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We exactly quantize fundamental strings propagating in a straight cosmic-string space-time (coni-
cal space-time with deficit angle SmGp, p being the cosmic-string tension). If the fundamental

string collides with the cosmic string the scattering is inelastic since the internal modes of the fun-

damental string become excited. If there is no collision, the fundamental string only suffers a
deflection of +4mGp. If there is collision we find inelastic particle production from the interaction
of the string with the (classical) geometry. The string oscillator modes only suffer a change of polar-
ization (rotation) in the elastic case and a Bogoliubov transformation in the inelastic case. As a
consequence, for a given initial state, the final particle may be in any state associated with the string
oscillators. All transformations are explicitly calculated in closed form. Finally, the quantum

scattering amplitude for the lowest scalar (tachyon) is computed exactly. In this calculation the ver-

tex operator in the conical geometry and the oscillator linear transformations we find here are used

thoroughly. The peculiar features of the string propagation in this topologically nontrivial space-
time are discussed including the question whether string splitting can occur at the classical level.

I. INTRODUCTION

In previous papers, ' the present authors started a pro-
gram to quantize strings in curved space-times with ap-
plications to de Sitter space-time, black holes, and gravi-
tational shock-wave geometries. The string equations of
motion and constraints were solved both at the classical
and quantum level in an expansion which takes into ac-
count strong curvature effects of the classical gravitation-
al field. Physical magnitudes such as the mass spectrum,
elastic and inelastic scattering amplitudes, Regge trajec-
tories, and critical dimensions have been computed and a
new stringy inelastic scattering of particles was found. '

Thermal and ground-state effects of the string in
Rindler-accelerated space and near black holes were also
studied. ' Strings in cosmological space-times have been
also investigated with these methods. '

In this paper, we study string quantization in a
different type of nontrivial background, a purely topolog-
ical one. We do not need to apply our expansion method
here since the quantization and scattering problem can be
exactly solved in a closed explicit form. We study a
quantum (fundamental) string in a conical space-time in
D dimensions. This geometry describes a straight cosmic
string of zero thickness and it is a good approximation
for very thin cosmic strings with large curvature radius.
The space-time is locally flat but globally it has a non-
trivial (multiply connected) topology. There exists a
conelike singularity with azimuthal deficit angle

5@=2vr(1—a)=SmGp .

Gp is the dirnensionless cosmic-string parameter, 6 is the
Newton constant and p the cosmic-string tension (mass

per unit of length). GO=10 for the standard cosmic
strings of grand unified theories.

The string equations of motion are free equations in
the Cartesian-type coordinates X,X, Y, Z' (3 & i & D —1),
but with the requirement that

0& arctan( YjX)&2m.a . (1.2)

We find the solution of the equation of motion and
constraints in the light-cone gauge [see Eqs.
(2.24) —(2.31)].

The string as a whole is deflected by an angle

5=54/2 . (1.3)

A string passing to the right (left) of the topological de-
fect is deflected by + ( —)54. This deflection does not
depend on the impact parameter, nor on the particle en-

ergy due to the fact that the interaction with the space-
tirne is of a purely topological nature. In the description
of this interaction we find essentially two different situa-
tions. (i) The string does not touch the scatterer body. A
deflection +6 at the origin and a rotation in the polariza-
tion of modes takes place. In this case there is no
creation or excitation of modes (creation a"„andannihila-
tion operators a"„arenot mixed) and we refer to this sit-
uation as elastic scattering. [See Eqs. (2.32)—(2.38)]. (ii)
The string collides against the scattering center; then in
addition to being deflected, the internal modes of the
string become excited. We refer to this situation as in-
elastic scattering. We describe the evolution of this sys-
tern and guarantee continuity of the string coordinates
and its r derivatives at the collision times r= ra [see Eqs.
(2.39)—(2.45)]. (We deal here with open strings. ) We find
the relations between ingoing (r & ro) and outgoing
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1 sinn /a
2m. cosn /a+coss/a (1.4)

In the scalar (ground-state) string amplitude Eq. (3.2)
we have ingoing 7 &7p and outgoing 'T) 7p zero modes
and oscillator modes averaged on the ingoing ground
state ~0). Inserting the wave functions 4;„and
4,„,=%„(—k) in this matrix element (A) yields four
terms A =A, +~„+~rr,+~tv, each of these terms
splitting into four other ones corresponding to the natu-
ral four integration regions of the double ~ domain. The
detailed computation is reported in Sec. III. For this
computation it is convenient to work in the covariant for-
malism where all string components are quantized on
equal footing. The final result is given by Eqs.
(3.39)—(3.42). The term A, corresponding to the undis-
torted waves describes outgoing particles moving in the
original incident direction or rotated by the angle +4
(modulo 2ma). The terms Aii, Aiii, and A,„describe
true elastic scattered particles. The effect of the topologi-

(r & ro) zero modes and oscillators. In this case, in addi-
tion to a change in the polarization, there are mode exci-
tations which yield final particle states diferent from the
initial one. Particle and antiparticle modes are mixed
[see the Bogoliubov transformations Eqs. (2.44) —(2.48)].
Here we have a single (test) string. That is, the initial and
final states are one particle but diferent states. Notice
that here particle states transmute at the classical (tree)
level as a consequence of the interaction with the space-
time geometry. In the present case this is a topological
defect.

