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We discuss a new general method to obtain the Tolman-Hawking wormhole instanton by simply
providing the Robertson-Walker manifold with an extra three-sphere with a minimum radius equal
to the Planck length. This topology change does not imply any unphysical value of the effective
gravitational constant and requires a total energy which is no longer zero. It is argued that, even
for wormholes with zero total energy, there is no loss of quantum coherence in the observable
matter sector of flat spaces. The possibility that wormholes can induce chaotic behavior of space-
time is discussed by using a quantum-optical interpretation for wormhole interactions. Also dis-
cussed in the light of this interpretation is the Coleman mechanism for the vanishing of the cosmo-
logical constant and the fixing of physical coupling constants. A value zero is kept as the most
probable value of the cosmological constant for large universes, but it is argued that the Coleman
mechanism should be reinterpreted for small universes or the fixing of the coupling constants. It is
also shown that the Wheeler-DeWitt equation for wormholes or little baby universes is reducible to
a Klein-Gordon wave equation and that some of the solutions should be associated with an-
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tiwormbholes, i.e., nontrivial topological changes with negative energy.

I. INTRODUCTION

Spatial topological changes in quantum gravity have
been described by a path integral over Euclidean four-
geometries.! The recent discovery of some gravitational
instantons that implement these topology changes or
wormholes has uncovered a number of unexpected
features which may lead to drastic changes concerning
general and deep views in physics.? A wormhole is a mi-
croscopic contact between two otherwise smooth arbi-
trarily distant regions of spacetime. What is particularly
interesting about these topological changes is that they
may provide us for the first time with a suitable link be-
tween the smallest and largest distance scales.

In the last few years there has been some controversy
concerning whether quantum coherence is lost when
Planck-sized baby universes resulting from wormholes
branch off from one large asymptotically flat parent
universe.* 7! The idea was originally suggested by
Hawking who realized!! that in non-Minkowskian space-
times any correlation between two given systems is irre-
trievably lost whenever one of them gets beyond the hor-
izon of the other. The implications of this idea also
prompted some vigorous opposition.'? Recently, Hawk-
ing has given the idea a new form. In several papers,*>!3
which supersede earlier work, he associates loss of quan-
tum coherence with wormholes rather than with simply
connected spacetimes. His theory of wormholes has been
complemented by work done by Giddings and Strom-
inger® who found wormholes as actual instantons in a
theory of gravity coupled to massless axions. Also sup-
porting the Hawking proposal is some work by Lavre-
lashvili, Rubakov, and Tinyakov..”]4

However, further consideration on the effective in-
teraction of wormholes with observable matter in asymp-
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totic flat spaces*® allowed Coleman® and Giddings and

Strominger’ to argue that the production of baby
universes does not lead to any loss of quantum coherence
in the matter-field sector. Coleman showed?® that by per-
forming a large series of measurements the initial family
wave function collapses into a certain state (a g state)
which remains invariant during the interaction, so that
there is no loss of quantum coherence induced by changes
in topology. Hawking and Laflamme have argued!® that
it is rather metaphysical to discuss whether the presence
of little closed universes leads to a loss of quantum coher-
ence or merely a lack of knowledge of the initial state.

Coleman has nevertheless considered the effects of
wormholes in the Euclidean path-integral formalism of
quantum gravity from a different point of view. Using an
earlier idea due to Hawking,'* he has suggested the re-
markable idea that the entire effect of wormholes is to
modify the coupling constants in such a way that the
probability for a given value of the cosmological constant
is infinitely peaked at zero. It appears that the branching
off of little baby universes from flat spaces leads to the in-
troduction of vacuum parameters for low-energy cou-
pling constants which, in this way, are hoped to be deter-
mined dynamically.

However, all of these claims must confront an initial
basic problem. Wormhole solutions occur only for cer-
tain special types of matter fields, such as axionic or con-
formally coupled fields; how then could these restricted
instantons affect issues so universal as the vanishing of
the cosmological constant or the loss of quantum coher-
ence? On the other hand, Halliwell and Laflamme have
recently shown'® that the Euclidean solution for a scalar
field conformally coupled to gravity, representing a
Tolman-Hawking wormbhole,!” can give rise to antigravi-
tational regimes where the effective gravitational con-
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stant becomes negative. The problem is aggravated even
more because Ruback has proven!® a uniqueness theorem
for wormhole spaces with vanishing Ricci scalar accord-
ing to which, among all candidate metrics and manifolds,
the unique extremum of the Euclidean action is the
Tolman-Hawking wormhole.

Recently, general wormhole solutions of the Tolman-
Hawking kind, which do not induce any unphysical value
of the effective gravitational constant, have been ob-
tained!® from pure gravity by simply introducing a cutoff
in the scale factor squared; this procedure is equivalent to
provide the Robertson-Walker manifold with an extra
three-sphere with minimum radius of the order of the
Planck scale. The main aim of this paper is to reexplore
the effects produced in low-energy particle physics by the
interaction with wormholes using this general wormhole
instanton.

The outline of the paper is as follows. In Sec. II we re-
view wormhole spacetimes having the analytical struc-
tures discussed by Giddings and Strominger, and Hal-
liwell and Laflamme. Section III contains a detailed dis-
cussion in terms of second-order correlation functions of
the loss of quantum coherence induced by wormholes. It
is concluded that, even for massless baby universes,
wormbholes would not induce any loss of quantum coher-
ence, but a new general restriction in our capability of
getting information from any physical system. In Sec. IV
we point out the modifications to be expected in the wave
equation for wormholes if we introduce a cutoff in the
scale factor squared and advance a specific wormhole-
induced quantum-optical scenario where the spacetime
can show chaotic behavior. Section V discusses the Cole-
man mechanism for the vanishing of the cosmological
constant and the fixing of physical coupling constants. It
is argued that the Coleman procedure is essentially valid
for the part of the cosmological constant originating its
macroscopic role, but it is not for those parts of the
cosmological constant associated with its role as a micro-
scopic coupling constant, which are expected to have
dominated at the earliest stages in the evolution of the
Universe, or for the fixing of the coupling constants. The
results are summarized, adding some comments, in Sec.
VI. We add three Appendixes. In Appendix A we briefly
review the Lorentzian solutions corresponding to the
Tolman-Hawking wormhole studied in this paper.
Several arguments in favor of the used correspondence
principle for the scalar field momentum are given in Ap-
pendix B. Appendix C deals with the derivation and in-
terpretation of a Klein-Gordon equation for wormholes.
A Dirac equation for wormholes is also briefly discussed.

II. WORMHOLE SPACETIMES

We review here wormhole spacetimes obtained as solu-
tions to the Euclidean equations of motion corresponding
to coupling either a three-index axionic field® (which is
equivalent to a purely imaginary minimally coupled sca-
lar field) or a conformal scalar field'® to Einstein gravity,
as well as a semiclassical solution obtained from pure
gravity.!” Yang-Mills solutions® are not local minima of
the action, and it is therefore not clear that they contrib-
ute to the semiclassical approximation and will not be
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considered in this work. There are also Kantowski-Sachs
wormholes?! and general axionic wormholes which were
derived® from a gravity theory containing higher-
derivative terms R2. However, we will restrict ourselves
to the simplest case of Hilbert-Einstein gravity for a
four-dimensional isotropic minisuperspace Euclidean
metric of the form

ds’=N%d7+aX(1)d Q3

=aXn)(Ndn*+dQ3), (2.1)

where N is the lapse function and dQ3 is the metric on
the three-sphere.

A generic Euclidean action integral describing both
Hilbert-Einstein gravity coupled to an axionic field and a
conformally coupled scalar field can be written in the
form!623
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where A denotes a cosmological constant, and # and K
are, respectively, the determinant of the first fundamental
form and the trace of the second fundamental form,

K. = oh,,
% " IN3r’

of the boundary oM of the manifold M.

