%, where N is some
function on the phase space. This last Hamiltonian gives
the following equations of motion on the constraint sur-
face:

dq /dA, =r)& /"dp =NLV/Bp +ABN/dp

=Nd&/Bp =N BH /dp
(2.3)

dp /dk= dA~/dq =—Nd&/dq —&"r)N/"r)q'—

= —NBA/Bq'= Nr)H /dq—
Thus the Hamiltonian &~ gives the same equations of
motion as H but expressed in a new time variable A, relat-
ed to the old time variable t by dt =N dA, . The scaling
factor N describes the relative rate of change of the two
independent variables.

For the case in which the original metric is positive
definite, V must be negative for the energy constraint to
have solutions. The choice N=( —2V) ' in the above
discussion leads to
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that the reparametrized solution curves are arclength-
parametrized geodesics of the Jacobi metric. For a
pseudo-Riemannian metric there is also the possibility
that V may be positive, in which case the choice
N =(2V) ' leads to the Jacobi Hamiltonian

HJ=&~ ~=4V g p~p=2J p~p (2.7)

with energy constant —
—,', again corresponding to a unit

arclength parametrization. If V is identically zero in the
pseudo-Riemannian case, then one obtains null geodesics
with an affine parametrization. For a Lorentz metric
with the signature —++ +, positive V corresponds
to timelike geodesics and negative V to spacelike geo-
desics. In all cases, zeroes of V lead to singularities of the
Jacobi metric which must be dealt with by considering
the original metric. Since the energy E enters the Jacobi
metric through the potential V, in general there will be a
one-parameter set of Jacobi geometries.

Two-dimensional Lorentz Jacobi metrics turn out to
play a key role in the exactly solvable cases in cosmologi-
cal dynamics. An arbitrary two-dimensional Lorentz
metric is always locally conformally flat and can be put
into the form

2 2F(tx)( dt2+d 2) (2.8)

Thus the metric will be flat if F satisfies the wave equa-
tion. A number of two-dimensional cosmological Jacobi
metrics turn out to have this form with F linear in the
natural logarithmic metric variables, therefore automati-
cally satisfying the wave equation. These correspond to
cosmological models where the Jacobi time gauge coin-
cides with a power-law-lapse time gauge. ' On the other
hand, if we express the above flatness condition in terms
of null variables we obtain the following general form for
the flat metric:

ds = —f(u)g(v)dudv, u=t+x, v=t —x, (2.10)

The single independent coordinate component of the cur-
vature for this metric is given by

(2.9)

' 'ds = —N dt +g,be'cob, (3.1)

where Ice') (a, b =1,2, 3) are SH one-forms dual to a SH
spatial frame which is comoving along the normal
congruence to the family of geodesically parallel SH hy-
persurfaces. The lapse function N allows one to change
from the usual proper time r (N =1) parametrizing the
family of SH orbits to any convenient time t. The equa-
tion of state parameter y for the orthogonal perfect-fluid
source if present is assumed to satisfy 1 ~ y ~2. Howev-
er, the y =2 models can be easily obtained from the cor-
responding vacuum models' and have a very different
behavior compared with the remaining perfect-fluid equa-
tions of state so only the case y%2 will be considered
here.

The symmetry type of the homogeneity group depends
on the structure constants defined by the differentials
des'= —

—,'C'&, co e', which may be reduced to a standard
form parametrized by the four constants (nI",n' ', n' ', a)
subject to the constraint an' '=0. ' The models of class
A (a =0) are completely Hamiltonian and diagonaliz-
able, so that one may assume the metric matrix to be di-
agonal. A convenient exponential parametrization for
the diagonal metric variables was introduced by Misner:"

cations is the appearance of a nonpotential force com-
ponent of the force due to the spatial curvature in the
vacuum Hamiltonian in Bianchi models of class B, al-

though for special initial data in certain class-B Bianchi
types this force vanishes. A general spatially homogene-
ous perfect fluid can be added as a source, but its equa-
tions of motion are not derivable from the ADM Hamil-
tonian. However, an orthogonal perfect fluid, namely,
one which flows orthogonally to the homogeneous hyper-
surfaces, which further satisfies the usual equation of
state p =(y —1)p relating the pressure p to the total ener-

gy density p, adds a single constant parameter to the sys-
tem, and hence a completely Hamiltonian picture
emerges for the same cases as in vacuum. Only such a
source will be considered here.

The metric for the SH Bianchi models assumes the fol-
lowing form in zero-shift spatial gauge:

where f and g are arbitrary functions. This too will turn
out to be relevant for the cosmological models to be con-
sidered.

(g,„)=e'~,
I'=P 1+P+diag(1, 1, —2)+P diag(~3, —~3,0) .

(3.2)

III. HAMILTONIAN COSMOLOGY

The Jacobi reformulation is directly applicable to those
Basses of spatially homogeneous cosmological models
where the complete set of field equations are equivalent to
a purely Hamiltonian system, either because the source
equations also follow from the Hamiltonian in general, or
because special initial data reduces the presence of the
source in the Einstein equations to the appearance of con-
stant parameters, resulting in a Hamiltonian system in-

volving only the metric variables. The Hamiltonian itself
comes from the Arnowitt-Deser-Misner (ADM) Hamil-
tonian"' apart from complications due to the imposi-
tion of the spatial homogeneity which reduces the general
theory to a finite-dimensional case. One of these compli-

These logarithmic metric variables are conformally
orthonormal coordinates with respect to the conformally
flat Lorentz De%'itt metric' on the diagonal minisuper-
space:

9=6e +g„.dP"d13

(g" )=(g„s)=diag( —1, 1, 1), (A, B =0, +, —
) .

(3.3)

Certain class-B models (a&0) also admit a completely
Hamiltonian formulation in special cases where the non-
potential curvature force vanishes. This occurs for the
general Bianchi type-V models and the Taub-like sym-
metric case models characterized by n', =e'"'C,b, =0, all
of which are diagonalizable as well (excluding the general
Bianchi type-VI )/9 case which is not diagonalizable and
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which is not treated here). The Taub-like symmetric case
occurs for Bianchi types V, VI&, and VIIh but it is non-
trivial only for Bianchi type VI& ~ The Bianchi type-V
and -VII& models belonging to this class are the "open"
isotropic models, which will not be considered by them-
selves.

The cosmological Hamiltonian H expressed in these
variables is "already parametrized" in the sense originally
discussed by Arnowit, Deser, and Misner, " with the
lapse function playing the role of the rescaling function of
the previous section. In the class-A case with an orthog-
onal perfect fluid present, this Hamiltonian takes the
form' '
H =&~=N&=0,

&='T+ V= —,', e +rl" p ps+e+V'+2l e

where

(3.4)

(1) 2+3P + (2) —2+3P (3.6)

The term e V* is the gravitational potential and equals

g
' R *, where R ' is the curvature scalar of the spatially

homogeneous three-surfaces. The last term in the Hamil-
tonian is the matter potential, involving the constant
l =lee +p'rr, where 1o is an uninteresting normalization
constant. The constant I can be interpreted as the con-

I

V"=—'e ~ (h ) n' 'e —~ h + —,'(n ') e ~ (35)

and

served baryon number per comoving volume associated
with the choice of comoving frame used to express the
metric. In the Bogoyavlensky-Novikov (BN) time
gauge' defined by the condition N=e 'r '~, the fiuid
potential is a constant —2l~ interpretable as the energy
parameter E of the previous discussion.