We describe the conformal L„generators and the mass
formulas. We explicitly prove that the L„built from the
ingoing modes are identical to the L„built from the out-
going modes. The mass spectrum is the same as in the
standard Minkowski space-time and the critical dimen-
sion is the same (D =26 for bosonic strings).

We also analyze the question whether the string may
split into two pieces as a consequence of the collision
with the conical singularity. We find that string splitting
only occurs at the quantum level. In Sec. III, we study
the scalar particle (lowest string mode} quantum scatter-
ing amplitude in the conical space of the cosmic string.
This is also calculated exactly and in closed form. We
need first to find the solution of the Klein-Gordon equa-
tion in conical space-time in D dimensions. We find the
solution 0';„[Eqs.(3.5) and (3.15)] which satisfies the mas-
sive free wave equation with the nontrivial requirement
to be periodic in the azimuthal angle 4 with period 2ma
[Eq. (3.25}]. This prevents the usual asymptotic behavior
for large radial coordinate R ~~. The full wave func-
tion Eq. (3.22) is the sum of two terms. For D =3, this
solution has been found in Refs. 7 and 8. The incident
wave turns out to be a finite superposition of plane waves
without distortion. They propagate following wave vec-
tors rotated from the original one by a deflection +6 and
periodically extended with period 2~6. This incident
wave although undistorted suffers multiple periodic rota-
tions as a consequence of the multiply connected topolo-
gy. In addition, the second term describes the scattered
wave with scattering amplitude

cal defect in space-time on the string scattering ampli-
tudes manifests through the nontrivial vertex operator
(which is different from e'" "and through the fact that in-
going (a„"&)and outgoing (a„"&) mode operators are relat-
ed by a linear transformation which makes the expecta-
tion value on the ingoing ground state ~0& ) nontrivial.
In the a= 1 limit (that is, cosmic-string mass p=O), we
recover the Minkowski amplitude. If the oscillator
modes n %0 are ignored, we recover the point-particle
field-theory Klein-Gordon amplitude Eq. (1.4).

We deal here with open strings but the extension to
closed strings is straightforward. We find a +6 rotation
for the elastic scattering of closed strings and mode exci-
tation when the string collides with the conical singulari-
ty (inelastic case).

Finally, let us notice that strings in conical space-times
were considered in Ref. 9 but only for deficit angles
2m(1 —I /N) where the scattering is trivial. (In that case
the space becomes an orbifold. ) In this paper we have
solved the scattering problem for general deficit angles
where it is nontrivial. Let us also notice that the condi-
tion of conformal invariance (vanishing of the P function)
is identically satisfied everywhere in the conical space-
time, except eventually at the origin. If such difficulty
arises, this space-time will simply not be a candidate for a
string ground state (vacuum). Anyway, this geometry
effectively describes the space-time around a cosmic
string.

are cylindrical coordinates, but with the range

0~4 &2m.a, a=1—46p (2.2)

(dZ') is a fiat (D —3)-dimensional space and Z',
3 i ~ D —1 are Cartesian coordinates. The spatial
points (R, 4, Z) and (R, %+2m.a, Z) are identified. The
space-time is locally fiat for RAO but has a conelike
singularity at R =0 with azimuthal deficit angle

54=2@'(I—a)=8irGp . (2.3)

This geometry describes a straight cosmic string of
zero thickness. It is a good approximation for very thin
cosmic strings with large curvature radius. Globally, it
has a nontrivial (multiply-connected) topology.

It is also useful to introduce the coordinates

%=a '4, R =aR

with the usual range

0&4 (2m-

but in which the metric takes the form

(2.4)

(2.5}

II. STRING PROPAGATION IN CONICAL SPACE-TIME

We consider a conical space-time in D dimensions
defined by the metric

(dS} = —(dX ) +(dR) +R (d4) +(dZ'), (2.1)

where

R =+X +F
4=arctan( F/X)



42 QUANTUM STRING SCATTERING IN A COSMIC-STRING. . . 3971

dS~= —(dXo)~+a ~(dR )~+R '(d4)'+(dZ')' . (2.6) given by

The action of the string in the metric [Eq. (2.1)] is
given by

S= f f der dr[ —(B„X')'+(B„R)'

(2.7)

sin(a@+ —y)=0 .