The Tolman-Hawking wormhole corresponds to the
conformally coupled field case § =%, n=1, and the
Giddings-Strominger wormhole corresponds to the
minimally coupled axionic imaginary field case £=0,
n=s.

Variation with respect to a, ®, and N of the minisuper-
space Euclidean action obtained by inserting (2.1) into
(2.2) yields the field equations for the scale factor and sca-
lar field, and the constraint equation. For £=0, n =1, it

is obtained as

) aMd3x VX (1—87GEPPK , (2.2)

(2.3)

a’d=K,N , (2.4a)
1a”+U(a,Ry)=0, (2.4b)
a”=—8U(a,f0)/aa R (2.4¢)
where
Ky=(47G/3)' K, ,
K is an integration constant, and
U(a,fo)=—;— %(21 2\3—4—02 (2.5)

The four-dimensional Giddings-Strominger wormhole
is then given by
a=K,cosh!’*(27) , (2.6)

corresponding to the case A=0.



42 WHAT IS REALLY BEING LOST IN WORMHOLES?

For £=1{, n =1, we obtain

X?—x’=M?, 2.7)
where Y=(47G /3)"/?2a® and M? is an integration con-
stant. The constraint and equation of motion for the
scale factor a are given by Egs. (2.4b) and (2.4c), with
U(a,R,) being replaced by U (a,M):

U(a,M)=LM?*+ra*—a?) . (2.8)

Equations (2.4b) and (2.4c) represent the motion of a
particle in a potential U with zero total energy. The
Tolman-Hawking wormhole corresponds then to a par-
ticular solution of the equations of motion and constraint
associated with the conformally coupled scalar field for
A=0:

X¥=a=M coshn . (2.9

The problem with the gravitational constant for this
kind of wormhole is now easily seen. From (2.2) one ob-
tains for §=1,n =1,

Gs=G[l1—(x/a)1!; (2.10)

inserting (2.9) into (2.10), it follows that G is infinite
along the complete interval of 1 values. For the most
general wormhole solution obtained by Halliwell and
Laflamme, it can be checked that the value of the
effective gravitational constant has to become necessarily
negative for some relevant interval of values of the con-
formal time 7.

Four-dimensional spacetimes having exactly the same
analytical structure as the Tolman-Hawking wormbhole
have been recently obtained in the absence of any matter
field by introducing a three-sphere with minimal constant
radius of the order the Planck length, m, in the usual
Robertson-Walker isotropic manifold (2.1),' according
to

a*—a’—m?.
The inclusion of such a cutoff in the scale factor squared
is motivated by recent work done in quantum gravity?*?
which predicts that it is altogether impossible to get a
spacetime resolution better than the Planck length. In
fact, by quantizing the conformal factor £ in a manifold
provided with the conformal metric

8ab Q’Zgab ’

it has been found® that the introduction of a maximum
resolution limit in a, Aa = m, amounts to a modification
of the scale factor squared given precisely by
a*—>a’—m?>. Even when looked at as semiclassical solu-
tions, wormholes must contain a certain level quantiza-
tion above that which is implied by Euclidean gravity. A
prescription for the extent to which such a quantization
should be done is not at present generally known. For
example, axionic wormholes are obtained by demanding a
fixed axionic charge. Here wormhole solutions should be
interpreted as flat-spacetime solutions, to which one adds
the physical consequences of quantizing the metric con-
formal factor 2. In the end, since the most probable
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value of the wormhole neck size is about the minimal un-
certainty in the scale factor a, one could interpret a
wormhole as a topological consequence from the ex-
istence of a finite maximum quantum resolution limit for
the determination of the scale factor a. This is equivalent
to introducing a transformed Euclidean time of the form
172

2
-7 dr, .11
a
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Performing the above transformation, the Euclidean
action for a scalar field conformally coupled to gravity
becomes

-1 , a? 2
I—*z'deaN[—“—ATz‘—l‘f'}\,a —Am?

22
X
+a2N2

2
(a2—m2)+az—fr? l . (2.12)

where now d@=da /d7', y=dx/d7', and the Euclidean
region is defined for a = m. Variation with respect to N,
X, and @ now produces

a?*—(1+2m*\)a?+m*1+Am?)+Aa*

2
—x?|1-25 |+x*=0, (.13
m2
X=x?*|1—— |=M?, (2.13b)
a
XIZ all
1-3Ma’—m?*)— 45 —2=— |(a*—m?)
a a
+a?+x?=0, (2.13¢)

where we have adopted the gauge N =1, and @' =da /d 7.

Again, we are dealing with a physical situation which
is representable as the motion of a particle in a given po-
tential; in this case, however, the total energy of the sys-
tem is no longer zero. This is most clearly seen by con-
sidering the simplest wormhole case where A=0, for
which Eq. (2.13a) reduces to

—la?=U(a,M)=m?, (2.14)
where U (a,M) is given by (2.8) for A=0.

Furthermore, this remarkable consequence constitutes
by itself a physical justification for our procedure. An
observer in the asymptotic region does not know any-
thing about the values of the three-metric h;; and the
matter field ¢ on any cross section S of the wormhole.
Therefore, as a necessary additional quantization step
which would be introduced prior to the usual path-
integral Euclidean quantization, one should sum over all
possible values of A;; and ¢ on that cross section. This
would ultimately mean that the two four-geometries are
joined at S, so that the three-surface would no longer
divide the whole manifold into two disconnected parts.
Therefore, one should represent the quantum state of the
wormhole by a density matrix rather than a pure-state
wave function. The point now is that the Wheeler-
DeWitt equation for a density matrix is no longer equal
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to zero, but to a nonzero residual energy, which is pre-
cisely m ~! for the pure gravity case. It is in this sense
that the introduction of a UV cutoff in the scale factor
squared should be interpreted as reflecting the physical
feature that an observer in the asymptotic region cannot
know anything about the values taken by the relevant de-
grees of freedom on any cross section of the wormhole.

Thus, representing the quantum state of wormholes by
a density matrix and introducing a cutoff in the scale fac-
tor, and then representing the wormhole state by a wave
function, could be considered as two, to some extent
equivalent alternate ways for dealing with quantum
wormbholes properly. In this paper we shall concentrate
mostly on the last representation, leaving a full account
of the first one for a forthcoming publication.?®

The solution to (2.14) is still given by the Tolman-
Hawking wormhole

a =(M?*+m?)"2coshy , (2.15)

or, in Robertson-Walker time 7,
a=(M*+m?+)12 .

In this case the wormhole throat radius is given by
(M2 +m 2 ) 1 /2'

For A >0, we obtain the Euclidean solution in terms of
the Robertson-Walker time 7:

a(r)=02A) V2 [14+2m2A—(1—4AM?)!/2

Xcos(2A!%2r)]1? (2.16)
which lies in the region ¢ _ <a <a defined by
a. =AY 14+2m At (1—4AM?)' 2] 2 2.17)

A discussion of the Lorentzian solutions corresponding
to (2.15) and (2.16) can be found in Appendix A.

