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Stochastic inflation can be viewed as a sequence of two-step processes. In the first step a stochas-
tic impulse from short-distance quantum fluctuations acts on long waves—the interaction. In the
second step the long waves evolve semiclassically—the propagation. Both steps must be developed
to address whether fluctuations for cosmic structure formation may be non-Gaussian. We describe
a formalism for following the nonlinear propagation of long-wavelength metric and scalar-field fluc-
tuations. We perform an expansion in spatial gradients of the Arnowitt-Deser-Misner equations
and we retain only terms up to first order. At each point the fields obey evolution equations like
those in a homogeneous universe, but now described by a local scale factor e* and Hubble expan-
sion rate H. However, the different points are joined together through the momentum constraint
equation. The gradient expansion is appropriate for inflation if the long-wave fields are smoothed
over scales below e “H ~!. Our equations are naturally described in the Einstein-Hamilton-Jacobi
framework, which governs an ensemble of inhomogeneous universes, and which may be interpreted
as a semiclassical approximation to the quantum theory. We find that the Hubble parameter, which
is a function of the local values of the scalar field, obeys a separated Hamilton-Jacobi equation that
also governs the semiclassical phase of the wave functional. In our approximation, time hypersur-
face changes leave the equations invariant. However, the stochastic impulses that change the field
initial conditions are most simply given on uniform expansion factor hypersurfaces whereas propa-
gation is most easily solved on uniform Hubble hypersurfaces, in terms of a(x/,H), the nonlinear
analog of ¢ of linear perturbation theory; we therefore pay special attention to hypersurface shift-
ing. In particular, we describe the transformation process for the fluctuation probability functional.
Exact general solutions are found for the case of a single scalar field interacting through an ex-
ponential potential. For example, we show that quantum corrections to long-wavelength evolution
of the metric are characteristically small using exact Green’s-function solutions of the Wheeler-
DeWitt equation for this potential. Approximate analytic solutions to our classical system for slow-
ly evolving multiple scalar fields are also easy to obtain in this formalism, contrasting with previous
numerical approaches.
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I. INTRODUCTION

Current cosmological data have cast doubt on whether
Gaussian scale-invariant density fluctuations, generated
by quantum noise during inflation, are sufficient to ex-
plain the large-scale structure of the Universe. Alterna-
tive paradigms are perhaps required. The observations
include the patterns in galaxy redshift surveys,"? the an-
gular clustering of galaxies on the sky,* the clustering of
clusters,* and the magnitude and coherence of the large-
scale flow of galaxies.’ Although the interpretation of
each of these is controversial, there is a strong hint that
there is more large-scale structure than the most success-
ful version of the Gaussian scale-invariant models, the
adiabatic cold-dark-matter scenario, can accommodate.
The alternative theories include various types of topologi-
cal defects such as strings, domain walls and “‘cosmic tex-
tures,” late-time phase transitions, and various hydro-
dynamical and radiative processes in the later Universe.
They all predict non-Gaussian density perturbations of
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one form or another. Many theorists have been reexam-
ining the inflationary paradigm to ascertain under what
conditions either scale invariant or Gaussian statistics
would break down. At the moment the consensus is that
inflation driven by a single scalar field does lead to Gauss-
ian fluctuations over the observable length scales and is
most likely to give a nearly scale-invariant perturbation
spectrum —although certain exotic potentials can modify
this somewhat. However, with more than one dynami-
cally important scalar field in inflation, the question is not
whether scale invariance can be broken, but at what scale
the breaking appears.®’ (It is usually argued that it is
unnatural for the scale to be in our observable range.)
Broken scale invariance, but with Gaussian statistics
maintained, can be addressed entirely within linear per-
turbation theory. Although its implementation can be
technically tricky, it requires no new conceptual ideas. It
is even self-consistent at the quantum level.

The non-Gaussian issue requires a qualitatively
different approach, capable of treating nonlinearities in
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field theory on inhomogeneous spacetimes, for both the
gravitational field and scalar fields. The beginnings® of
such a framework have been emerging over the past 5
years under the name “stochastic inflation,” in which a
separation is made between short-distance quantum fluc-
tuations which oscillate on scales below the instantaneous
Hubble radius and large distance fluctuations which are
treated as classical fields. The short-distance components
communicate with the long-wavelength classical fields by
stochastic noise terms. We believe that this approach
should be vigorously developed both at the level of funda-
mental field theory to address the conceptual founda-
tions’ and at the operational level to provide a calcula-
tional tool for quantitatively addressing those issues of
nonlinear inhomogeneities of relevance for cosmic struc-
ture formation.