In order to satisfy Eq. (2.13) we choose, for ip+,

0'+ 0'—a' a

(2.16)

(2.17)

and the string equations of motion are

(8 —8 )X =0

(8 —B,)R =R[(B 4) —(B,4) ],
(8 —B,)4= — (8 RB 4—BQB,4),1

(2.8)

where the (+) sign in ip depends on whether +j»0,
that is, on whether the particle passes to the right or to
the left of the cosmic string. The scattering angle is
defined as usual by

(2.18)

This yields, for a particle passing to the right,

OX =0,
a'X =0=v'Y=O'Z' (2.9)

but with the condition

0&arctan( Y/X) &2ma .

These are free equations in the coordinates X,X, Y,Z':

bq =m(a ' —1)

and for a particle passing to the left we find

bi = rr(a —'+1)
since hz is defined modulo 2m", this is equivalent to

b, L
= rr(a ' ——1);

that is,

(2.19)

(2.20)

Before solving the string equations (2.8) and (2.9), let us
consider the center-of-mass equations

P Pf'

(~) 4m Gy,
'L, ' 1 —46p

(2.21)

Finally, in the coordinates (p, ip), we have as deflection
angles

(p p)=0, 0&p&2na,
'r

Z =0.
(2.10) (2.22)

Thus, the scattering angle is in absolute value half of the
deficit angle:

In Cartesian coordinates, they are

x'"=0, p=0, 1, . . . , D —1,
0 & arctan(y /x ) & 2n'a .

The solution is obtained from the free trajectories

x"=q"+p "~

(2.11)

(2.12)

p cos(aip) =q„+p„r,
Psin(aip)=q +p r .

This yields the orbit equation

(2.13)

and by imposing that the variable ip=arctan( Y/X) be
periodic with period 2~a. It is useful to write the trajec-
tories in terms of the coordinates (p=ap, ip=a 'ip); that
1S,

54
L

(2.23)

Notice that the deflection does not depend on the im-
pact parameter, nor on the particle energy, as a conse-
quence of the fact that the interaction with the geometry
is of purely topological nature.

Let us now consider the solution of the string equa-
tions. Let us use the coordinates X" that satisfy the free
equations of motion [Eq. (2.9)]. We have

X"(o,r)=q" +p"r+i g (ai„'e '"'—a"„te'"')
n ——]

(2.24)

with the requirement that

p sin(ag —y) = —
q sin(y —P), (2.14) q +p r+i g (a~e '"'—a~ e'"')cosn o.

n=1
tan+ =

where

and

tany=p /p

(2.15)

q„+p r+& g
n=1

x —in' x't

in'�)

ja„e —an e

(2.25)

q„=qcosP, q =qsinP.
When ~~+ac, then p~+ Do and the angle q~y+

be periodic with period 2+a. This periodicity condition
will be enforced by appropriately rotating free string
solutions [see Eqs. (2.34), (2.40), and (2.41)]. As a conse-



3972 H. J. de VEGA AND N. SANCHEZ 42

U=pUw, U=X —Z (2.26}

quence, linear relations between the ingoing and outgoing
oscillators associated with the X and Y coordinates ap-
pear (see below).

From Eqs. (2.8), and (2.9) we see that we can choose
the light-cone gauge

X&
=X

& cosh+ Y & sinb,

Y& = Y&cosh+X&sink;
(2.33)

where 6 is the deflection angle given by Eq. (2.30) and the
+ (

—)sign refers to a string passing to the right (left) of
the cosmic string:

Then, for r~+ ao, from Eqs. (2.25) and (2.26) and by ex-
pressing the solution in terms of the 4 coordinate, we
have

that is,

X)
Y) =A(kb, )

X&
(2.34)

Pytan(a4) = tan(a@~ ) = tany =
g~+ 00 p.

This yields a string scattering angle

h, g, =(+)n(a ' —1)
L

equal to that of the point particle. That is, it yields

b,
,g, =(+)n.(1—a) =(k)4m G}u .
L

The string as a whole is deflected by an angle

54
2

(2.27)

(2.28)

(2.29)

(2.30)

Let us consider now the constraints. The energy-
momentum tensor is given by

A(h) being the rotation matrix:

cosh —sinb

sinb, cosh, (2.35)

X
q&

=%(+b, )

XP)
y =%(+b, )P)

X
q&

y

(2.36)

The D —3 Z' components are not affected by the scatter-
ing.

From Eqs. (2.24) and (2.34) we get for the zero modes
and for the oscillation the following transformations be-
tween the in and out solutions:

T„=a,Ua, v-(a„R)' —R'(a„c)'—(a„z')'
=kp a~V —(a„X)—(a„Y)—(a„z')=0,

where 3 ~i D —1 and

x, =(~*r), a, =,(a.~a,),
U=X —Z, V=X +Z

(2.31)

and
X

an&

an)
Xtan)
yfan)

X
CXn &

=A(+5)
ya«
Xf

&n&
=%(+b ) yt

CKn &

(2.37)

(2.38)

and

X& =R cosN, Y& =R sin+, (2.32a)

X& =R cos(4+6, ), Y& =R sin(4+6, ), (2.32b}

In the light-cone gauge where we are working these
constraints completely determine the longitudinal V
coordinate of the string in terms of the transverse coordi-
nates, as it should be.