Solutions (2.15) and (2.16) have an analytical structure
similar to that of those obtained by Halliwell and
Laflamme,'® and reduce identically to them in the classi-
cal limit m —0. There is, however, a crucial difference.
Solutions (2.15) and (2.16) no longer lead to any problem
with the gravitational constant. This can be readily seen
by considering again the case A=0 for which we obtain,
for the equation of motion of the field ,

(m2+M*)(x*—x"*—M?*)cosh’n+m?y'?=0 . (2.18)
A solution to (2.18) is
x=i(m*+M?)"%sinhy . (2.19)
From (2.10) and (2.19) we have
G.=G(1+tanh’p)"'>0. (2.20)

Actually, the value of the effective gravitational con-
stant varies from G for n—*c to G at the wormhole
throat (n=0) for the particular Tolman-Hawking
wormbhole (2.15). A similar result can be obtained for a
nonzero cosmological constant. In order to interpret this
result, one would resort to the above-mentioned previous
quantization step for wormholes. It could well be that
the infinite value taken by the effective gravitational con-
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stant in current conformally invariant scalar field
wormbholes is nothing but an artifact arising from not in-
troducing such a previous quantization step (i.e., not
recognizing any uncertainty about the baby universe
state). Once that uncertainty is explicitly introduced in
the action of the system, the problem with the effective
gravitational constant is no longer present in the theory.
One more technical reason may be found by generalizing
to the density-matrix representation of the quantum state
of wormholes. The contribution from wormholes to the
action in the path integral is generally given by a bilocal
effective Lagrangian,*> which, in the case of a density
matrix, would be weighted by a probability factor given
by the inverse of the total wormhole energy. If, as hap-
pens in the current interpretation,'® the total wormhole
energy is zero, convergence in the wormhole contribution
could be achieved only at the cost of having an infinite
effective gravitational constant. Since in our procedure
the total wormhole energy is different from zero (i.e., the
wormbhole is not on shell), in order for the wormhole con-
tribution to be finite, we no longer require G to be
infinite.

It is worth noticing that we have ended up with a pure
imaginary scalar field which makes wormholes obtained
from a conformally coupled scalar field to some extent
equivalent to those obtained from an axionic field. The
scalar field ® associated with y would correspond to the
solution of an equation of motion of the form

172
3

2y — 2 21172
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con ilm ) pove

which has the same form as that for a massless minimally
coupled axion expressed as a purely imaginary scalar
field. It is in this sense that the obtained wormhole
behaves as though it were a hybrid of Tolman-Hawking
and Giddings-Strominger wormholes, whereas if its
spacetime analytical structure were that of Tolman and
Hawking, the involved matter field would be axionic.
This kind of equivalence does not mean that the
wormhole obtained in this work is the same as that ob-
tained by Giddings and Strominger. It seems clear that
in the latter case the wormhole is stabilized by a con-
served global charge of the axionic field, whereas there is
no such a conserved charge in the solution obtained here.

On the other hand, the limit M —0 (no matter field)
leaves us with a wormhole!® a =m cosy. This indicates
that the Tolman-Hawking wormhole can be considered
as a general solution for pure gravity.'” In this case the
value of the effective gravitational constant does coincide
with the Newtonian value for the entire conformal time
interval. It is in this sense that one could interpret the
existence of well-defined wormholes as an immediate
consequence from the impossibility of performing mea-
surements of the spacetime position with a precision
greater than about the Planck length. Furthermore,
since, according to (2.14), the total energy corresponding
to a baby universe is not zero in the picture we are con-
sidering, creation (annihilation) of a wormhole at a given
point in the observable asymptotically flat region will
then destroy (generate) a given amount of matter confor-
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mally coupled to gravity at that point. Thus any large
universe endowed with wormholes connecting it to other
large universes will become a dissipative system.

Before ending this section we want to note the remark-
able relation between the scale factor and the conformally
coupled scalar field arising from (2.15) and (2.16):

at+yt=m?+M?. (2.21)
Such a relation is preserved in the Lorentzian region
and might be viewed as the fundamental equation
defining the Tolman-Hawking wormhole considered in
this work. In the case M =0, Eq. (2.21) holds still for the
quantum constant m?2. This would ultimately imply that
the introduction of a finite-resolution limit is somewhat
equivalent to assuming the presence of a residual scalar
quantum field (for more about this, see Appendix C).

III. WHEELER-DeWITT EQUATION
AND THE LOSS OF QUANTUM COHERENCE

As pointed out by Hawking,’ if we use the dilute
wormhole approximation, the effect of wormholes on
background matter fields ¢ in asymptotically flat spaces is
given by the wormhole-filtered Green’s function

(0lgp(xy) - - - plx,)WIW|B(y,) - - ¢(3,,)]0) ,

where ¢ represents a conformally invariant scalar field,
Xy,...,x, and y,,...,y, are points in the two asymp-
totically flat regions connected by wormholes, and W)
denotes the quantum state of a baby universe or
wormbhole on a three-surface S, which is a cross section of
the wormhole. The function (3.1) can be computed by
path integrating over all matter fields ¢ and all wormhole
metrics. The quantum state |¥) is described by a wave
function ¢, which depends on the induced metric h;; and
the values ¢, of the matter fields on the three-surface S
and should satisfy the corresponding Wheeler-DeWitt
equation. In the minisuperspace model we have used, as-
suming that there is no indeterminacy in the scale factor,
the Wheeler-DeWitt equation is obtained by applying the
correspondence principle to the constraint

—a?+a*+x?—x*=0.

(3.1

(3.2)

The prescription a'—d/0a, Y'—>0d/9), leads to a
Wheeler-DeWitt equation (modulo factor ordering):

(3.3)

Here 3 should be interpreted as the quantum state of the
wormhole.

Starting with (3.1) and (3.3), it was first shown by
Hawking® and confirmed later by Coleman'® that the
branching off of little closed universes would affect low-
energy particle physics in the asymptotically flat region
of the universe which we live in just as if there were

effective interactions in flat space of the general form
LT« B,(¢)(b]+b,) , (3.4)

where B,;(¢) is a polynomial in the field operators ¢, and
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bf, b; are independent second quantization Fock opera-
tors for the little closed universe sector.

There is a point in the Hawking procedure for deriving
Eq. (3.4) which we would like emphasizing. It is that, al-
though the Wheeler-DeWitt equation (3.3) obviously has
harmonic-oscillator solutions in the two variables a and
X, there is a problem with the zero-point energies of each
scale factor harmonic-oscillator mode. Such as it was
formulated, Hawking theory did not provide for any
proper mechanism to cancel these zero-point energies,
and one has to assume them to be eventually canceled or
subtracted by fermions in a supersymmetric theory.

Although this formalism is for wormholes obtained
from a scalar field conformally coupled to gravity, one
can always use the freedom to establish an equivalence
between the conformal and minimal scalar fields coupled
to gravity,”” so that it is always possible to adapt the
present formalism to the case of an axionic wormbhole.

Let us now consider the Hawking proposal®*>!® that
wormholes induce loss of quantum coherence in the
matter-field sector of the theory. Loss of quantum coher-
ence may come about when we introduce independent
Fock-space bases for matter fields |a;) and wormholes
IB;), so that if no closed universes were initially present,
the initial state for the full system would be written as
la; Y10). Basically Hawking’s argument now runs as fol-
lows. Since an observer in the flat region cannot measure
the states of the closed universes, one should sum over all
possible states for such universes; this would produce a
mixed final state. However, although in principle this
would lead to loss of information about the state of the
observable subsystem, concerning the fate of quantum
coherence, one should elaborate a little bit further the ar-
gument before reaching any definitive verdict about it.

There would be a loss of quantum coherence if, and
only if, after the interaction, the matter field ¢ took on
less correlated values at the two distantly separated
points where the wormhole joins flat space. In order to
discuss this in more quantitative terms, we introduce
nth-order normalized correlation functions?® for the
matter field,

G™(xyy. .y Xyy)

2n (1) 172
j=1[G (xj’xj)]

g(n)(xp---’xZn): (3.5)

in which, if we expand ¢ in terms of Fock operators ¢ and
cT, we have, for the unnormalized function G,

G"(xyy. .. Xy, )=Tr[p¢c‘r(x1 )+ cfix,)

XC(xn+1)"'c(xZn)], (3.6)
with p, being the density matrix for the ¢ sector of the
quantum state.

The field ¢ will be coherent’®  when
lg™xy,...,%,,)|=1, for n=1,2,..., and this requires
factorization of the correlation function. This is achieved
by introducing the so-called coherent states |£), which
have minimal quantum uncertainty and satisfy

bleY=¢lg), (glbT=(¢le* .