This is the first in a series of papers formulating a sto-
chastic inflation approach to fluctuation generation and
evolution and leading to computation of observable field
configurations such as microwave-background anisotropy
patterns and large-scale structures. In this paper we
show how one can describe the long-wavelength fields
self-consistently and evolve them from their initial condi-
tions using a Hamilton-Jacobi approach. We do not ex-
plicitly include any short-distance communication. In
the second paper!? in this series (which will be referred to
as SB2), we consider the stochastic evolution of the long-
wavelength fields as a sequence of two-stage processes, a
stochastic kick from short-distance effects (diffusion) fol-
lowed by free propagation (drift). The stochastic impulse
effectively resets the fields to a new set of initial condi-
tions for the next round of propagation. Thus the
current paper treats the propagation phase, given the ini-
tial conditions.

We find that the natural variables for describing the
dynamical state of the metric are the local expansion fac-
tor a(x/,t) [or its logarithm, a=Ina (x4,t), which proves
more useful] and the local Hubble expansion rate
H(x/,t). These physical fields are useful for clarifying
various aspects of the linear perturbation theory of
inflation. Although, for a single scalar field, much ana-
lytic perturbation work!! 7% has been undertaken, a de-
cisive step occurred when Bardeen, Steinhardt, and
Turner'* (BST) introduced a gauge-invariant metric vari-
able &, which has the virtue of being a constant of motion
once the wavelength of the perturbation exceeds the Hub-
ble radius. There is a natural nonlinear generalization of
¢ which we propose here which can be used to simplify
the treatment of nonlinear interaction of many scalar
fields among themselves and with the gravitational field
during inflation, in spite of the complex interplay of sca-
lar, vector, and tensor modes of the metric. Our version
of { is 3a evaluated on hypersurfaces with H constant;
for nonzero wave numbers, this agrees with the perturba-
tion theory definition. [This § is 3{ggy, Where {ggt is the
original definition given by Bardeen, Steinhardt, and
Turner; see Salopek, Bond, and Bardeen’ (SBB).] In the
variables a and H, we can solve three-dimensional non-
linear gravitational problems during the inflation epoch
for fluctuations whose length scales are greater than the
Hubble radius. Our approach also proves useful in semi-
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classical treatments. Historically, the long-wavelength
evolution for a universe consisting of dust was first solved
by Lifshitz and Khalatnikov,'® and then extended by
Eardley, Lang, and Sachs.!® They restricted their atten-
tion to comoving hypersurfaces upon which Einstein’s
equations could be solved. Our work may be viewed as
an extension to inflation models where the pressure is not
zero and there may be many scalar fields present. Our
formalism applies to arbitrary time choices, thus making
it a useful calculational tool for stochastic inflation.

We consider the evolution of the metric and scalar
fields from some initial classical configuration defined on
a spacelike hypersurface assuming fluctuations have been
smoothed out on scales smaller than the comoving Hub-
ble radius (Ha)~'. The evolution of regions separated by
more than (Ha)~! will roughly evolve like independent
universes because there is no causal contact between the
points. This separation is not exact because the various
regions are connected by large-scale gradients appearing
in the gravitational and scalar-field equations. We are
thus motivated to perform a spatial gradient expansion of
Einstein’s equations. In the zeroth-order approximation,
all spatial gradients are set to zero, yielding the homo-
geneous Friedmann equations, which must be satisfied
point by point. The next-order equations, given in Sec.
I, contain first-order spatial gradient terms as well. The
new ingredient is the momentum constraint equation of
general relativity. To this order it can be integrated ex-
actly, showing that the Hubble parameter H (¢;) can
only be a function of the scalar field #; and that there is
no explicit dependence on the (arbitrary) time variable.
The energy constraint equation (the usual Friedmann
equation for H?) is then cast into a partial differential
equation for H, which we call the separated Hamilton-
Jacobi equation.

In Sec. III we illustrate our formalism using analytic
solutions for a single scalar field interacting with an ex-
ponential potential. We find that our equations con-
veniently isolate the “‘growing mode” of a single scalar
field of arbitrary potentials. In this case the simplest
choice of time is ¢ because the remaining equations are
then easy to integrate; for multiple fields the local scale
factor of the Universe is the natural time choice. In Sec.
IIT we also exhibit approximate solutions of the
Hamilton-Jacobi system assuming slow-rolling of fields.
One can use this, for example, to derive analytically, yet
quantitatively, fluctuation spectra for multiple-scalar-
field models such as double inflation, which previously re-
quired a complicated numerical code (SBB).