Let us study now the interaction between the funda-
mental string and the classical cosmic string (or conical
space}. There appear essentially two different situations.

(i) The string does not touch the scatterer body (here
represented by the cosmic string); in this case the string
only suffers a deflection at the origin. We refer to this sit-
uation as elastic scattering.

(ii) The string collides against the scattering center. In
this case, the string gets its normal modes excited in addi-
tion to being deflected. This happens each time a point of
the string collides with the center. We refer to this pro-
cess as inelastic scattering.

Let us first consider case (i) (elastic scattering).
For r~ —ao, the ingoing solution (X &) is just the free

solution without deflection. For ~~+ ~, the outgoing
solution X & is the free solution after deflection. We have

We see that there is a change in the polarization of
string modes after passing the cosmic string. There is no
Bogoliubov transformation relating ingoing and outgoing
solutions. That is, there is no creation of excitation of
modes after passing the scattering center (a"„andaI„' are
not mixed). In this case, the effect of the deficit angle is
not like a curved metric or a external potential in which
excitation of pairs of modes takes place. Pair mode ex-
citations lead to inelastic processes. That is, the final
string state (outgoing particle) is different from the initial
one (ingoing particle) in the cases of Refs. 2 and 3.

Let us discuss now the inelastic scattering [case (ii)].
The string evolution is described by the free equations

except at the collision point (op, rp) with the cosmic
string. We take the origin at the cosmic string; thus, we
have

X(0'p 1p)=0 Y((Tp rp)=0 (2.39)

The values of o.
o and ~o indeed depend on the string

state before the collision, that is, on the dynamical vari-
ables q "&, q~&, p "&, p~&, a"„&,and a~

& [see Eq. (2.45)].
Since the deflection angles to the right and to the left of

the cosmic string are different, Eqs. (2.36)—(2.38) do not
hold. We have now different matching conditions for
0 & o ~ uo and for o.

o o ~ ~. That is,
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X"(cr, ro)=As( —5)X((o,ro), 0&cr &oo, A =X, Y,
(2.40}

X", (cr, r) =q", +p" r

a~".(a, r, ) =X)(—a)a~', (a, r,};
X ) ( cr, ro) =JP s( b, ) X( ( o, ro), o 0 (o & m. , A

c}Q)(o, ro) =A~(h)c}Q ( (o,ro},

=—X, Y,
(2.41)

COSn CT I A —in'. Af inrun+l ~a„&e —a„&e
n=l

O~cr ~m.,~&~p . (2.44)

where X'=X and X = Y. This guarantees continuity of
the string coordinates and its derivatives at ~= rp. In ad-
dition, the string ends must obey the usual requirements

a~~ (O, r) =a~~ (1T,1)=0,
~&vp, O~P~D —1, V &~O.

(2.42)
8 X~) (O, r)=c}~)(n, r)=0 .

The string solutions X & (o,r) and X& (o, r) admit the
usual expansion

X",(o,r)=q", +p", r

+i y (aA e
—in' ad'tefnT)

n=1

0 & o & rr, r & ro, (2.43)

+ cosnoo
q&+p&ro+i g a (e

n = —oo

nAO

(2.45)

Imposing Eqs. (2.40) and (2.41) at r=ro yields linear
relations between the operators q & (p & ) and q & (p & ) ap-
pearing in the expansions (2.43)—(2.45). We find, for the
zero modes,

q" =s "(a)q'+ '[x "(—a) —x "(s)]

pA/A(g)pa+[/A(g)/A(g)]
(2.46)

We get, for the oscillators,

We recall that oo and ~o depend on the initial data of
the string through the constraint (2.39) as

a~ +—Ls ie —~sinmoo q +p ra+
7T m

+r' X
n= 00

sin(n —m)ao sin(n +m)oo+
n —m

(2.47)

where L~"=As( —b ) —A~(b, ). This can be written as

2 00

B=l B=l n=l

I

conclusions hold for the transverse modes a'„
(i =3, . . . , D —2), except that they do not suffer polariza-
tion changes.

If for r ( ro, the ingoing vacuum ~0& ) is defined by

=X/ (S)a'. &+P'. , (2.48} a"„&~0&)=0for all n)0. (2.52)

where

LB" sinmcro

7T m

sin( m n) cro—
7T

(2.49)

(2.50)

„sin(m +n)oo8" =—LB"
in ro

m+n
Lz" sin( n —m )cr o

an(e

(2.51)

nEZ n —m

We used here the constraint (2.44} to simplify the expres-
sions.