The first-order quantum coherence g'! does not essen-

(3.7
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tially differ from the corresponding classical quantity and
is always unity for single-mode states. It is the second-
order quantum coherence g'?’ which may separate from
its classical counterpart and take on values other than
unity for single-mode coherent states. Change (loss or
gain) of quantum coherence is associated with processes
in which the second-order quantum coherence function
g(z’, which is unity for single-mode coherent states, un-
dergoes a given variation. A typical way by which this
function may vary for a single mode is when an initially
pure state transforms into a mixed state. We shall show
that this kind of evolution cannot take place for the
matter field for an interaction Hamiltonian derived from
(3.4).

Consider the simple example in which B;(¢)x<mj¢?,
where mp denotes the Planck mass. The interaction
Hamiltonian will have the form

H; <mp EcTc(a,»u-ai) ,

1

(3.8)

where we have assumed that the mass of the scalar field ¢
gets a value near mp while interacting with the
wormhole.’

Starting with the equation of motion for the density
matrix p of the field system, which we then iterate? for
small increment of time, and assuming

P()=py(t) T pui(0) ,

after tracing over the closed universe sector, we can get,
with the same approximation as used in ordinary time-
dependent perturbation calculations,

pylt)= —8mp(c7ccTcp¢—2cTcp¢cTc

TT)’

+pyc'ec'c (3.9)

where § is merely an undetermined numerical coefficient
whose value will depend on the number of closed
universes initially present.

Taking matrix elements in the Fock space of scalar
particle number states, P,,’m=(n|p¢(l)[m), we solve
(3.9):

P, ,()=P,  (0)exp[ —bmpt(n —-m)*] . (3.10)

Changes of the statistical properties of the matter field
are only then possible for off-diagonal matrix elements.
The correlation functions and moments are obtained,
however, from the expectation values of the scalar parti-
cle numbers which are evaluated tracing over these num-
bers. In particular, the quantum degree of second-order
coherence, expressed in terms of the mean and mean-
squared single-mode scalar particle number,

-3 _
(n_a —a

g :
a?

(3.11)

will not change during interaction (3.8). For an initially
coherent quantum field P,ff’mh(O), (3.10) can be written in
the form
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P, n()=exp[ —|£[*—8mpt(n*+m?)]
X [§ exp(dmpmt)]”
X[E*exp(dmpnt)]™(ntm 1)~ 12
which reduces to
P 0)=exp(—|&12)E1*"/nt

for n =m. Thus, even if the system were initially in a
coherent state, there would be no observable variation of
the particle state, loss of quantum coherence, or violation
of any classical statistical properties. The argument can
be straightforwardly generalized for any initial state of
the matter system.

This result is related to the Coleman interpretation of
the loss of available information as a red herring.® Cole-
man argues that the demand of locality on parent
universes implies that the operators Q; =a,-T+a,» must all
commute, and hence one can introduce g; states |g ), so
that

Qi|‘11>=‘11|ql‘> >

which means that, if the closed universe sector of the
quantum state were initially in a g; state, the effective in-
teraction (3.4) would leave it in the same state. It follows
that the net effect of the little closed universes is to intro-
duce some undetermined parameters g;. The point now
is to realize that, since closed universes cannot be detect-
ed by an observer in the flat region of the space, the ini-
tial quantum state cannot be a single g state, but there
must be a total spread of values of g. The physical reason
for this is that the second-order quantum coherence in
Fock space for an initial single-mode pure state,

(3.12)

g!¥=(a;,—a; !,

would necessarily be different from that corresponding to
the final single-mode mixed state, which, for a density
matrix

P¢f=B1‘ai)<ai|+Bziaf><af| ,
is given by
gP= Bia(a;—1)+Basla,—1)
! Bla%‘*'ﬁza}

with B,+B,=1 and |a;)#|a,). However, we have
shown above that the interaction with baby universes
leaves g* unchanged, so that such an interaction can by
no way induce any transition between pure and mixed
states or change of quantum coherence for the considered
single-mode scalar field. This argument ends our proof
that wormholes do not induce any loss of quantum coher-
ence. The proof can be extended to the case of more
complicated matter field or wormhole configurations. Al-
though, of course, it is relatable to the Coleman line of
reasoning, our procedure is technically and methodologi-
cally different of the Coleman method, and uses the more
transparent quantum-optical concepts required to investi-
gate any subject related to the maintainence of quantum
coherence.

) (3.13)
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As to the interpretation of this result, it follows from
the discussion above that the only way to recover invari-
ance in g'? is by assuming p,; =p,, = mixed state. All
our arguments amount to a lack of knowledge about the
initial state. Doing an infinite number of identical experi-
ments for determining with full accuracy the parameters
q; is therefore equivalent to tracing the final state over
the different values of g: There is no real loss of informa-
tion here with respect to the initial state because the in-
formation that supposedly is being lost was already miss-
ing initially, or alternatively, the lack of part of the infor-
mation about the state of any observable system due to
interaction with wormholes can be also attributed to the
feature that, even when there is no matter in the asymp-
totic region, wormholes do exist and are themselves in
mixed states describable by a density matrix. Through
the effective interaction between such wormholes and the
observable matter, the uncertainty about the state of
wormbholes is somehow instantly transferred to all kind of
observable matter in the asymptotic region. Also, the
vacuum free energy corresponding to all matter fields
should reflect—or, rather, may be a direct consequence
from—the uncertainty in the pure gravity wormholes
whose existence is assumed here.

Quantum gravity seems thus to preclude the observa-
tion of any really pure state at any scale of energy, and
this would mean an extra degree of uncertainty in all im-
aginable physical situations. What we are assuming in
this paper is that this extra degree of uncertainty (above
that which is implied by Heisenberg indetermination
principle) could be interpreted as a finite, essentially
quantum maximum-resolution limit for the determination
of the spacetime location in any conceivable experiment.

IV. QUANTUM WORMHOLES:
A ROUTE TO CHAOTIC SPACETIME?

The analysis in the preceding section is based on the
Wheeler-DeWitt equation (3.3) for a conformally coupled
scalar field, assuming that there is no indeterminacy in
the scale factor. As discussed in Sec. II, this picture is ill
defined in at least two respects: (1) The kind of
wormholes used induce infinite or even negative values
for the gravitational constant, and (2) the theory is
defined only for special kinds of matter fields and has
therefore a restricted applicability. There are other prob-
lems with Eq. (3.3) that are general shortcomings of the
Wheeler-DeWitt picture and have been discussed else-
where.’® It has been also stated that the introduction of a
nonzero quantum indeterminacy in the scale factor may
cure the two above-mentioned problems. In this section
we shall consider the effects of wormholes on matter
fields ¢ in the asymptotically flat region by assuming a
wormbhole spacetime as that is given by Eq. (2.15). In this
case the constraint equation is [cf. Eq. (2.14)]

2
—a?+a’+y? l—m—2

—x*=m?, 4.1)

whose right-hand side (RHS) is to be interpreted as a
purely gravitational quantum term of the order the
Planck scale.
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We first obtain the wave equation that corresponds to
(4.1) by noting that, since we have not explicitly intro-
duced any cutoff for the length y, if we choose the
momentum operator for a’ to be d/3daq, the classical quan-
tity to be associated with the momentum operator d/3y
has to be dy/d7’ rather than y'=dy/dn, with 7’ being
the transformed Euclidean conformal time. More com-
pelling reasons for this choice are given in Appendix B.
Now, just as Eq. (2.11) may be derived by defining
transformation-invariant conformal time

dr dr'
d"__a-_ (@2—m2) 72’

we can obtain a relation linking 7 to 7’ by defining
transformation-invariant Robertson-Walker time

dr=adn=(a’—m*»dy’

dn (4.2)

Inserting then (4.2) into (4.1), it is found that (modulo
factor ordering)

2 2
3 5+ _8_2 +a’l—yx?
da ay

- V=m2y . (4.3)

This is the wave equation for wormholes or baby
universes that we shall use in what follows. The LHS of
(4.3) is identical to that in the conventional Wheeler-
DeWitt equation as given in (3.3). It is the nonzero RHS
of Eq. (4.3) that separates from the usual zero in
Wheeler-DeWitt equation and corresponds to a total en-
ergy for the wormhole or little baby universes of the or-
der the Planck energy. In Appendix C we show that this
wave equation is equivalent to a Klein-Gordon wave
equation for wormbholes.