Since the system is "already parametrized, " the Jacobi
Hamiltonian can be obtained immediately by the choice
N = ~2V~

' of the lapse function, resulting in the Jacobi
metric

dSJ =Jggdp dp

= ~2V~(12e'~)r)„sdP"dP

V =e+V*+2t re 'Ir- (3.7)

where g is used in this paper to denote the Minkowski
metric of arbitrary dimension with the signature
—++ +. This leads to a one-parameter family of
Jacobi metrics. In the semisimple case these are not
isometric and represent a one-parameter family of Jacobi
geometries. However, in the nonsemisimple case due to
the existence of an automorphism acting as a symmetry
of the gravitational potential, it is possible to redefine the
coordinates by constant translations in the variables p
and p+ to make the two coefficients of the gravitational
and matter contributions to V equal any convenient
values. In particular, I is not an essential parameter since
it may be eliminated (together with the overall constant
12) by the following redefinitions of the coordinates when
it is nonzero,

(P +ln(48lr)/[3(2 —y)], P++ —,'lnl2 —In(481r)/[3(2 —y)], P ) ~(P,P+,P ),

dsJ =24e +~ V*(P—
)

~ ri„sd P "dP (3.8)

For the Bianchi type-I case where this potential vanishes,
the solution curves are just the null geodesics, so any con-
formally scaled metric can be used, the simplest being the
(three-dimensional) Minkowski metric. The null geo-
desics are straight lines in the space of P variables and
correspond to the Kasner solutions. Depending on the
choice of the conformal factor, the vector 8/Bp is a
homothetic symmetry, a Killing symmetry (Minkowski
metric) or no symmetry at all. For all other vacuum
cases, 8/Bp is a homothetic vector which is not related
to the scale or automorphism symmetries.

The constraint %=0 becomes

dP~ dPa
Jz& = —sgnV .

dt dt
(3.9)

showing that all such nonvacuum Jacobi metrics are
isometric to the metric

ds =(e 'W+P 'h +e r~d)&„dP—
dP

The vacuum Jacobi metric can be written for all Bian-
chi types with a nonzero gravitational potential in the
form

Because of the signature —+ + of the Jacobi metric, the
geodesics will either be timelike or spacelike depending
on the sign of V. In the Bianchi type-I vacuum case, V is
identically zero and the geodesics are null. For the
canonical values of the structure constants listed in Table
I of Rosquist and Jantzen' the potential V is positive in
all other cases except for the Bianchi type-VIIO vacuum
case where p =0, which is equivalent to the Bianchi
type-I Taub-like case, and the Bianchi type-IX case
which has a region where V (0, corresponding to space-
like geodesics. The Jacobi metric is singular on the hy-
persurface V=0 in configuration space and is therefore
unsuitable to describe the dynamics on and near that hy-
persurface.

The Bianchi type-VI& models of the class being con-
sidered are also diagonal in the appropriate choice of
frame so one can use the same metric variables p", but it
proves convenient to redefine them by a constant k de-
pending on the symmetry parameters by the formula
k =1+3a q, where q is related to the usual struc-
ture parameters by q = —n"'n' ', sgnq =sgnn'". In
terms of the new phase-space variables @=p,p+
=k 'p+, po=po, p+ =k 'p+ the correct Hamiltonian
on the constraint subspace for the Taub-like symmetric
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case models is '

H =&~=NR,
(3.10)

&=T+V= —'e (
—p +p )+2q k e

+2f&e

This Hamiltonian leads to the Jacobi metric

ds2= 48( 2k 2e4(8—+k8+)+ Ire3(2 r—)8')Sg-

x [—(d)8')'+(dP+ )'], (3.11)

Jy=7 + V= —'e ) (
—po+p )+6a

+2I )' —3(y —1))s

(3.12}

where a =ae~ . Here p+ is a constant gauge parameter
which just gives a rescaling of a. The corresponding
Jacobi metric is given by

ds =48(3a e ~+l~e" )'+)[—(dP ) +(dP ) ]

(3.13)

but again by a redefinition of the coordinates involving
constant translations in the variables g and p+ one can
set the two coefficients of the gravitational and matter
terms in the conformal factor to any convenient values,
i.e., 48q k 1 and 48l~ —+1. The Bianchi type-VIO
class-A Taub-like case may be obtained by setting k = 1.

The general orthogonal Bianchi type-V case is similar
but simpler. The Hamiltonian in this case is given by

H =&)v =NA,

fy the discussion of the dynamics in any time gauge. In
this section a case-by-case study will reveal new insight
into the special results that have been obtained in the
past and place them into perspective in the context of the
more general qualitative behavior of these complicated
systems. Although a unified discussion of the Bianchi
models is possible on a high level, the details of the vari-
ous cases depend crucially on both the automorphism
structure and on the algebraic structure of the potential.
We therefore divide the set of cases into three categories:
no potential term, exactly one exponential potential term
and two or more exponential potential terms. Each of
these categories is subdivided according to the symmetry
group of the Jacobi metric which at least in part reflects
the underlying automorphism group. An additional com-
plication comes from the momentum constraints. Be-
cause of the different structure of the constraints in the
Bianchi types of classes A and B we are forced to consid-
er those two classes separately. Also, in Bianchi type-VI&
models the momentum constraint is invariant under the
automorphism group while in Bianchi type-V models the
automorphism symmetry is broken by the momentum
constraint leading to different solution structures. To
summarize, it is convenient in a detailed study to have a
case-by-case discussion using the Hamiltonian formalism,
redefining independent and dependent variables whenever
necessary, the latter by point transformations.

Before embarking on such a study, we recall the sym-
metry of the Jacobi metric which arises from the coupled
scale/automorphism symmetry which exists for the non-
semisimple models ' and which may be seen by inspec-
tion of the above expressions for the Jacobi metric. For
the vacuum case one has the Killing vector field

However, in this case only a translation in p is effective
in eliminating constants but since a can be assumed to
have any convenient value, it can be rescaled and so both
coefficients in the conformal factor can again be reduced
to the value 1.

A time gauge which is closely connected to the Jacobi
time is the Taub time gauge, ' also referred to as super-
time time gauge by Misner, characterized by the lapse
choice NT=12e ~. This simplifies the kinetic energy as
much as possible by reducing it to the trivial value associ-
ated with the explicitly flat Minkowski metric in the vari-
ables p". On the other hand, the Jacobi time gauge
simplifies the potential energy as much as possible by re-
ducing it to the trivial value of a constant, thus providing
a complementary picture of the dynamics. The Taub
time gauge potential VT =AT V, apart from a factor of 2,
is exactly the expression whose sign determines the
causality properties of the Jacobi geodesics and whose ab-
solute value gives the conformal factor relating the Jacobi
metric to the flat Minkowski metric.