The Bogoliubov transformations Eqs. (2.47)—(2.50) are
interpreted as follows: if, for ~(~p, the initial string is in
a particle mode n polarized in a given direction A
(a„"&, A = 1,2), then, for r ) ro, there will be fa) an ampli-
tude A„"(b, ) for a mode m polarized in another direction
B (a &) and (b) an amplitude B„"(LL) for an antiparticle
mode m polarized in the B direction [(a & ) ]. The same

Then, the number of physical modes for r) ro at the nth
level created from the 7 4 7 p ground state is

N„"=(1/ )n( (0i( a) ) a„")iO() . (2.53)

Since a„"&contains (a„&) [see Eq. (2.46)] this expecta-
tion value is nonzero.

The Bogoliubov coefBcients satisfy

A„"(b, )=B"„(b)+%~(b,)5 „. (2.54)

In this inelastic case in which the string collides
against the cosmic string, in addition to the change of po-
larization, the modes become excited. This mode excita-
tion appears also for a string in a curved (static as well as
time dependent) space-time or in flat space in the pres-
ence of an external potential. ' These mode excitations
yield final particle states different from the initial one.
With these excited modes one can construct a particle
state of higher and well-defined spin and mass. It should
be noticed that here we have a single (test) string. That
is, both the final and the initial states are one-particle (but
different) states. Particle states are created at the classi-
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Z A —y JAB(z )ZB
n, B

ZA (
A At A A) —

( ) (2.55)

where

cal (tree) level as a consequence of the interaction with
the geometry. In the present case, this is a topological
defect in the space-time.

It should be also noticed that Eqs. (2.44} and (2.45)
reproduce Eqs. (2.36)—(2.38) with signs + or —when
0.0=0 or o.0=m, respectively, as it must be.

We have considered the cases when the string does not
collide with the conical singularity and when it collides
once. It may happen that the string intersects two or
more times with the cosmic string. This depends upon
the initial shape and velocity of it. The corresponding
linear transformation of the string-mode operators
Z„"=(Q„",Q„",q",p") can be obtained by repeatedly us-
ing Eqs. (2.46) and (2.47). This transformation can be
written in matrix form

Z) =J(Z), —6)J(ZO, A)Z&

Let us discuss now the conformal generators

L„= da e'n T++ o.,~=0 (2.57)

where T++ has the usual fiat-space expression (2.31).
The stress-energy tensor on the world sheet T„(o,~) is

everywhere conserved and traceless.
The Ln operators in its Fourier expansion can be com-

puted in terms of the ~(~0 basis or in terms of the v) 70
basis:

n QQm&Qn —m&~ n QQm)Qn —m) (2.58)

We find that Ln =L„'in both the elastic and inelastic
cases. In the elastic case the equality Ln =Ln easily fol-
lows from Eqs. (2.36)—(2.38) and (2.58). In the inelastic
case, by inserting Eq. (2.49) in Eq. (2.58) we find

L„L„=—2(c os26 —1)

g AB gAB 0 DABmn mn m

AB» g AB» 0 D AB
mn mn m

X g (pA QA pApA )

m

where we have used the properties

(2.59)

J(zo, b, ) =

0

0 Xs 0

0 0

(2.56)
RL =cos(25 ) —1+e sin2b„E=

L rL =2(1—cos2b, ) .

0 1

—1 0

Here the coefficients A„",B„",X",and D" are given
by Eqs. (2.49)—(2.51) and Xs is given by

X"=R"(b,)+ [%"(—b, )
—As(b, )] .

Let us consider, for example, the situation of Fig. 1 where
the ingoing string collides with the cosmic string twice:
first at zo=(opto) and then'at zi=(cri, wi). We have
then

Using now the series

n6z

(sinn o o)sin(n —m)o 0 sinm o o

n(n —m) m

L =L
n n (2.60)

The mass formula follows from the Lo =0 constraint as
usual. We have both in the elastic and inelastic cases

we see that both terms in the right-hand side (RHS) of
Eq. (2.59) just cancel. Thus,

M 1

M 1
p

lt lan«an« ~

n=1

lt
+n & +n &

n=1

(2.61)

FIG. 1. String colliding twice with the conical singularity.

These two operators have identical spectra which are
simply the flat-space-time mass spectrum. However, they
do not have common particle eigenvectors. As discussed
above, if the string collides with the conical singularity, a
particle state in one of the regions ( ( or ) ) is an infinite
superposition of particle states associated with the other
region.

The critical dimension for bosonic strings propagating
in this conical space-time turns out to be the same as in
fiat space-time (D =26}.