The wave function ¥ in (4.3) should now be interpreted
as the quantum state of the wormhole or little baby
universes. Since the analytical structure of the wormhole
solution obtained from (4.1) is the same as that derived
from (3.2), the use of (3.1) and (4.3) would lead to an
effective interaction Lagrangian for flat space which is
the same as (3.4). In fact, all the technical details in-
volved in the derivation of the effective interactions in flat
space between the branching off of little universes and
low-energy particles are insensitive to variations of
wormhole radius of the order the Planck length. At first
glance it could seem unclear, however, whether a nonzero
energy for wormholes would not affect the way through
which a wormhole end is inserted in an infinitesimal
volume of the manifold. Nevertheless, if one wants to
respect general covariance and assumes, as is done in the
derivation of (3.4) for zero-energy baby universes,' that
the amplitude for that insertion has the simplest form
Cg'”?d*x, the only effect originating from introducing a
nonzero energy for baby universes is to induce a given
finite change in the value of the constant C, so that the
new C’ still is a constant.

Actually, the value of the constant C would be modu-
lated by a factor P <€~ ! (e denoting total energy of the



3990

baby universes), interpretable as a probability for the
wormhole state. The case for the Wheeler-DeWitt equa-
tion (4.3) would then correspond to the wormhole ground
state, so that the probability factor P could be set equal to
unity. However, if we generalize to a full set of
wormhole states with eigenenergies ¢,,, one should modi-
fy the insertion expression to read ¢,,'Cg!/2d*x. Unless
otherwise stated, we shall restrict ourselves here to the
simplest case represented by the Wheeler-DeWitt equa-
tion (4.3).

On the other hand, Eq. (4.3) is providing us with a nat-
ural mechanism for canceling the Planck zero-point ener-
gies of each scale factor harmonic-oscillator mode. Now
these zero-point energies are simply canceled by the RHS
term in Eq. (4.3). Thus, by using a parallel, though a
more transparent procedure than Hawking’s,” we obtain
again an effective Lagrangian for the interactions be-
tween wormholes and the background scalar matter fields
in flat space of the form (3.4).

However, although the interaction equation should be
formally the same as (3.5), its interpretation has to be
necessarily different. Because the total energy of the
baby universes is no longer zero, they, or at least their
effects, could be observed by observers in the asymptoti-
cally flat region. This has two immediate consequences;
first of all, one should exclude from the very beginning
any possibility for the loss of quantum coherence induced
by wormholes, and second, if one wants to respect energy
conservation, the fundamental process branching off a
baby universe from flat space has to be accompanied by
loss or gain of an energy equal to that of baby universes
by the matter field. The physical situation becomes so
similar to that for the interaction between an electromag-
netic field and a two-level matter system; or in other
words, the study of the effects of wormholes on matter
fields in asymptotically flat spaces is reducible to a
quantum-optical problem.

In what follows we shall explore one of the typical
consequences that can be expected from this analogy: the
possibility for the spontaneous generation of chaotic be-
havior of spacetime induced by wormholes.

In the model we are dealing with, this possibility is a
very plausible one; after all, the branching off of little
baby universes from a large universe has the following
characteristics: It is governed by nonlinear equations, it
can induce an energy feedback mechanism between large
universes, and it converts an otherwise closed large
universe into a dissipative system. These are precisely
the basic requirements for a system to have the possibility
of showing chaotic behavior.

It could be thought that, since wormholes are events at
Euclidean spacetime, it would be meaningless to attempt
deriving a dynamical equation of the wormhole gas. For
this dynamics to have any physical meaning, one should
require having (i) a suitable well-defined time variable to
describe the interaction, and, (ii) in the case of a Euclide-
an spacetime manifold, some mechanism by which the
Euclidean dynamical equation would manifest in some
observable effect in the asymptotic or Lorentzian region.
For the interaction being considered, the first of these
two conditions is satisfied as the existence of a nonzero
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total energy term in (4.3) allows us to obtain a full wave
equation (see Appendix C), where the energy term can be
generated by introducing a time operator d/d¢, much in
the same way as it is done in nongravitational quantum
mechanics. Having such a time operator makes it possi-
ble to introduce consistent operator ordering and a Hil-
bert space for the wormhole states where one can con-
sistently define unitary time-evolution operators or
Heisenberg equations of motion.

On the other hand, it is known that wormholes may in-
duce observable effects on matter in the asymptotic re-
gion through an effective Lagrangian with the general
form (3.4). Clearly, one should likewise expect that the
dynamics of a gas of wormholes or baby universes de-
rived from the same effective interaction Lagrangian plus
an independent Lagrangian for the baby universes and
matter fields would also induce observable effects in the
asymptotic region. Any effect that such wormhole dy-
namics may produce in the structure of the Euclidean
spacetime itself would be observable not just in the
asymptotic region, but also in the Lorentzian interior of
the little universes that are branched off from such an
asymptotic region. The possibility that we are living in a
universe which was once born as one of such baby
universes creates some additional interest in the study of
the dynamical equation of the wormhole gas.

The general configuration we shall consider consists of
two large three-spaces M, and M, and a given number n
of observable baby universes which connect the two large
spaces. M, and M, are themselves connected by a four-
manifold M. Then, if ¢ denotes the background scalar
matter fields, and b, denotes the field of baby universes,
we have an effective Lagrange density of the form

L=L,($)+L,(b,)+3 L($)b +b,), (4.4)

where L,, and L, are local functions of the background
fields and their derivatives, and L, is a new Lagrange
density term accounting for free baby universes.

Assuming only one kind of baby universe and only one
kind of background field, the corresponding Hamiltonian
for the total system can be written in the typical
quantum-optical form

H=3[0,b'b+lop, +iopo; b +o7b)], @.5)
J

where o,, denotes the wormhole energy (i.e., the inverse
of the wormhole radius in the case of pure gravity), o, is
the energy shift produced in the matter field in flat space
by the interaction (typically, this would be of the order
the Planck scale), and wp is of the order of Planck ener-

gy. The index j accounts for the local matter systems.
As pointed out before, b',b are Fock operators for
creation and annihilation of baby universes, satisfying the

usual commutation relations for bosons:
[6%,61=1,
[6',6"]1=[b,b]=0 .

In writing Eq. (4.5) it has been assumed, furthermore,
that the matter fields may absorb or emit the energy of a
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baby universe, and therefore these fields behave as if they
were typical two-level systems. Note that, whereas in the
conformally invariant field model 50 the energy of the
ground state would correspond to the bare energy of the
background field, in the more general nonfield model
® =0, the ground-state energy would be zero. Conse-
quently, we have introduced the isospin transition opera-
tors aji which raise (+) or lower (—) the energy level of
the background matter system. Operators p; fix the total
energy of the matter fields. All of these isospin operators
satisfy the commutation relations

[0},071=p; ,

(4.7)
[pj,ajt]=4_r*2oji .
Using then the Heisenberg equations of motion, we ob-
tain

b+iw,b=wp 205,
J

(4.8)