IV. SYMMETRY-ADAPTED VARIABLES

Having reformulated the Einstein equations for the
Hamiltonian Bianchi models as geodesic equations of the
Jacobi metric, one can investigate and exploit the sym-
metries of this metric to find new variables which simpli-

ap' ap+ '

in the class-A case where it is null, and

(4.1)

(4.2}

in the Bianchi type-VI& case where it is spacelike. In the
nonvacuum case one has a timelike homothetic vector
field

(3 1

ap' 4 ap' (4.3)

——k '(3y —2)
a 1, a

ap+ ' (4.4)

in the Bianchi type-VI& case, where it can be spacelike,
timelike, or null (recall that k =1+3a q ).

The case with no potential term corresponds to the
vacuum Bianchi type-I models discussed above and ex-
tensively studied elsewhere from the Hamiltonian point
of view (see, e.g. , Jantzen '). (The type-Vllo LRS case
reduces to the LRS type-I case as well. ) The cases in
which the potential has a single term are (i) type-I perfect
fluid, (ii) type-II vacuum, (iii) special type-II perfect-fluid

in the class-A case and the homothetic Killing vector
field
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subsystem, (iv) Taub-like type-VIO vacuum, (v) Taub-like
type-Vlh vacuum, and (vi) type-V vacuum. In all these
cases the Jacobi lapse function is a power-law lapse and
the problem is easily solvable in the Jacobi time gauge.
The simplest solutions are the exact power-law (EPL)
metrics which have been classified by Wainwright. The
previously known non-EPL solutions will be given. The
remaining models have a nonzero potential which con-
sists of a sum of exponential terms. Some of these cases
are exactly solvable, but are usually simpler to solve in
other time gauges. Therefore no explicit solutions of this
type will be listed.

Bianchi type-II perfect-fluid models

The Taub time gauge Hamiltonian for these models is
given by

~T 29 PAJ B T

V =6(„()))2e4()3'+&'++3(3 )+24/&e3( —~')s
T

The Jacobi metric

dsJ =2VT21„2)dP"dP

admits both the spacelike Killing vector

(4.5)

(4.6)

3 ap'
a

Bp

arising from the additional diagonal unimodular auto-
morphism which exists for this Bianchi type, ' ' and the
timelike homothetic vector listed above. We now
proceed to adapt the coordinates (p") of the Jacobi
geometry to these symmetries. First one can adapt the
variables to the Killing vector by performing the follow-
ing rotation by 120' in the p+-p plane: '

(P,',P, ) = ,'( P' 3/3P-,—3/3P+—P -). —-(4.7)

Next by making a boost with velocity U =
—,'(3y —2) in the

p,+ direction, one obtains new orthogonal coordinates
whose time axis is aligned with the new homothetic vec-
tor and one of whose spatial axes is aligned with the Kil-
ling vector. Finally by a uniform rescaling of the coordi-
nates by a constant factor (dilatation) and translations in

p and p)+, one can eliminate unsightly factors in the
Jacobi metric as above to obtain the result

dS =e ' )'+F(P+)2)„231P"dP
(4.8)

F(p+ )
—3(6—) )P /2+ 3(2 —) )(3y —2)P /8

7

in terms of new variables p" which are related to the old
variables by

in terms of which the Killing vector is just a/aP;. One
can also choose a new homothetic vector which is orthog-
onal to this Killing vector by adding an appropriate mul-

tiple of the latter vector. The result is the timelike vector

+—(3y —2)
a & a

8 Bp)

p =@+up +ko,

P = , ( -P-, +&3P;)
= —,'( —Up —p+++3(1—u )p )+k+, (4.9)

H =-
—,'e -' —v@7) p p + F(P+) (4.10)

with the po-momentum term playing the role of a mono-
tonic energy function for the remaining variables as dis-
cussed in Appendix B. This monotonic function leads to
a very clean and concise qualitative discussion of the late
stage dynamics which is at once simpler and more intui-
tive than previous approaches. For those models where
this is possible, this gives a natural complement to the
moving potential wall picture describing the early stage
dynamics.

In the present case the potential (F(p+) has the—form

of a trough in the p+—coordinates. In the barred variables
the Killing symmetry coming from the unimodular auto-
morphism is (')/(3p and the corresponding constant of
the motion is p . The homothetic vector associated with
the combined scale and nonunimodular automorphism
symmetry is ()/Bp . Setting p =0 gives the locally rota-
tionally symmetric subsystem (see Jantzen, ' and refer-
ences therein for a discussion of the various possible spe-
cializations which occur for the different Bianchi types).
By setting the variable P+ to the constant value P+,„at
the bottom of the trough one obtains a two-dimensional
problem for which the Jacobi and monotonic-function
time gauge lapses coincide (modulo a constant factor).
This is the exactly solvable power-law lapse case (iii).
There are two solutions which "lie" in the bottom of the
trough. The first is the LRS EPL solution which is at
rest in the trough (p =const). The second is Collins
non-LRS non-EPL solution which is moving along the

bottom of the trough (p %0). These solutions will be
discussed in more detail below. No exact solution exists

P = ——„'(3/3PI'+P) )

= —
—,'(3/3vg+3/3P+++I —v P )+k

where k~ are suitably chosen constants. In order to keep
track of the meaning of various potential terms when the
coefficients are scaled away as, e.g. , in F(P+) we always
maintain the original order of the terms, i.e., with the
gravitational terms coming first and the single matter
term coming last. Thus the first term in F(p+) comes
from the gravitational potential and the second term
from the matter potential.

Although the Jacobi time gauge has been instrumental
in obtaining these symmetry adapted variables, the sys-
tem is most easily understood in the "monotonic-
function" time gauge in which the function F(p ) is re-
moved from the conformal factor and returned to the po-
tential term position by a rescaling, leaving behind only
the exponential p -dependent factor associated with the
existence of the homothetic Killing vector field. This is
an example of the way in which the Jacobi time gauge
often leads to other useful time gauges. The Hamiltonian
is then of the form
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= —)p = —
—,'c (M%=0, +), (4.11)

where the constant c is just the conserved momentum

p . The LRS case is obtained by setting c =0. The ex-

plicitly time-dependent constant of the motion is des-
troyed since it does not commute with the constant of the
motion p . Note that HT&0 except for the LRS case

p =0. This leads to the one-parameter family of two-
dimensional Jacobi geometries

dsJ =[e" '+F(P+)+c ]rIM&dP™dP . (4.12)

with P+WP+, „.
Since the orthogonal perfect-fluid Bianchi type-II mod-

els admit a non-null cyclic variable (P or P) ) with a
conserved momentum, it is possible to reduce the prob-
lem to a two-dimensional one with an "efective poten-
tial" term and a two-dimensional "reduced" Jacobi
metric. The reduced Hamiltonian HT in the Taub time

gauge is given by

1(@2+@2)+1 e3(2'))fPF(f3+)T 2 0 +

case the potential has only one term leading to a two-
dimensional Jacobi power-law-lapse case which is dis-
cussed below.