Can the string split? When the string collides against
the conical singularity, since the deflection angles to the
right and the left of the scattering center are di8'erent,
one could think that the splitting of the string into two
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pieces will be favored by the motion. Such splitting solu-
tion exists and is consistent. However, its classical action
is larger than the one without splitting. Therefore, this
splitting may take place only quantum mechanically. In
fact, such a possibility of string splitting always exists and
already in the simplest case for strings freely propagating
in flat space-time. The free equations of motion of
strings in flat space-time admit consistent solutions which
describe splitting but once more their action is larger
than the one without splitting.

When the string propagates in curved space-time, the
interaction with the geometry modifies the action. In
particular, the possibility arises that the action for the
splitting solution becomes smaller than the one without
splitting. Therefore, string splitting will occur classically.

where

B B+ +v F=0,
BX By

(3.6)

—:k +k
E2 p2+ k2+ ~2

and the periodicity requirement reads

F(R,4+2na, a)=F(R, @,a) .

(3.7}

(3.8)

That is, F obeys the two-dimensional free Klein-Gordon
equation (3.6) with the unusual angular periodicity of Eq.
(3.8}. This prevents the usual asymptotic behavior of the
scattering solution for R ~~,

III. THE T%0-BODY AMPLITUDE FROM STRING
THEORY IN CONICAL SPACE-TIME

e .a -.e+ f(@)
e

&2niaR.
(3.9)

We study now the scattering of the scalar particle cor-
responding to the open-string ground state in the conical
space of the cosmic string. Here the scalar vertex opera-
tor satisfies the free D-dimensional Klein-Gordon equa-
tion

illexp, I EZ
a

(3.10)

since the ingoing wave in Eq. (3.9) does not satisfy the
condition (3.8). The simplest way to impose Eq. (3.8) is to
expand F in the functions

(C3 —m )T(X)=0 (3.la)

with the condition that T(X")be periodic function of

which is a complete set satisfying Eq. (3.8). One finds, for
the radial solution

4=arctan( Y/X) (3.1b) p (ttR }=(—1)" '"'"~ .,
(«), (3.11)

with period 2ma.
The scattering amplitude is given by

~ (k„k,) =f f d z, d z2(0 l:4;„,(k~,X(Z2) }:
X:4;„(k,, X(z, ) ):l0( ), (3.2)

where the factor in front is chosen for simplicity of nota-
tion. Their asymptotic behavior reads

1/2
2p((«)

mxR

where (k~, k2) are the on-shell ingoing and outgoing mo-
menta of the scalar particle. X(z) is the string coordinate
operator and the normal ordering:: is taken with respect
to the ingoing ground state l0& ):

Xcos KR— +——+(lil —»— .7T

a 2 2 2

(3.12a}

a'„ l0 ) =0, n &0,

p, lo, )=0. (3.3)
p&(«) cos « —(I + —')—7T

2 2
(3.12b)

In the absence of cosmic string, then a =1 and one finds
1/2

z „zz stand for the world-sheet coordinates (o,r }.
+;„(k,X) and %,„,(k, X) are solutions of Eqs. (3.1) with
plane-wave boundary conditions for Xp ~ —~ and
Xp ~+ Oo respectively. In our problem, the solutions
4,„,and %';„satisfy the relation

4,*„,(k,X")=4;„(—A(b, )k,X"), (3.4)

where the rotation matrix %(h) is defined by Eq. (2.35).
The Klein-Gordon equation in the D-dimensional

metric of a cosmic string can be solved in closed form. In
D =4, this was found in Refs. 7 and 8. The nontrivial
dependence is in the two Cartesian string coordinates X
and Y (or R and N):

Therefore, the phase shift reads here

51= 1 ——
2 a (3.13)

The scattering solution can be defined as the one whose
ingoing wave does not suffer of any phase shift. That is

F(x,y, a&,zz)= g e' 'i pi(«)e'
2&a

(3.14)

where the factor in front ensures a correct normalization
(see below). In the a = 1 limit this yields

lim F(X, Y x,a )=e'"
a~1

4;„(k,X")=e' " 'F(k), k~, X, Y'} .

Here F(X, Y) satisfies

(3.5)
as one could expect. The asymptotic behavior of Eq.
(3.13) is easily computed with the result
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F(R,@,K)
2mB

I

1/2

e '""5z (@+ma)

f(@)+5 (@)
&2miR.

(3.15}

and f stands for the scattering amplitude

Here 5z (x) stands for the periodic 5 function with
period 2ma:

i(2~n /2')x
5, (x)= g 7Ta

fd x F'(R, C) —8+ma, K')F(R, Cs, K)

5(K K ) 5 (O)+ (e) (3.18)

F(R@ K) f dxp(x)e i xRcos(x —4)

i ~R cosh(y +i 4) (3.19)

It should be noticed that 8 has here the natural inter-
pretation of the scattering angle that is the angle between
the ingoing (k, ) and outgoing (kz) momenta [see Eq.
(3.5}].