2 (0 ; tingo; )=wp ij ,

j j
Spj="20p3 (boj+b'a;).
J j

Equation (4.4), (4.5), and (4.8) are given in first approxi-
mation. The real interaction process would not be so
simple because of a variety of effects, including interac-
tions of the background field with the surrounding medi-
um, interactions among wormbholes, the distribution of
the most probable values of the physical constants in
large universes according to the Coleman mechanism,!°
etc. On the other hand, in the more realistic quantum
approach using a density matrix to describe the quantum
state of a single wormhole, we had to sum over all the
possible wormhole insertion amplitudes weighted by
probability factors depending on the inverse of the
wormhole eigenenergies. These probabilities would also
influence the average values of the relevant dynamical pa-
rameters appearing in the resulting equations of motion.
For example, let us consider what would happen if the di-
lute wormhole approximation breaks down (a situation
that turns out to be very likely as one is dealing with
smaller universes). In this case we would have to intro-
duce processes such as two wormholes being branched off
close to one another or the equivalent process by which
two wormholes coalesce to form a third one, which is
then absorbed, etc. All of these processes and interac-
tions would require a given careful rebalancing of the en-
ergetics of the whole process, which can be generally ac-
counted for by adding phenomenological coupling con-
stants to the different operators in Eq. (4.8). If we denote
these constants by v,, v,, and v,, we can generalize the
above set of equations to read

bt(io, ty,)b=wp 3o} ,
J

2[0;"‘(10)4""'}’0;)0;]:(01: ZP/ , (4.9)
J J

Z (f)j+7/pjpj)= —2wp 2 (baf—bTaf) .
j j

If we consider now that the coupling constants do not
depend on the index j, use the approximation
(bo;)=(b){0o}), etc., and change the notation so that
b—>W,307—4,3;0,—C, and 3 ;p,—M, Egs. (4.9)
can be rewritten as

W+io, +y,)W=0pA ,
A+lioy+y )A=wpM ,
M+yyM=—20,(WC—W*A4) .

(4.10)

The derivation of Egs. (4.10) given here is rather
heuristic; it is expected that a more formal derivation
would leave untouched the general form of these equa-
tions. Note that for sufficiently high density of
wormbholes, one could even have stimulated emission pro-
cesses induced by the baby universes. The point now is to
realize that the set of Eq. (4.10) may be derived
equivalent to the Lorenz equations®? describing the be-
havior of systems which can deterministically evolve to
chaos. It could well be then that for given values of the
parameters involved in Egs. (4.10), the branching off of
little baby universes from asymptotically flat regions of
space would lead to chaotic behavior of spacetime itself.
Such a behavior could be expected at some epoch of the
early Universe, when the combined effect of the smallness
of the Universe with suitably high values of the control
parameters would allow chaos to pervade the whole
spacetime structure of the Universe. Thus such an Eu-
clidean chaos would probably take place in an early stage
of the evolution of the Universe, at which time, at least
according to the ‘“no-boundary” proposal, the Universe
was Euclidean and expanded exponentially.

V. VANISHING OF THE COSMOLOGICAL CONSTANT
AND THE BIG FIX

In this section we shall briefly review some of the possi-
ble implications that the quantum-optical interpretation
of wormbhole interactions may have in the Coleman mech-
anism'®3! for the vanishing of the cosmological constant
and the fixing of the physical coupling constants.

Coleman’s mechanism is based on the result that, be-
cause of interaction with wormholes, any expectation
value computed in one large universe is a weighted aver-
age over expectation values in an arbitrarily large number
of universes without wormholes, but with wormhole-
shifted couplings A+, where A collectively denotes pa-
rameters such as the gravitational constant, fundamental
particle masses, or the cosmological constant; @ denotes a
set of fixing parameters defined by the identity

exp(5Cj;i6;)~ f IIdaiexp(—1iD;a,a;)
k

Xexp(—a;¢;) , (5.1

in which C;;~exp(—1,), ¢(x) is the basis for a local
operator at x, D;; is the inverse of matrix C;;, and [, is
the wormhole action.

In the dilute wormhole approximation, taking the clas-
sical stationary point associated with Euclidean de Sitter
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space as the leading contribution to the Euclidean path
integral

fa'g exp[ —I(g,A+a)]

over smooth metrics and all other fields in one large
universe, Coleman was able to show! that the probability
function for an ensemble of worlds with a statistical dis-
tribution of coupling constants is given by

1 3 87’
P ~exp —EDijaiaj exp 8GIA 5 4
Xexp |ex 3 —EﬁA (5.2)
p p 8G2A 3 1 > *

where A =A(a) and G =G(A) denote, respectively, phys-
ical values of the cosmological and gravitational con-
stants, and 4, = A4,(a) is the coefficient for the first-
order field fluctuation in the effective action for a large
smooth universe.

The analysis of the probability function P in terms of
the first term 3/8G2A of the argument of the single and
double exponentials is the basis for the Coleman’s claim
for a wormhole-induced vanishing of the cosmological
constant A. Since P is infinitely peaked at A=0, zero is
by far the most probable physical value for the cosmolog-
ical constant.!’

It seems clear that the Coleman analysis for the vanish-
ing of the cosmological constant does not depend on the
details of physics at around the Planck scale,’! and there-
fore it remains valid in the quantum-optical interpreta-
tion of wormhole interactions with large universes. This
is a very plausible conclusion as A is a cosmological pa-
rameter which ought to be sensitive only to the large-
scale characteristics of the considered universe. Howev-
er, if the large universe is an expanding system, the above
conclusion would no longer be valid in the earliest stages
of its evolution when the scale factor is comparable with
the Planck length. Thus details of small-distance physics,
such as those discussed in Secs. II and IV, would prob-
ably affect expression (5.2), or at least its interpretation,
in such a way that the resulting probability would be
peaked at some nonzero value of the cosmological con-
stant.

The Coleman argument for the so-called big fix refers
to the second term —872/3 4, and, potentially, higher
perturbations terms, in the argument of the single and
double exponentials in (5.2). The absolute probability
maximum at G2A(a)=0 defines some subspace in the
space of wormhole-shifted constants where the probabili-
ty varies and becomes infinitely sharply peaked at the
place where A4,(a) reaches its minimum. In this case,
however, power counting indicates®! that A4 (a) and the
other coefficients of the expansion depend strongly on
short-distance physics for which the usual and quantum-
optical interpretations of wormhole interactions are re-
markably different. Therefore, the introduction of a
universal cutoff of order m in the Coleman scenario
ought to lead to a different interpretation of the perturba-
tion coefficients.

To get a more precise idea about how the probability
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P(a) would separate from the Coleman formula when
one introduces an extra uncertainty in wormhole physics,
let us generalize the formalism to the single-wormhole-
state density matrix representation. For a wormhole in-
teracting with a single scalar field, the bilocal effective in-
teraction is proportional to
—13 CrBme, !, (5.3)
ij
where m labels the energy levels of the wormhole
harmonic-oscillator states, m=1,2,3,..., and
Bz=%[fd4x g(x)l/zV]z, with V being a vertex operator,
and €,, *m. The minus sign in (5.3) is introduced ac-
cording to the discussion by Hawking.’!

We should now sum over all the states m. Neglecting
the wormhole-wormhole interactions, the sum of (5.3)
will exponentiate already for a single wormhole. If we
next sum over any number of wormholes, each having a
similar harmonic-oscillator spectrum, connecting a single
large universe characterized by an Euclidean action
I(g,A), then one has a still bilocal probability proportion-
al to

e 1M

exp . (5.4)

— [dBB "exp (3 c,.jﬂz]

i

Now, by using the integral
172
f +°°daeaazeba
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_p2
e b*/4a —

a
T

(5.4) can be made to look local. We get

172
exp l—fda

B,

— 2
e D[ja /4
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I(g,\)— E (ap)

(5.5

where E | (x) is the exponential integral of first order.

For the sake of simplicity, let us now consider the case
in which we set large values for the product af. Similar
results may be obtained for any value of @f8. Assuming
processes involving additional large universes, one would
finally obtain a probability given by

D1/2e—Da’/4 ]

a"

— [dalI|gA,+ 0

X exp l__fdaDl/Ze—DazM] ,

exp [exp
(5.6)

where n labels the coefficients for the power expansion of
E,| and f(n) are the associated numerical coefficients.