The Bianchi type-Vlo and -Vlo perfect-fluid models

These cases admit a timelike homothetic vector associ-
ated with the coupled scale/automorphism symmetry.
The variables can be adapted to it by making a boost with
velocity u = —

—,
) (3y —2) in the P+ direction. By uniform-

ly scaling the variables and making a translation in the P
direction, the Jacobi metric can be further simplified.
Written in symmetry adapted variables it becomes

ds2=e3(2 —r)P'( ) e3(2 r)P—P,
2

SJ —e 4

+e —3(~ —r)(3r —2)P r4)& dy~dPP

(4.15)

where the variables P" are related to P" by

Bianchi type-V perfect-fluid models

P =g + uP+ +k(), P+ =uP+P++ k+,
)33 =+1—u'P

(4.16)

The Jacobi metric is given by

ds =(e ++e ' )~)[—(dg) +(dP ) ] (4.13)

The Bianchi type-VIO and -VIIO vacuum cases

The Jacobi metric has a null Killing vector suggesting
the use of adapted null variables to express the Jacobi
metric

dsJ=12e "(h ) [ —du du+(dP ) ],
(u, u)=(g +@+,P —g+) .

(4.14)

As discussed, all vacuum models exhibit a hidden
homothetic vector ()/()/3 which is not related to the scale
or automorphism symmetries of the field equations. In
the case at hand, a certain linear combination of the
homothetic vector and the Killing vector 0/BU gives the
lightlike homothetic vector 0/Bu. The Bianchi type-VIIp
Jacobi metric has a curvature singularity at 13 =0 (for
canonical structure constant values). That metric is
therefore unsuitable to describe the vacuum VIIp dynam-
ics near P =0; the LRS case )(3 =0 coincides with the
Bianchi type-I case. There are no nontrivial Bianchi
type-VIIp solutions. In the Taub-like Bianchi type-VIp

where we have again used the rescaling freedom to sim-

plify the coefficients. This two-dimensional Jacobi metric
is already adapted to the Killing vector 8/BP . Since P
is a cyclic variable in the Hamiltonian the problem
reduces to a one-dimensional one, where the explicit solu-
tion is most easily found in the P -time time gauge or in a
power-law-lapse time gauge with lapse depending only on

P . The open Friedmann-Robertson-Walker (FRW) mod-
el of constant negative spatial curvature is obtained by
setting the conserved momentum to zero. The general
solution has been discussed by Nayak and Bhuyan.

and kp and k+ are three new constants. The factor
4

in

front of the first term involving h makes the coefficient
simpler on the Bianchi type-VIp Taub-like submanifold,
where h =2 for the canonical choice of structure con-
stants (q =1). Written in a monotonic-function time

gauge the Hamiltonian assumes the form

1 e 3(2 r )P( p2+p~ )

3[&—x]P p 2 + —3[2—x][3x—2)P j4& (4.17)

In the Bianchi type-VIp case the potential is then a two-
dimensional well. The Hamiltonian (4.17) will be used in
Appendix B in a discussion of the late stage dynamics of
that case. The canonical Taub-like submanifold

P =O=P occurs as a special case of the more general
Taub-like symmetric case in Bianchi type-VI~ to be ex-
amined next. In the Bianchi type-VIIp case the potential
has no extremum value. The Taub-like case is identical
with the Bianchi type-I Taub-like case. ' As for vacuum
there are no nontrivial Bianchi type-VIIp solutions.

The Taub-like symmetric Bianchi type-VII,
perfect-fluid models

The homothetic Killing vector associated with the
scale/automorphism symmetry given involves the param-
eter k E(0, 1)] where the value k =1 corresponds to the
Bianchi type-VIp case. This vector is either spacelike
[k (—,

) (3y —2)], null [k =
—,
) (3y —2)], or timelike

[k & —,)(3y —2)], making it natural to classify the above
problem into three types depending on the causal charac-
ter of the homothetic vector.

For the null case it is natural to use null coordinates
(g,P+ )= —,'(u +u, u —u) leading to the Jacobi metric
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2 4g 3(2—) )v/2( 2k —2 (3y+2)u/2Sg—

+l~e ' )')" )du dv . (4.18)

Since this metric is of the form ds = —f (u)g (v)du du, it
is fiat. The new variables t= ,'[ j—f(u)du+jg(v)du],
x= —,'[ jf (u)du —jg(u)du] are inertial coordinates, in

terms of which the geodesics are straight lines. However,
one needs to invert the coordinate transformation in or-
der to obtain the original variables and the underlying
spacetime metric, which is not possible in terms of ele-
mentary functions. Thus it is better just to use the Jacobi
metric to obtain "good" variables in terms of which the
problem can be solved explicitly. For example, one can

use V=e" ~' as one new variable and U =e'" where
c is some convenient constant for the other variable.
Then one can use a power-law lapse to solve the problem
explicitly. An example of such a power-law lapse is the
one used by Wainwright in order to give this solution a
simple form. The solution was found first by Collins.
This is an example where the Jacobi metric can be used
as a powerful intermediary tool to find new useful param-
etrizations of the original space-time Inetric.

In the timelike case we can make a boost
u = —

—,'k '(3y —2) in the P+ direction. Once again we

can use the conformal subgroup of scalings and transla-
tions to simplify the expression for the Jacobi metric even
further:

dsj=e ' ~)+(exp[4k '[k —
—,)(3y —2)]P+ I+exp[ —

—,'k '(2 —y)(3y —2)P ])( dg —+dP+ ),
g =P +Pu+ +k ,o13+=vg+P++k+ .

(4.19)

The class-A Taub-like case occurs as the special case k =1. The P+-part of the conformal factor has a minimum if
k ) ) (3y —2) leading to an EPL solution. This EPL solution coincides with a g coordinate line in minisuperspace.

In the spacelike case one uses a boost with velocity u given by u
' = —

—,
' k '( 3y —2) followed by dilatations and

translations to reduce the spacelike homothetic vector to 8/BP+ and simplify the Jacobi metric to

dsj~ =e 3(~ )')) (exp I
—4k '[—,

) (3y —2) —k ]P]+exp[ —
—,'k '(2 —y )(3y —2)P])qM)vdP d/3

(4.20)
13 =u )g+P++ko, P+ =g+u 'P++k+ .

Bianchi type-VIII and -IX vacuum models

The Taub time gauge Hamiltonian is

~T 29 I AJB+ VT (4.21)

where VT=12e V*. This leads to a Jacobi Hamiltoni-
an and metric of the form

'r)" p~ps

dsJ=12e +~ V*~g„sdP"dP
(4.22)

As remarked above this Jacobi metric has the extra
homothetic symmetry 8/()P which is not related to the
scale or automorphism symmetries. In the monotonic-
function time gauge the Hamiltonian becomes

H &= —,'e ~g" p„pz+12V' .

For the sake of, =iir~ . -r .-~, assume the canonical

In this case the potential in the corresponding Hamiltoni-
an has no critical point. No previously known exact solu-
tions exist for this family. However, new solutions in the
spacelike and timelike cases have recently been found us-

ing these variables as a starting point. These new solu-
tions ' are associated with a hidden Killing tensor of
the Jacobi metric. Adapting the variables to this symme-
try yields new exact solutions. However, as in the null
case, other time gauges prove more convenient to de-
scribe them, illustrating the way in which the Jacobi time
gauge serves as an intermediate geometric tool in the
analysis of the dynamics.