In Sec. IV we show how the long-wavelength equations
may be directly derived from the Hamilton-Jacobi for-
malism for inhomogeneous scalar fields and metric. To
be consistent to first order in spatial gradients, one must
solve both the energy and momentum constraints. A
redundancy theorem, 17 which states that the momentum
constraint is satisfied everywhere if the energy constraint
is satisfied everywhere, does not apply in this situation.
However, we can satisfy the functional momentum con-
straint equation; indeed, we obtain a general class of solu-
tions to it. We also apply the Hamilton-Jacobi formalism
to the evolution of the classical probability function for
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inhomogeneous fields, which is of relevance for cosmic
structure formation studies. We develop a transforma-
tion theory relating the probability on different time hy-
persurfaces, which will prove useful for our later treat-
ment of stochastic inflation. In Sec. V we discuss the
quantum theory of long-wavelength evolution, which is
the natural arena for combining the Hamilton-Jacobi ap-
proach with the probability evolution equation. This
connects our analysis with the vast literature on quantum
cosmology (see Halliwell'® for a bibliography). In partic-
ular, we must solve the minisuperspace Wheeler-DeWitt
equation at each point. Pilati'® and Teitelboim?® were the
first to develop the quantum theory of long-wavelength
fields, which they referred to as the strong gravitational
coupling limit G=mp?— . We exhibit analytic
Green’s functions of the Wheeler-DeWitt equation for
the case of an exponential potential. We use this to show
that quantum effects on the long-wavelength-field propa-
gation are small because we smooth all field
configurations on scales smaller than the Hubble radius;
for the same reason macroscopic objects behave classical-
ly. Once again, the momentum constraint equation re-
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We have adopted the summation convention. Vertical
bars denote three-space-covariant derivatives with con-
nection coefficients determined from the y ;. The three-

space curvature associated with the metric y; i s ¥R and
the extrinsic curvature three-tensor is
K= |Nj+N y" (2N) . 2
ij il j\i ( la)

The traceless part of a tensor is denoted by an overbar.
In particular,

K;=K;—1Ky,;, K=K]. (2.1b)

The trace K is a generalization of the Hubble parameter
that appears in isotropic cosmologies. _
Variation of the action with respect to N and N' yields

the energy and momentum constraint equations (see, e.g.,
Ref. 22)

K,Ri—2k2—0R+18T ¢ 2.2)
3 mgp

2 8

K m‘?Klz = n¢k¢kli= 2.3)

Variation of 7 with respect to y;; yields the dynamical
gravitational-field equations
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lates different spatial points, but we encounter difficulties
satisfying it and the Wheeler-DeWitt equation beyond
the semiclassical level.

II. SPATIAL GRADIENT EXPANSION
FOR INFLATING COSMOLOGIES

A. Arnowitt-Deser-Misner formulation
of Einstein and scalar-field equations

In the Arnowitt-Deser-Misner (ADM) formalism, the
metric
w="—"N>+vIN,N;, g0;=80=N:» £;=V;
is parametrized by the three-metric y;; and the lapse and
shift functions N and N, which describe the evolution of
the timelike hypersurfaces The ADM form of the action
for n minimally coupled scalar fields ¢, ..., ¢, coupled

to Einstein’s gravity and self-interacting through a poten-
tial V() is!

Ngy ) /N* =16, 1=V (d,) 1 .

3K - 3 - 1
5 VK= —Nli,+N JKKI+ oK
1 (3) 4
+1OR+ =25, (2.4)
map
3K i i Tl I Fi IZi
at +N|1K k_N[kK I_NKkII
i 1 i
=_N||k+§‘N|I|16k
+N KR +OR - 2T50 |, s
mep

Variation of J with respect to ¢, gives the scalar-field
equations of motion:

™ _ i / N—Km*
ot
av _
~Njid"/N =+ = :
li ¢k / ¢k|: a¢ > (2.6)

where the scalar-field momentum is

1% =(¢, —Ngy,) /N . 2.7)
The energy density on a constant-time surface is

e= 21"+ by, 1+ V() (2.8a)

and the stress three-tensor is
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S;;i=T; wavelength fluctuating fields ¢ fk(t,xj ). It is not clear
Lo y how to come up with a gauge-invariant form for this split
=buibr; TV [T = 3646 "= V()] . (2.8b)  which is useful. In this paper we shall assume that there