Again, the first exponential factor in (5.6) dominates
over the second one, and one can still predict zero as by
far the most probable value for the cosmological con-
stant. However, expression (5.6) shows a crucial
difference with respect to its Coleman counterpart. Now,
depending on the sign of the term being considered, pa-
rameters a cannot take on any unboundedly either large
or small value. The shifts affecting the couplings do al-
ways possess a finite extremum in a. If the sign is posi-
tive, then the extremum will correspond to a finite max-
imum at
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—Sw)l/l : (5.7)

ay=(2ne
if the sign is negative, the extremum will be a finite
minimum at the same value (5.7) of a. This obviously re-
stricts the range of possible values for the Coleman pa-
rameters and, thereby, may drastically change the most
probable values of the coupling constants predicted by
Coleman model.

Let us consider, for example, the typical case of a light
pseudoscalar particle, such as the pion. Assuming that
the pion mass m . is much smaller than the large QCD
scale f._, Grinstein and Wise*® have obtained the
coefficient A4, for this case:

2
T

2

m

2
T

7
where B is a positive numerical coefficient of order unity.

Thus P becomes infinitely sharply peaked at m =0, a
result which is certainly very discouraging. Nevertheless,
let us look at what would actually happen when, in the
close vicinity of a pion in flat space, little baby universes
are being branched off. Of course, the bare mass of the
pion will get a dependence on parameters a such as that
discovered by Coleman; but if one adopts the quantum-
optical interpretation of wormhole interactions, that
dependence will not be the sole memory left by
wormbholes in the mass of pions. In creating a wormhole
with total energy m ~!, for example, the bare mass of the
pion would change to i _~m_—m ~'+v,,, where y,, is
the phenomenological coupling constant for operator p
introduced in Sec. IV. Hence the dependence of Eq. (5.8)
on the pion mass would now be through i instead of
m_, and since the probability would still be infinitely
sharply peaked at m =0, the physical pion mass should
no longer be driven to zero, but to a generally nonzero
value

m
+0

A,=BIn , (5.8)

m_~m Na)—ypyla).

Similar arguments should apply to fermions, where the
numerical coefficient turns out to be negative,3 134 50 that
wormholes would ultimately drive the free-fermion mass
toward I1—m ~Ya)+yy(a), with IT being the cutoff
scale of the theory. Thus phenomenological coupling
constants, such as y,(a), would ultimately fix the value
of the masses of the fundamental particles. As discussed
in Sec. IV, the values of these constants are expected to
depend, among other things, on nonlinear wormhole in-
teractions and on the size of the universe. Therefore, al-
though the big-fix program could be saved by using
nonzero energy wormbholes, it seems that the day when
there will be a consistent theory for the determination of
every physical constant is still discouragingly far away.

VI. CONCLUSIONS AND FURTHER COMMENTS

The available classical wormhole solutions obtained as
instantons from Euclidean gravity coupled to special
kinds of matter fields have all a restricted applicability
and, at least in one case, show a severe problem with the
value of the effective gravitational constant. Therefore,
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they cannot be invoked as a solution to problems so
universal as that of the cosmological constant or the
fixing of physical coupling constants.

Starting with pure gravity or a scalar field coupled to
gravity, we have used a new general method to obtain the
Tolman-Hawking wormhole instanton by simply provid-
ing the Robertson-Walker manifold with an extra three-
sphere of minimum radius of about the Planck length. In
either of these two cases, there is no problem with the
value of the effective gravitational constant, provided
that we introduce a cutoff in the wormhole scale factor
squared at the Planck scale. It was found that the wave
equation for this kind of solution is no longer equal to
zero, as it is in the conventional Wheeler-DeWitt equa-
tion, but to a nonzero energy of the order the Planck en-
ergy. Therefore, the little baby universes resulting at the
cross sections of wormholes have a nonzero total energy.
Baby universes would then be observable and induce no
loss of quantum coherence whatsoever.

By using an analysis in terms of second-order correla-
tion functions, we have also shown that, even for little
closed universes, there could be no loss of quantum
coherence induced by quantum gravity.

By invoking energy conservation, it was suggested that
the interaction between low-energy particles in asymptot-
ically flat spaces and wormholes can be reduced to a typi-
cal process of quantum optics. A striking consequence
from this interpretation is the possibility discussed in this
paper that wormholes may induce chaotic behavior of
spacetime itself. Because of the nonzero RHS term of the
wave equation governing the evolution of the quantum
state of wormholes, analogously to what is done in the
nongravitational picture of ordinary quantum mechanics,
one could introduce a well-defined notion of time in
quantum gravity (see Appendix C) that allowed the sug-
gested gravitational chaos to be deterministically ac-
counted for. It is expected, moreover, that the long-
standing operator-ordering problem?® of canonical quan-
tum gravity may find a natural solution within the con-
text of this picture.

Chaotic spacetime could then be interpreted as the
most natural initial condition for our Universe. Actually,
the quantum-optical interpretation of wormhole-matter
interaction could thus implement the unique inflationary
model that has survived so far, i.e., the chaotic
inflationary scenario proposed by Linde.*® If so, the
problem of the initial conditions of the Universe could be
reduced to find a suitable set of parameters that would in-
duce the chaotic behavior of spacetime, starting from an
initial soup of wormholes.

Our interpretation of wormhole interaction is compati-
ble with the Coleman mechanism for the vanishing of the
cosmological constant in large universes, but not with the
big-fix program as formulated by Coleman. It appears
that our interpretation could drastically improve the
discouraging results obtained so far.

In Appendix C it is shown that the Wheeler-DeWitt
equation for wormholes is equivalent to a Klein-Gordon
equation. Hence the wave function representing the
quantum state of wormholes or little baby universes
would admit a probabilistic interpretation equivalent to
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the Copenhagen interpretation of relativistic quantum
mechanics. The concept of antiwormholes, i.e., nontrivi-
al topological changes carrying negative energy, is intro-
duced without violating the Ruback uniqueness theorem
for wormholes.

In summary, one could answer the question posed in
the title of this paper by saying that it could well be that
nothing is actually being lost in wormbholes; quite the op-
posite, it appears that one may gain a lot from them.
Apart from getting rid of the cosmological constant and
allowing the possibility of dynamically generating all
physical coupling constants, wormholes may be provid-
ing us with suitable mechanisms for inducing determinis-
tic chaos in spacetime and generating all known particles
themselves as nontrivial gravitational instantons; after
all, it seems that the little baby universes branching off
from flat space carry nonzero energy and obey the funda-
mental laws of nongravitational relativistic quantum
mechanics.
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APPENDIX A: LORENTZIAN SOLUTIONS
FOR A TOLMAN-HAWKING WORMHOLE

In the Lorentzian region we would have a transformed

Robertson-Walker time
172

m dt ; (A1)

-1
aZ

dt'=

hence the Lorentzian region is defined for a <m.

By using the Lorentzian field equations obtained from
their Euclidean counterparts (2.13), introducing the usual
change 7—i7, we get the wanted solutions. For A=0,

a=(M*+m?—)12 (A2)

which is expressed in terms of Robertson-Walker time ¢
and would correspond to a Tolman universe. '’

In this case, however, the presence of a scalar field con-
formally coupled to gravity can avoid the Lorentzian
singularities at t,=+(M%+m?2)!/? because the Lorentzi-
an regime requires 2> M?2. In any event, the maximum
radius of the Tolman universe appears at ¢t =0, with
@ max =(M2+m2)1/2.

The only possible Lorentzian solution for A >0 is

a()=0A) "2 [1+2m*A—(1—4AM?)1/?