(P,P+ ) = —(2)8"—P+, —
/3 +2@+ )v'3

(4.24)

which decouples the Hamiltonian into the sum of two
one-dimensional problems. In terms of these variables
the Jacobi metric and Hamiltonian are

dsJ=2Vr[ —(dg ) +(dP+) ],
H~ =

—,
' Vr '( —pa+ p+ ),

V = —24n ' 'e + ++6n ( )2e —4+ &+
T

(4.25)

values of the structure constants n "'= n. ' '= 1 and
n' '= —1 and n' '=1, respectively, in the type-VIII and
-IX cases. In the Bianchi type-IX case the potential
V'= V,'x is a two-dimensional well in the P

+—variables.
The minimum is at P—=0. However, this point is exclud-
ed by the Hamiltonian constraint since the minimum
value of the potential is negative (V';„&0) correspond-
ing to spacelike solutions while only the timelike coordi-
nate P is nonzero at the minimum. In the region V' (0
the dynamics is represented by spacelike geodesics of the
Jacobi geometry. The surface V*=0 is singular and we
have two different Jacobi metrics, one for each of the two
regions V') 0 and V* &0. The Bianchi type-VIII poten-
tial Vvjii is b«nded below by Vviii & 0 but the minimum
value is only attained at infinity (P =O, P ~+ o), see
Jantzen ' for a pictorial representation of the potentials
for all Bianchi types).

The Taub-like (LRS) solutions (I3 =0) can be obtained
in the Taub time gauge by making a boost with velocity
u =

—,
' along the P+ direction
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(3) —4v 3P —2 4 2v 3g —2

4 2v 3t3 (3) —4v 3P
(4.26)

corresponding to the Killing tensor whose components
coincide with the components of the quadratic form in
the momenta in this expression. Appendix C gives an ex-
ample of the way in which a Killing tensor suggests
another time gauge in which a decoupling of the Hamil-
tonian occurs, thus resulting in hidden conserved quanti-
ties in that time gauge.

As shown by Dietz, a Hamiltonian of this type has a
constant of the motion quadratic in the momenta corre-
sponding to a Killing tensor of the Jacobi metric. Ac-
cording to his formulas this quadratic constant of motion
is (dropping an unimportant constant factor)

ds'= r'A—(t) 'dt +g-c,2t 'A(t) '(e3')2,
a =1

(4.29)

indices ranging only over two variables in the two-
dimensional case. It turns out to be natura1 to classify
these metrics into three different categories (power-law
types), depending on the causal character of the constant
covector Qc, which can be either timelike ( T), spacelike
(S), or null (N) with respect to the Jacobi metric or
equivalently with respect to the flat metric, since the con-
formal factor is positive.

These categories each lead to a certain standard form
for the space-time metric in the Jacobi power-law-lapse
time gauge (see Appendix A where the perfect-fluid Bian-
chi type-I case is calculated as an example)

Bianchi type-VIII and -IX perfect-quid models

The Jacobi metric is given by

"1 =21 VT I r)g23d& "d13

VT=12e+ V*+24lre l2 rlP— (4.27}

Jacobi power-law lapses

When the Jacobi time gauge coincides with a power-
law-lapse time gauge, the problem is always solvable and
the Jacobi metric assumes the simple form

dsj=c exp(QCP )r)„~dP"di3 (4.28)

where c and the Qc are constants, or the same form with

The only known solution of this class is the closed (Bian-
chi type-IX) isotropic model (p+=p =0). This is a
one-dimensional problem and can be solved by integrat-
ing the Hamiltonian constraint. However, in this case a
power-law lapse is preferable to the Jacobi lapse as de-
scribed by Jantzen. As in the vacuum case there are
two regions, one for each sign of VT.

This is the only case in which the Jacobi metric has no
homothetic symmetry. This means that one cannot get
rid of the constant I by a coordinate transformation.
However, by an appropriate translation in P one can
make l~ appear as a scale factor in the Jacobi metric.
Therefore the value of l~ is trivial in that it just corre-
sponds to a scaling of the affine parameter in the geodesic
equations of the Jacobi geometry. This is as it should be
since I is directly associated with the scale invariance.

where the c„p„,q„(@=0,1,2, 3) are constants. The pa-
rameters p„should not be confused with the momentum
variables. They are related to the Kasner parameters p,
by p, =p, /(pc+1) (see Appendix A). The orthogonal
one-forms e' are the diagonal gauge one-forms
parametrized by the symmetry parameters given by
Jantzen ' for the class 3 case and for the Bianchi type-V
case, while Rosquist, Uggla and Jantzen give them for
the Bianchi type-VI& case. Table I lists these one-forms
for canonical values of the structure constants.

The function A (r ) depends on the power-law type (i.e.,
causal character of the vector Qc ) in the following way:

T:A (t)=1+1, S:A (t)=1 t, N:A (t—)=e'. (4.30)

The scale and automorphism groups have been used to
set inessential parameters in A (t) (the coefficients in the
linear expressions) and the metric (4.29} to convenient
values. In particular, an overall constant factor in that
metric (corresponding to the scale invariance) has been
omitted.

Only in the timelike case does the Hamiltonian con-
straint allow the special inequivalent parameter choice
A (t)=t leading to exact power-law solutions. The gen-
eral timelike case instead represents solutions which gen-
eralize these power-law solutions. Qualitatively they can
be thought of as the result of interpolating between a
Kasner EPL solution at early times and the exact EPL
solution A (r }= r at late times (see Appendix A for an ex-
ample and Appendix B for a qualitative discussion of late
time behavior). The solutions are determined by their

TABLE I. This table gives the basis one-forms used in (4.29) for canonical values of the structure
constants. Note, however, that in the Taub-like Bianchi type-VI& case, this is the overbarred non-
canonical frame which requires the "effective" nonzero barred P given by P = —&3aP+ (Ref. 7).

Case

Type I
Type II
Type-VIO and -VI& Taub

Type V

dx'
dx '+x 'dx '

—(a +1)x d l
3

—x'dx

dx
dx

—(a —
1 )x d 2

3
e dx

dx
dx
dx
dx
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power-law character (T, S, or N) and the constants

c„p„,q„which are given in Table II.
Robertson-Walker dust universe, This suggests a trans-
formation of variables leading to the metric

Three-dimensional Jacobi power-law-lapse cases

3(2 —y}P dPAdPB (4.31)

which happens to be a three-dimensional Friedmann-
I

The perfect-fluid Bianchi type-I models and the vacu-
um Bianchi type-II models are of this type. The full
isometry group of the Jacobi metric for these models is
closely related to the Poincare group and contains addi-
tional symmetries unrelated to the scale invariance or au-
tomorphism group. '

In the Bianchi type-I case the Jacobi power-law lapse
belongs to the timelike category T and coincides with the
Bogoyavlensky-Novikov lapse already mentioned. The
Jacobi metric is

ds = d—T +T (dX +dY )

T2 —
[ 3 (2 y )] 2e 3~2 —&~0

X =—,'(2 —y)P+, Y =—', (2—y)P

(4.32)

This variable choice considerably simplifies the calcula-
tions which lead to the explicit solutions (see Appendix
A) and provides an instructive example where geometri-
cal considerations lead to an efficient means of obtaining
solutions.