An integral representation for F(R,4,K) follows by
resumming the series (3.14) (Ref. 10) with the help of the
Schafli representation of the Bessel functions. One finds

i 1) ei(lla 4)

Eex

where

p(x) =a52„(x—ma),

i sine. ja
cos4 /a+ cosm /a

(3.16) p(y) = 1 sinu/a

cos—+cosh-y
a a

(3.20)

The wave functions F(R, Cy, K) obey the orthogonality re-
lation

By contour deformation, Eq. (3.19) can be alternatively
written as

f d x F'(R, C)—S,K')F(R, C), K) =5(K K)5 „2(O—)
F(R 4,K)= dx p(x)e

4+m

4—n.

+ f d -( + @) ~xR coshy (3.21}

and

(3.17)
In summary, the scattering wave function Eq. (3.5)

reads

(k Xp) i(k Z —EX ) d ( )
—ix(Xcosx+ Ysinx)+ d -( )

ix(Xcoshy+iYsinhy)
in (3.22)

Let us analyze the first term

F =af dx5 (x na)e

a y e ixR cos[4&+(2I —1)h]
7

E

where b, is the deflection angle [Eq. (2.30)] and

(3.23)

—+1 & I (-' ——1
1 1

a a

The incident wave is an infinite superposition of plane
waves without distortion. They propagate following
wave vectors rotated from the original one by the
deflection angle kb and they are periodically continued
with period 2b, . In Eq. (3.23} the original wave vector
points in the x direction.

In this conical space-time, the incident ingoing wave
although undistorted, suFers multiple periodic rotations
as a consequence of the multiply connected topology. In

I

addition, we have the emergence of a scattered wave

i~(X coshy+i Y sinhy ) (3.24}

I.et us compute now the amplitude Eq. (3.2}. Notice that
the string coordinates (X")dependence of )Ii;„(k,X) is al-

ways through exponential functions in Eq. (3.22). This
makes representation Eq. (3.22) especially suitable to
compute the amplitude (3.2). In this matrix element we
have zero modes and oscillator modes averaged on the
~0& ) ground state.

Since we are interested in having one scalar particle in
the ingoing and outgoing state, only elastic string evolu-
tion contributes. We use here for (X(o,r), Y(o,~)) the
solutions (X&,Y& ) and (X&, Y& ) given by Eqs.
(2.31)—(2.35) for ~(~0 and r) ro, respectively. In order
to apply the operator X&, Y& on the ground state ~0& ),
it is convenient to express them in terms of the operators
X&, Y&, by using Eq. (2.34).

The appropriate wave functions %';„and%',„,read here

i(k.Z —E X )
)I(;„(k),X")=e ' ' [F()(k),X, Y}+P(k),X, Y)]

where
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—ik i [Xcos(x + 8( )+ Y sin(x +0( )]

iki [Xcosh(y —i8()+(Ysinh(y i—oi)]F k„X,Y = dypye

(3.25a)

(3.25b)

and

—i(k Z+E X )
% *„,(k2,X"}=0;„(k2—, k2, 82+3, ~,x„}=e ' ' [Fo(R k&,x, Y)+F(Rk2,X, Y)],

where

n ik 2[X co(sx +8& +6) +Ysin(x+8&+h)]

ao —ik 2 [Xcosh/y —i02 —i5 ) + i Y sinh(y i 8—
2
—ih ) ]

(3.26a)

(3.26b)

Here

k,„—k, cos8» k2~ =k2cos82, k» =
j 8» 2y k2sin82 .

Inserting Eqs. (3.25) and (3.26) in the amplitude Eq. (3.2) yields four terms A „A„,A»„A,v:

+ ~rr+ ~alii+ ~ rv

where

(3.27)

f" dx dx'p(x)p(x') f fdo(do, f" fdr, dr, (0 l:e
' ' ' e'"" "' '

XF()(Rk2,X, Y)F()(k(,X, Y):lo (3.28)

/I((= f dx p(x) f dy p(y) f f do ido2f" fdrdr2(0&l e
' '' + ' 'e'"''

XP(Rk2, X, Y)F()(ki,X, Y):lo( &,

~m= f dxp(x}f" dy p(y) f"f«(do, f f«,«,«.l:e
' ' ' e' ' ' 'Fo(Rk2, X, Y)

XF(k„x,Y):lo, &,

yltv= f dxp(x) f dy p(y) f fdo)do f fdr dr (0&l e ' ' e ' ' P(Rk X Y)

XP(k„x,Y):lo, & .

(3.29)

(3.30)

(3.31)

The integration domain in each term naturally separates
into four regions:

[k] k2 E~ E2 +k ] k&cosy] COSA 0' ~cos l 0 2 & +2 +1

1
n

(r, &O, r, &0), (r, &O, r, &0),

(r, &o,r2&0) and (r, &o, r2&0) . where

2iv(v )
—v2)—g(cT)+(Tg, r) pr)q(o, —o~, r, r2)e — 4

L,„le&=0, n=i, 2, . . . (3.32)

are imposed on the physical states.
The ground-state expectation value on the oscillatory

modes yields for all the terms in Eqs. (3.28}, a contribu-
tion of the form

Depending on the sign of r ro, X"(r)—is given by X" or
X& (see Sec. II).