Although the goal is of course to solve these highly
nonlinear coupled equations in a cosmological setting, its
realization is a long way off. Rather drastic approxima-
tions are required to make progress at the current state of
the art in computational relativity. A highly successful
approach is to assume homogeneity of the fields to give a
background solution and linearization of the equations to
describe deviations from spatial uniformity (e.g., SBB).
The smallness of cosmic microwave-background aniso-
tropies and of large-scale galaxy density contrasts pro-
vides some justification that the Universe we see may
indeed be accurately described within this perturbation
framework. Even if this criterion does hold for our local
observable patch of the Universe, there is no reason to
suppose that it will be valid on much larger scales. Fur-
ther, it is also possible that inherent nonlinearities may
have played a role even in the patch we observe. Indeed,
such inflationary models are the motivation for this
current work. The attack on nonlinear aspects of the in-
homogeneous ADM equations has been very limited so
far. Progress has been made if some symmetry has been
adopted to restrict the spatial dependence to at most one
variable, both numerically for spherical and planar sys-
tems, and analytically for some very restrictive classes of
metrics. If the Universe is inflating, another class of ap-
proximations is suggested, the stochastic inflation picture
pioneered by Vilenkin, Starobinski, and others, ® in which
the short-distance behavior of the fields communicates
with the large-distance structure through stochastic
forces. In this paper the equations for the long-
wavelength fields are obtained by systematically neglect-
ing large-scale gradients, which leads to a self-consistent
set of equations as we now show.

B. Spatial gradient expansion
of the ADM and scalar-field equations

It is reasonable to expand in spatial gradients whenever
the forces arising from temporal changes in the fields
sufficiently exceed the forces from the spatial gradients.
A standard example of this occurs in linear perturbation
theory, when one solves the perturbation equations for
evolution “outside of the horizon:” A typical time scale
for evolutionary changes is the Hubble time H !, which
is assumed to exceed the gradient scale ak 1 where k is
the comoving wave number of the perturbation, suggest-
ing we expand in powers of k /Ha. Once nonlinear terms
are included, the expansion parameter is not so straight-
forward. However, provided we are interested in struc-
ture on scales larger than the horizon, it is reasonable to
expand in the nonlinear analog of (Ha)_l‘7 This is par-
ticularly appropriate for inflation models. For example,
in linear perturbation theory, spatial gradients become
exponentially negligible after a few e-foldings of expan-
sion beyond k = Ha.

It is therefore a useful approach to split the fields [e.g.,
b (t,x7) = +¢4] into smoothed long-wavelength
“background” fields ¢,,(z,x’) and residual short-

is a gauge with coordinates #,x’ in which ¢,, has the
form

So(6,)= [ S(t,x —x" )y (1,x")d’x" 2.9)
where S is a smoothing function whose Fourier transform
falls off at high spatial momentum. Below we argue that
there is a preferred timelike hypersurface within the sto-
chastic inflation framework in which this is a reasonable
definition. In order to ensure that ¢,, remains the same
in another gauge, the relation between ¢,, and ¢, is
found by transforming this convolution form. The rela-
tion in the new gauge will then not be as simple. The
rigorous definition of ¢, is problematic since it depends
upon the specific choice of timelike hypersurface; i.e., the
smoothing is not gauge invariant. For stochastic
inflation the natural smoothing scale is the comoving
Hubble length (Ha) ™' and the natural hypersurfaces are
those on which Ha is constant, at least within linear per-
turbation theory.!® In that case a fundamental difference
between ¢, and ¢, is that the short-wavelength com-
ponents are essentially uncorrelated at different times,
while longer-wavelength components are deterministical-
ly correlated.

By convolving the ADM equations with S, we get
equations for the background fields; subtracting these
from the original equations gives the equations for the
fluctuating fields. The nonlinearity makes these two sets
of equations very complicated indeed unless suitable ap-
proximations are made. The philosophy here is to ex-
pand in the spatial gradients of, e.g., ¢,, which operate
on the background fields and to treat the terms explicitly,
depending upon the fluctuating fields (e.g., ¢ ) that ap-
pear in the background-field equation as stochastic forces
describing the connection of the short wavelengths to the
long ones. In this paper we focus on the gradient expan-
sion and set the fluctuating field ¢, to zero. We do in-
clude its influence in the form of initial conditions for the
background field. We retain only those terms which are
at most ﬁrst order in spatial gradients, neglecting such
terms as iy i, Sox ‘Bpxi» 'R, 'R}, and S . The terms
involving second derivatives of ¢, and the second spatial
derivatives of the fluctuating part of the metric variables
give the stochastic forces, which are treated in SB2.
Since we are neglecting the fluctuating fields, we shall
also drop the subscript bk in the following.