The Bianchi type-II Jacobi power-law lapse belongs to
the class (S) which can be seen by making a Lorentz
transformation consisting of a 120' rotation followed by a
boost to obtain the variables '

(P,P', P )=
—, 2P'+ ,P'+,—P, P' P —&—3P ,

—,'( P -+—&—3P--)1+ &3
(4.33)

in terms of which the Jacobi metric becomes (for canoni-
cal structure constant values)

chi types. By making the change of variables

ds'=12e 4~'t' q„,dP"dP' (4.34)
mt mt .

t =—e 'cosh(mx), x =—e 'sinh(mx)
m m

(4.37)

Curiously enough this metric has the same form as a
metric describing particle motion at a planetary surface, '

which allows an interpretation of the dynamics of these
models in terms of our knowledge about throwing stones.

The form of this metric is nearly the same as the one
describing the nonvacuum Bianchi type-I models except
that the variable in the exponential factor now is space-
like instead of timelike. This similarity suggests making
a corresponding change of variables to simplify the Jaco-
bi metric, leading to the result

ds =X ( dT +dY )+—dx

one obtains

dsi= dt +dx— (4.38)

ds& = —48e "du dU .

By making the transformation

(4.39)

Thus we have reduced the problem to the trivial one of
finding timelike geodesics in a flat two-dimensional Min-
kowski space.

The Jacobi metric in the Bianchi type-VIO Taub-like
case (P =0) is

X'=e ' 't", T=2&3g, Y =2&3P
(4.35) t=6e "+-'U, x =6e "—-'U (4.40)

The solution of the geodesic problem can be obtained in a
way very similar to the Bianchi type-I calculation of Ap-
pendix A.

Two-dimensional Jacobi power-law-lapse cases

ds =c e '( dt +dx )—(4.36)

where c and m are constants which depend on the Bian-

There are four cases in this category: three of type T
and one of type N using the same scheme as for the
three-dimensional situation. The three type-T cases are
the special Bianchi type-II perfect-fluid subsystem dis-
cussed earlier, the Bianchi type-V vacuum models and
the symmetric Taub-like vacuum Bianchi type-VI& mod-
els. The Taub-like Bianchi type-VIO vacuum models are
instead of type N.

The Jacobi metric for the three T cases has the form

one obtains the Minkowski metric in the inertial coordi-
nates (t, x ).

Jacobi metrics admitting a homothetic motion

It follows from the above discussion that the Jacobi
metrics for all the nonsemisimple perfect-fluid models ad-
mit a homothetic motion which is related to the
scale/automorphism symmetry. The vacuum Jacobi
geometries, on the other hand, also admit a homothetic
motion (given by 8!Bp ) but which is not related to the
scale or automorphism symmetries. For the fiuid models,
however, the homothetic vector is in general different
from c)/Bp. The only Jacobi metrics not admitting a
homothetic symmetry are those for the perfect-fluid Bian-
chi type-VIII and -IX models.

Thus for all vacuum models and all nonsemisimple
perfect-fluid models the Jacobi Hamiltonian can be writ-
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ten in the form

e2kv F~aPp
6

(4.41)

where F is a function on the configuration space which is
independent of the variable q for a particular index
value 5. Then p&

= —2kHJ =k implying that p&
= —kt is

a (explicitly time-dependent) constant of the motion.
This corresponds to a homothetic motion BIBq of the
Jacobi metric. The constants of the motion for
homothetic symmetries were discussed by Prince and
Crampin. Since p&

—kt is a constant of the motion it
follows that Jacobi time is proportional to p&. Thus
when q

=j3 as is the case for the vacuum models, Jacobi
time is proportional to po and can be thought of as being
"conjugate" to P time or 0 time.

Jacobi power-law-lapse solutions

As mentioned earlier the Jacobi power-law-lapse cases
lead to a set of non-EPL solutions. Table II lists these

solutions together with their power-law type ( T, S, or X)
[see (4.30)] determined by the conformal factor in the
Jacobi metric (4.28). Wainwright has previously given
these solutions in a form closely related to the one
presented here but after making an ad hoc assumption
about the form. The present analysis explains why one
has been able to find these solutions.

V. DISCUSSION

By using a Jacobi time gauge one collects all the
dynamical information into the kinetic part of the Hamil-
tonian which is completely determined by the Jacobi
metric. Thus studying the properties of this metric re-
veals information about the cosmological field equations.
In particular the adaptation of the metric variables to the
symmetries of the Jacobi metric can yield interesting new
parametrizations of the original space-time metric, not
only in terms of explaining the various known exact solu-
tions and producing new ones but also in placing them all

TABLE II. This table gives the parameters in the space-time metric (4.29) for the six one-term potential cases. The source is indi-
cated by the abbreviations "PF" (perfect Quid) and "Vac" (vacuum). The generality of the metric is also given. A "G"means that it
is the general solution for the given Bianchi type and source while an "S"indicates a special solution. The notation "Taub (G)" is
used for the general Taub-like solutions discovered by Ellis and MacCallum' ("EM"). The power-law type of the solution according
to (4.30) is also given. The p, are the Kasner parameters satisfying the usual constraints (A15). They are given by p, =p, /(po+1)
corresponding to the early time Kasner behavior of these models as exemplified in Appendix A. Finally 6 is defined by
5:—&(10—3r )(2+r ) and k has the canonical value given by k = 1+3a .

(iv) (v) (vi)

Bianchi type

Source

Generality

Discoverer

Power-law type

Cl

C2

C3

po

Pl

P2

p3

qo

PF
G

Jacobs"

1

r —1

2 —r
Pl

2 —r
P2

2 —r
p3

2 —r
po

Pl

2 —r2—
P2

2 —r
2—

p3

2—r

II
Vac

G
Taub

S

1

1

1

1 —1
4Pl

pz

4Pl

p3

4p,
1 3

4pl 2

2pl+p2
4p

2pl +p3
4p

II
PF
S

Collins '

T
&(3r —2) /4(2 —r )

1

1

2—r

2+r+6
8(2 —r )

2+r —6
8(2 —r )

po

P2

VIo

Vac

Taub(G)
EM'

N

1

1

&2
5
8

VIg

Vac

Taub(G)
EM'

T
1

1

20
4k+1

4(k +1)
3ak

4 4(1+k)
3ak

4 4(1+k)
2k —1

4(k +1)
4k —1

4(1 —k)

3ak
4 4(1 —k)

3ak
4 4(1 —k)

2k+1
4( 1 —k)

V

Vac

G
Joseph'

T
1

1

2

4

—'(1+&3)

—,'(1 —&3)

l

4

P2

Pl
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into the context of the more general dynamics, for which
one can get a more intuitive picture when seen from the
point of view of the new variables and their associated
geometry. An example of how the new variables can be
exploited is given in Appendix B where we carry out a
precise qualitative analysis of the late time dynamics of
those nonsemisimple perfect-fluid models for which the
Taub time gauge potential has more than one term.