Xcosh(2A172¢)]1/2 |

which is defined for 4AM?<1and O<a <a_.
Solution (A3) is also a Tolman-like Lorentzian solu-
tion, only at times defined by ¢ > ¢, where

(A3)
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t,=(2AY2) larccosh[(1—4AM?)"1/2] . (A4)

In principle, there are two more solutions to the
Lorentzian equations of motion. They are

a()=0QA) " 1+2m A+ (1—4AM>)'?

X cosh(2A172¢)]1/2 | (A5)
fora>a_  and 4AM?*<1, and
a(t)=02A) "V [14+2m A+ (4AM2—1)!/2
Xsinh(2A17%)]172 , (A6)

for 4AM?%> 1. However, such de Sitter-like solutions are
defined for a > m and, therefore, are not allowed in the
Lorentzian regime.

APPENDIX B: TRANSFORMED CONFORMAL TIME

In this Appendix we derive first the relation between 7
and 7’ and discuss then in more detail why the correspon-
dence principle introducing the quantum operator d/dy
should be applied to dx /dn’ instead of dx /d 7.

From the relation [cf. Eq. (4.2)]

—1/72
v=[1-Z-| dg, (B1)
a
we get
Mz 172
n'=In |sinhy+ m-i—sinhzn l (B2)

We see that 7’ covers only half the % interval, from
7=+ to 0. For a given nonzero field y, the time %’
runs first from +o (at 7p=+wo) to 0 (at
n=arcsinh[m?2/2(m?*+M?)]) and then to
+In[M /(m?+M?)'"?] (at =0). It is only for the case
M =0 that 7’ runs the entire range up to — . In this
case, 7’ reduces to

7' =In2+In(sinhy) . (B3)

Let us now investigate which conformal time deriva-
tive of the field y should correspond to the field quantum
momentum operator. We note first the relations

a'=—iy=(a*—m?*—M?»'"? (B4)
)(’=ia=()(2—m2—M2)‘/2 . (B5)
Now, if we choose a correspondence principle

a'=3/9da for the scale factor, Egs. (B4 and BS5) indicate
that, since we have not explicitly shifted the scalar field,
X' could no longer be the relevant field quantity to be as-
sociated with the operator d/3y, for Eq. (BS) tells us that
X' contains the unwanted shift in m2. Nevertheless, the
quantity

dx =i(a?—m?) V2= (32— M?)!”?2 (B6)

dn'
satisfies all the requirements and becomes; therefore, the
suitable field quantity to be associated with the quantum
operator 9/3Y.
This can be also seen by using a more transparent argu-
ment. In the gauge N =1, we obtain from (2.12) the La-
grangian



2 WHAT IS REALLY BEING LOST IN WORMHOLES? 3995
2
L=L(n=—(a’=m)" |- =%— —1+Aa? —m2)+X - 2X :
2 a—m a‘—m
1 _a? 1 dy/dn)? . ¥
=T +L N=— 2, 2\1/72 | — 142 2_ .2 +—~(q 21/2 4
oM+ Ly(n S lai—m?) e (a*—m?) 2( ) ot
(B7)

From this Lagrangian, we obtain the momenta for the
scale factor and scalar field:

_9L(yp) _ OL,(m) a’
a aar aa, (az_mz)l/z 3 (BS)
2__ 2\1/2,
=2t _ (P
py= i) ___dy/dy (B10)
X ddx/dn’)  (aP—mH)V?

Now, because the field momentum which is formally
equivalent to p, is not p,, but p, it follows that if we as-
sociate the quantum operator d/da with a’, the field
quantity to be equivalently associated with the operator
d/dyisdy/dn'.

APPENDIX C: QUANTUM MECHANICS
OF WORMHOLES

In this Appendix we derive a Klein-Gordon wave
equation for wormholes and comment briefly on it. We
start with Eq. (4.3):

9’ 9’ 2
———+—+a’— =my . (cn
da?  3y? | v

It will first be noted that for an integration constant

M =0 we still have a residual scalar field of the form

Xp=o=Z==im sinhy (C2)

which suggests that the introduction of a maximum reso-
lution limit of the form Aa = m is equivalent to having a
background purely imaginary quantum field Z which
only vanishes at the classical limit m —0 or at n=0. In
other words, if a Tolman-Hawking wormhole exists,
there must exist an axionlike imaginary scalar field so
that a'>4+x*=0, xy'>*+a?=0. The field ®=mptanhy is
zero at 7=0, and *imp at the asymptotic region
n=too.

We note then that one can obtain a relation between
the Euclidean Robertson-Walker and conformal times
from Eqgs. (2.15) and (2.19) of the form

T=fad77= m?+M?*)!%sinhp=—iy . (C3)

This is an interesting result which tells us that the con-
formally coupled scalar field Y is nothing but the
Lorentzian Robertson-Walker time ¢. Equivalently, the
quantum scalar field = will define an intrinsic quantum
Lorentzian Robertson-Walker time that we shall denote
as I' and an intrinsic quantum Euclidean Robertson-

[

Walker time which will be denoted by Y, so that T=iY.
Then the modified Wheeler-DeWitt equation (C1) can be
rewritten as a true Euclidean Klein-Gordon wave equa-
tion describing the evolution of wormhole states:

¥ @ 24 202y g =
——+——+V(X,m)—(m +M°) |¢¥=0, (C4)
a7
where the potential V' (y,m ) is given by
Vix,m)=2x*+m?, (C5)

and the wave function that describes the quantum state of
the wormhole or little baby universes,

y=yla,x)=¥(a,7), (C6)

will depend on Euclidean Robertson-Walker time.
For pure gravity, (C4) becomes
aiz +5§—27+U(._) 2lo=0, (CD

where

U(E)=22%, (C8)
and

S=P(a,2)=P(a,Y) . (C9)

The time dependence of the wormhole quantum state is
not surprising because the total energy of the wormhole
is nonzero. From this result a number of interesting
consequences can be expected. Among them, we remark
here the following two: (i) A self-consistent factor order-
ing for canonical quantum gravity could now be estab-
lished, and (ii) there exists the possibility of deriving
linearized wave equations from (C4) or (C7) by suitably
introducing Pauli matrices. This would lead to a given
spin for wormholes and to the notion of antiwormholes,
i.e., topological changes carrying negative energy.

Working in pure gravity, we have, for the Lorentzian
version of (C7),

[E2—p2—2I'"—(im)*]®, =0, (C10)

where E=im3/dT, p,=imd/da, and ®, represents the
quantum state of a Tolman universe with the Planck size.
Since we are considering an isotropic manifold, we may
obtain a Dirac wave equation for the Tolman universe of
the form

[E—0p,—2"%0;T—io,m ¥, =0, (C11)

with the o;’s being the Pauli matrices and ¥; being a
two-component wave function.
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The Euclidean version of (C11) could then be interpret-
ed as the Dirac wave equation for wormholes, i.e.,

[—ie—op,—2" %0 XY—io,m]¥,=0. (C12)

In Eq. (C12), €&=imd/dY, and V¥, is a two-component
wave function denoting the quantum state of wormholes.
Taking the complex conjugate of (C12), it is readily seen
that antiwormholes ought to be interpreted as negative-
energy wormholes or, alternatively, as wormholes space-
time acted upon by parity- and time-inversion operators
P.a—»—agand Y—>—Y.

The existence of an antiwormhole sector of the wave
function implements the bivalued character of the Eu-
clidean action arising from inserting the cutoff on the
scale factor. In order to preserve convergence, one
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should use the Gibbons-Hawking-Perry prescription.’’
Taking N and a imaginary, as it would correspond to in-
tegrating the conformal factor over a contour parallel to
the imaginary axis, the Euclidean action for pure gravity
becomes

a’a?

—+1
(a*+m?)N?

TR=ide(az+m2)V2N

’

(C13)
with 7—>7Y.

The overall plus sign leaves a positive-definite action
integral that should be associated with the wormhole sec-
tor. The minus sign should then correspond to the an-
tiwormhole sector and would also give rise to a positive-
definite action as one applies P and T operators to it.
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