Now, we start by computing the expectation value on
the oscillatory modes. The computation is involved but
since all the dependence on the string coordinates is ex-
ponential, we can performed it in closed form. For this
amplitude, it is convenient to work in the covariant for-
malism where all components of the string coordinates
are quantized on equal footing and the gauge conditions

X=X x 0" QH( rr)
X«=x iy 0 E—H(r, r2), — —

X«) =x iy +0 E—H(r)r2), —

X,v =i (y —y')+ 0 bH(r, r~), —

(3.33)

where 8=02 0~ and H is the Heaviside step function.
For all the terms (I,II,III,IV}of the amplitude, we find

that the contribution of the zero modes has the form

g(o, r) =(cosr coscr }", —

v —
—,'(k, .k2 —E,E2+k, k2cosX) .

X depends on the terms chosen (I, . . . , IV} and on the
~-integration region considered. We find
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2 2(I/2)jl (xi z2)5(E E )5(k k )f d (i lq v(ri, r2)

(2m )

where

where we used g ((r +2m, r) =g (o,r). Moreover,

J(P)=—f du g(u;iP)=n sinh'PP„(cothP),
0

(3.36)

and

v, = —k&cosy&+kzcosyz,

2
—ki X~+k2 nX2

(3.34} where P„(z)is a Legendre function.
All the integrals over (7),r2) are conveniently ex-

pressed as an integral on a single imaginary time variable:

'VII=}'2ii=x+8)+EH( &I)

r IIII =& Iiv=iy+8)+~+~H( ~i»

) 21 ) 2III x +82+~H( r2)

) 2II 1 2IV iy +82+)r+~H( r2}

L(M}=2 vf dydee™[J(A,)]
0

(3.35) where

M(x)= —2vp
2

(3.37)

The integrals over the world-sheet coordinates o &,
o.

2 can
be computed as follows:

f do, f dcr2g((r)+o2, ~( r2)g—((y) —o2, ~) —r2}
0 0

d )ug( uT I 12)

=
—,'()M'+k) k2+E, E2 k)k2cosy)

and p is the scalar particle mass:
2 2

p = —k" = —k" = —41 2

Finally, we arrive at the result

(3.38)

Ai =L(p )a [252„(8)—52 (8+6)—52„(8—6)]5(k) —k2)5(E, E2)5(k,——k2), (3.39)

(2m )

iq (vx+8(i y+82+v) iq.v(x+8(+a, iy 82+ )v+L M x iy+8+b— e ' ' +e

X5(k, —k2)5(E, E2), — (3.40)

d g iq V(8)+ iy+v, x+82) iq (8)v+iy+I) +. m', +8x2+ I) )
A»i= dx dy p(x)p(y) L M(x+8+5 iy e — ' ' '+e

(2n. )

iq v(8&+iy+v, x+82+6) iq v(8&+iy+6+v, x 82)]LM(x 0—iy —e —' ' ' +e

(2n )

(3.41)

(3.42)

In conclusion, we have reduced the two-body scalar
particle scattering amplitudes in cosmic-string space-time
to quadratures. [Eqs. (3.39)—(3.42)]. It must be noted
that in Minkowski space-time the lowest nontrivial am-
plitude is the four-legs amplitude whereas here the two-
body S-matrix is nontrivial. It describes the elastic
scattering of scalar particles by the cosmic string. In the
u = I limit, the amplitude vanishes as it must be. The de-
tailed analysis of its properties is beyond the scope of this
paper. It can be done by analyzing the integrals in Eqs.
(3.39)—(3.42). Let us briefly comment on Eqs.
(3.39)—(3.42). The term Ai [Eq. (3.39)] corresponds to
the undistorted waves. These terms describe outgoing
particles moving in the original ingoing direction or ro-
tated by the deflection +6 (modulo 2ma). The terms
A„,Au„A,v describe true elastic scattered particles.
One sees that the effect of nontrivial space-time on the
string scattering amplitudes manifests in two coherently

combined ways: (i) the vertex operator [Eq. (3.26)] is
different than the one (e' ) in Minkowski space-time; (ii}
the outgoing harmonic-oscillator operators a„"& are re-
lated to the ingoing operators a„&by a linear transfor-
mation and therefore their expectation values in ~0& ) are
different than their Minkowski values. If one just ignores
the harmonic oscillators n%0 in the string coordinates
expansion [Eq. (2.24}], the two-body string amplitude Eq.
(3.2) becomes the point-particle field-theory Klein-
Gordon amplitude Eq. (3.16}.
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