Since all EPL solutions are straight timelike lines in
minisuperspace (except for the Kasner solutions which
are lightlike), it is always possible to adapt the coordi-
nates to these solutions. In the cases studied here it turns
out that such an adaptation is equivalent to adapting to a
time-like translational symmetry of the Jacobi metric
arising from the coupled scale/automorphism symmetry
of the Hamiltonian dynamics, thus explaining the ex-
istence of these special solutions. This correspondence
suggests that the manipulations of the present discussion
motivated by the Jacobi geometry probably have conse-
quences even for the more general Bianchi class-B case
and the more general tilted perfect-fluid cases in all types
where the system is not completely Hamiltonian.

The cosmological Jacobi metric is conformally flat and
has a Lorentz signature. Since the geodesic structure of
conformally flat spacetimes has been studied extensively,
the methods and ideas developed for this problem can be
applied to the cosmological field equations. For example,
one can use the compactification scheme for the Min-
kowski metric described by Hawking and Ellis in order
to visualize the global structure. One can also get an in-
tuitive picture of the solution space by using the geodesic
deviation equation. By starting from a known geodesic
solution curve and computing the curvature of the Jacobi
metric along it in a parallel transported orthonormal
frame, one can obtain information about how neighbor-
ing solutions behave.

A number of generalizations are possible. There are
other interesting sources for the Einstein equations which
lead to a purely Hamiltonian system for all the variables,
among which are an electromagnetic or scalar field. For
example, Chmielowski and Page have used a Jacobi
time gauge to study inflation in anisotropic Bianchi type-
I models with a massive scalar field, while Gurzadyan
and Kocharyan have used this technique to study the
same problem for the closed Friedmann-Robertson-
Walker models. Another possible generalization is the
nonorthogonal fluid case via the more complicated Ham-
iltonian formulation of Bao, Marsden, and Walton in
which the combined fluid and Einstein equations are put
into Hamiltonian form. Indeed, the tilted symmetric case
perfect-fluid models of class A are completely Hamiltoni-
an since the two nontrivial fluid variables are both con-
stants, so the present methods can be directly applied.
Finally the ideas of this paper may be easily carried over
to the case of higher-dimensional cosmological models,
where differential form field sources are often considered
with special initial data which lead to potential terms in
the Hamiltonian only involving the source through con-
stant parameters.

Perhaps the best conclusion to draw from the results of
the present discussion is that the spatially homogeneous

Einstein equations are a rich system that should not just
be plundered for the special results that can be pulled out
by ad hoc methods. In fact the problem represents a re-
markable intersection of many different facets of classical
mechanics, symmetry and differential geometry, brought
together in what we think is an elegant synthesis in the
present approach. By a more systematic investigation of
the properties of the system based on this broader per-
spective, one can make considerable progress in obtaining
a feeling for its true dynamica1 content.

APPENDIX A: BIANCHI TYPE-I
PERFECT-FLUID SOLUTION

To illustrate the way in which the choice of variables
motivated by the symmetries of the Jacobi metric can be
used to solve the field equations and reveal asymptotic
properties of the solutions cleanly and straightforwardly,
the Bianchi type-I perfect-fluid case will be discussed in
detail. Modulo constants the Jacobi metric and the cor-
responding Jacobi Hamiltonian are

ds = —dT2+T~(dX +dY )

T = [3(2—
y ) /2] e '

X =3(2—y)/3+/2, Y=3(2—y)P /2,
HJ=TJ= —,'[ pr+T '(px+pr)]= —

—,
' .

(A1)

Since X and Y are cyclic variables, their conjugate mo-

menta are constants. Let C =pz+pz. Using a dot for
the Jacobi time derivative, the useful Hamiltonian equa-
tions are

T=p~, X=p~ T, Y=py T

which put the Hamiltonian constraint in the form

j 2 —C2Z"

(A2)

(A3)

A. =Z +1. (A5)

This solution can be used to find expressions for X and Y
whose equations become

d~
=(p~/&)(&' —1)

=(pr/C)(A, —1)
(A6)

and have the solutions

If the constants p~ and pz are both zero, one obtains
the Friedmann-Robertson-Walker solution. Therefore in
what follows at least one of the constants pz and pz will

be assumed to be nonzero. By using the expressions for X
and Y and rescaling the variables, one can rewrite the
constraint equation in the form

2
dZ
di,

(A4)
Z = T/C tJ = CA. , C =p&+p&

The solution of this equation is
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(X+Xo, Y+1O)= ) in[(k —1)/(k+1)](px/C pr/C),

(A7)

where Xo and Yo are constants which are pure gauge. In
fact as an alternative method of solution, one can intro-
duce polar coordinates in the X-Y plane and reduce this
problem to a flat two-dimensional Jacobi geometry dis-
cussed above.

It is convenient to choose a new affine parameter t
where t =—2)(A, —1), so that the time variable vanishes at
the initial singularity, i.e., when P ~—ao, Z ~0. By us-

ing the above expressions one can easily obtain the vari-
ables P" which differ only by additive constants frotn
their actual values before their redefinition used to sim-
plify the Jacobi metric initially. The result is

P =[3(2—y)] 'ln[t(t +1)]+k, ,
(A8)

X in [t /( t + 1 ) ](px /C +k 2,p „/C +k 3 ),

By again rescaling the variables x,y, z one obtains the fol-
lowing approximate solution at early times:

ds2= d—r'+r )dx2+r 2dy2+r 'dz2 . (A14)

pi+p~+p3=1=p]+pz+p3 . (A15)

By using the definition C =p&+p& and inserting the
previous expressions for the parameters p, into the above
constraints, one sees that the Kasner constraints are
indeed satisfied, thus confirming their identification with
the Kasner parameters.

At late times, on the other hand, the approximation
t + 1 = t is valid so that we can replace t + 1 by t in (A12).
Then t is related to synchronous time by

It is well known (see, e.g. , Figure 1 of Uggla and

Rosquist ) that at early times the general perfect-fluid
Bianchi type-I solution is approximated by the Kasner
solution, allowing us to identify the parameters p, with

the Kasner parameters conventionally denoted by these
symbols. These parameters satisfy the constraints

where it is convenient to let k, , k2, . . . stand for as many
constants as needed. The metric coefficients are given by

=e2 p +p ++ p =k tt (t +1) ]2/(2 r)
S&i 4g

2(P +P+ —+3P )

t =k [2 ~)r9i

This leads to the metric

ds = d2 +r —r(dx +dy +dz )

(A16)

(A17)

=k [t '(t+1) ' ]

e 2(P —2P+ )
~33

(A9)

again after rescaling x,y, z. This is the spatially flat FRW
universe thus illustrating the well-known tendency of iso-
tropization of the Bianchi type-I models (we refer again
to Figure 1 of Uggla and Rosquist 9).

where

=k [t"(t+1) "]'/('-r' APPENDIX B: QUALITATIVE CONSIDERATIONS
FOR THE DYNAMICS AT LATE TIMES

p(= I(1+px/C+&3pr/C»

p»2
= ,'(1+px « -3pr/C»—

p3= —,'(1 —2p /C) .

(A 10)

Since the lapse function 2V is proportional to e 'r "~one
gets

E=k [t(t+1)]' (Al 1)

+[t~ (t +(1 )
&) ]2/(2 —r)d 2

+[t&2(t + 1) ~2 ]2/(2 —r)d 2

+ [t~2(t + 1 )
&& ]2/(2 —r)dz2 (A12)

By using the scale invariance one can scale away the con-
stant k7. The constants occurring in the metric
coefficients can be eliminated by rescaling the variables
x,y, z, equivalent to automorphisms of the homogeneity
group. This leads to the metric

[t ( t + 1)]2(r —()/(2 —r )dt 2

mf mf mf

=-,'e ' n"'p~pp+Vkop AB— (B1)

where the indices are restricted to ( A, B =0, + ) in the
Bianchi type-VI~ case. In the Bianchi type-II case the
graph of the potential has the shape of a trough or gutter
over the P -P plane, while in the Taub-like Bianchi
type-VIh case it is a one-dimensional well and in the Bi-
anchi type-VIO case a two-dimensional well.

First consider the non-negative quantity

In this appendix we discuss the late stage behavior of
those nonstiff perfect-fiuid models (y%2) which have
more than one exponential term in the potential in the
Taub time gauge and which admit a coupled
scale/automorphism timelike symmetry whose P*-
dependent part of the potential has a rninirnum. This
occurs for the perfect fluid models of type II, type VIO,
and Taub-like type VIh. In symmetry adapted variables
and in the monotonic-function time gauge these models
have a Hamiltonian of the form

At early times when t is close to zero one has the follow-
ing relation between t and the synchronous time ~:

E= —,'p()e ' ~0, k() =—3(2—y)) 0 .

which has the time derivative
—2kodEI'dt, = ,'k,p, e ' (p++p' ), -

(B2)

(83)
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where we have used the Hamiltonian equations

—kodg/dt f=dH f/Bp = —p e

dp /dt = dH— /dg =k T
(84)

It is assumed that both t
&

and P increase towards the
future, which corresponds to an expanding cosmological
model, implying that po is negative. From these equa-
tions note that ~po~ and hence po increase with time. We
note that as long as we have motion in the P+-P plane,
E will change. Furthermore since po is negative it fol-
lows that E is a monotonically decreasing function, giv-

ing rise to the terminology monotonic-function time

gauge. This means that po is increasing more slowly than

e ' . This gives severe limits on the evolution of the
"o& —z "o&

quantities p+ e ', p e ' and the positive potential
V

&
since E dominates over these quantities as can be

seen by considering the Hamiltonian constraint

F. = —,'e ' (p++p )+ V f

mate solutions describing the late stage behavior. How-
ever, this is beyond the scope of the present paper and
will be dealt with elsewhere.

All the vacuum models are also of the general form
(Bl) but with ko=4. The only vacuum potential with a
minimum, however, is that for Bianchi type IX but then
the minimum is not attainable due to the Hamiltonian
constraint H f =0. Therefore, although some qualitative
conclusions can be drawn also for the vacuum models,
the scheme outlined in this appendix is not as powerful
for the vacuum models as it is for the perfect-fluid mod-
els.

APPENDIX C: HIDDEN SYMMETRIES VIEWED
FROM OTHER TIME GAUGES

Hidden symmetries may also appear in time gauges
other than the Jacobi time gauge. An example is the
Taub time gauge in which the vacuum Bianchi type-VIO
and -VIIO Hamiltonian is given by

]-2 -o&, 2 -o&)—,p+ .—,p- .V. (B5) Hr =
—,'( —4p„p„+p )+6e "h

(P P. ) =—(Po+P+ Po P+ )
(Cl)

Since E is decreasing each of these quantities will have a
decreasing upper limit. In particular V f will have a de-

creasing upper limit which will force the system towards
the minimum value of the potential. In those cases where
the potential is a well this means that the system is forced
towards the EPL solution which corresponds to the
minimum of the well. In the Bianchi type-II non-LRS
case where the potential is a trough the situation is slight-

ly more complicated. Here the dynamics is pressed down

towards the Collins solution which corresponds to
motion along the bottom of the trough, explaining the
importance of this solution for the general Bianchi II dy-

namics. Furthermore since p is a constant while ~po ~

is increasing, the motion in the P direction will eventual-

ly dominate the dynamics and all solutions will behave

like the EPL solution for which the system sits still in the
bottom of the trough, corresponding to motion only

along the variable g.
The above adaptation of the variables to the symmetry

is therefore equivalent to adapting them to the EPL solu-

tion, whose linear motion in P space is chosen as the
direction for g. Thus the adaptation to the coupled
scale/automorphism direction here is equivalent to
adapting the variables to the late stage behavior of the

dynamics, so these variables are an ideal tool for investi-

gating the dynamics in this limit.
The qualitative information we have about P and po,

combined with the form of the potential in adapted vari-

ables, makes the problem very similar to a standard two-
dimensional potential problem where E takes the role of a

—log' .
decreasing energy while the factor e ' in the kinetic
energy can be interpreted as an increasing mass,

I,jP
m =e ' . This gives a very intuitive picture of the late
stage behavior of these models. By looking at the
remaining equations of motion one can give a more de-

tailed analysis than the one above, leading to approxi-

In addition to the obvious constant of the motion p„asso-
ciated with the cyclic variable v, there is another constant
of the motion u +2p, t~, where tz is Taub time. It fol-
lows that u equals the Taub time modulo an affine trans-
formation. Unlike the homothetic symmetry in the Jaco-
bi metric, its symmetry generator commutes with 8/Bv.
IfP, WO, the configuration variable u coincides with Taub
time up to an affine transformation and the only rernain-
ing coupled equations are those for P and p which
then become time dependent. Since p, comes from an au-

tomorphism symmetry, its value can be set to any con-
venient (nonzero) value. Combining the equations for P
and p we obtain the following second-order time-
dependent equation for P (for canonical structure con-
stant values):

P = —48&3e "sinh(4&3P ) . (C2)

Introducing the variables w =e ~, z =e " and setting
p„=—3/&2 this equation can be written as

m" —w 'w' +z 'w'+z '(w —1)=0, (C3)

where we have used u = —2p„t~ and a prime signifies
differentiation with respect to z. This equation is a spe-
cial case of Painleve's third transcendent ' so it cannot be
integrated any further. oils has recently discussed the
appearance of Painleve solutions in general relativity.
Khalatnikov and Pokrovsky have given approximate
solutions of (C3) valid for all times using slightly diff'erent

variables.
The existence of a Killing tensor for the Jacobi metric

also leads to other preferred time gauges, namely, the
ones in which the Harniltonian system decouple into
separate subsystems, thus leading to an addition~& con-
stant of the motion. An example of this occurs for the
Bianchi type-VIII and -IX LRS cases, where the Taub
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H—(g )+H(P+)=0 . (C4)

time is preferred. The Hamiltonian in this time gauge is

H = —'( —p +p )
—24n 'e ++6n' eT I Po P+

Each of the individual Hamiltonians is separately con-
served but the total energy constant must vanish by the
Hamiltonian constraint. This manifest separability of the
Hamiltonian occurs since the variables are adapted to the
Killing tensor which exists for this class.
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