The equations simplify considerably if we set the shift
N'to zero. The evolution equation (2.5) for the traceless
part of the extrinsic curvature is then 9K } /(Ndt)
=KK . Using K=—3In(V'y)/(N3t) from Eq. (2.1),
where y is the determinant of y,, the solutlon is
K i <y~'2. Since during inflation y “1/2=4 73, where a
is the overall expansion factor, K i decays extremely rap-
idly. We can therefore set K i to zero in the following—
although the K {0 case where the long-wavelength
gravitational radiation evolves in time also turns out to
be tractable.?* The most general form of the three-metric
with vanishing K | is
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vy=a*t,x)h;(x?), a(t,x))=explalt,x))], (2.10)

where the time-dependent conformal factor a (¢,x/) is in-
terpreted as a spatially dependent expansion factor. It is
more convenient for us to work in «. The time-
independent three metric h;;(x), which we assume has
unit determinant, descrlbes the three-geometry of the
conformally transformed space. Within linear perturba-
tion theory, a(t,x/) would contribute only to the scalar
perturbation modes, whereas the vector and tensor modes
are time independent, reflecting the constancy of h; (x’ ).
For the scalar models, if the longitudinal gauge is chosen,
then a(t,x/) can be written as the sum of a homogeneous
a@(t) and Bardeen’s gauge-invariant metric variable
®(t,x’). Based on the work of Lifshitz and Khalatni-
kov'® for a dust-dominanted universe, Starobinski® sug-
gested that an equation of the form (2.10) is valid in syn-
chronous and comoving gauge. From our development
this form follows for an arbitrary choice of the lapse
function.

Since a(t,x’) is interpreted as a scale factor, we now
use the Hubble parameter

H(t,x))=a(t,x’)/N (t,x’)=—K (t,x') /3 ,

in place of the trace K of the extrinsic curvature. The
momentum constraint equation (2.3) can now be written

(2.11)

In the general solution, H is a function of the scalar-field
values and of time:

H(t,x)=H($,(t,x),t) . (2.12a)

The scalar-field momenta H¢" =N"14 x must then obey
¢ OH
= .12
477_ 36, o (2.120b)

We now show that the time dependence of H arises
only through its dependence upon ¢,. Comparing the
evolution equation (2.4) with the time derivative of Eq.

(2.12a),
1 |8H | _1 |9 | |8H
at |, N | ot ja¢k‘
b
__Mmp | 0H i oH
41r a¢k N at ¢k’
we see that
oH _
ot 4’)(_0’
and hence

H(t,x))=H(¢,(t,x))) .
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Thus, if one can neglect second-order spatial gradients,
then the comoving gauge for a scalar field ¢=const is
identical to the uniform Hubble gauge. This equivalence
breaks down when the stochastic forces are included
which do depend upon second-order spatial gradients. 1

From Eq. (2.12b) we also see that the scalar-field mo-
menta at a point are functions only of the scalar-field
values at that point: ¢"(t,xf)— "(d)k(t x7)). We
need to show that these results are consistent with the
rest of our equations. By differentiating the energy con-
straint equation, now in the form H2=(81r/3)€/m%3,
with respect to ¢, while holding ¢ fixed, we obtain

an’
oy

By comparing with the scalar-field evolution equation
(2.6) and using the identity

an® an”
+ )
o, |, ot |4
we verify that the functional form H¢*(¢k:) has no expli-
cit time dependence.
With the neglect of second-order spatial gradients, the
complicated ADM and scalar-field equations of Sec. II A

reduce to the simple collection of background-field equa-
tions:

+3am®+3Y —o .

[
I'I k
‘ 9%,

an®
ot

=H¢k

t

HEH("’J‘) ’ (2.132)

~2n % [8¢k ]2 m%V(sb,») (2.13b)
%=—r:—ja%% ’ (2.142)
vH- (2.14b)

These equations describe point by point the nonlinear
evolution of the scalar and gravitational fields smoothed
over the horizon in an inflating patch of the Universe.
These equations look similar to those of the Hamilton-
Jacobi formalism of classical mechanics,?* a connection
we explore in detail in Sec. IV. In anticipation of our
findings there, we refer to (2.13b) as the separated
Hamilton-Jacobi equation (SHJE).

Instead of explicitly finding the function H(¢;), we
could instead work directly with the equations of motion,
which reduce to

3 3 N

T 3HNat¢k 350" (2.15a)

2= 87 lz 2 4 2+V(¢> (2.15b)
Im2 |2 < Nat k 1 '

3

Nata H, (2.15¢)

with the neglect of second-order spatial gradients. In
particular, with the synchronous gauge choice N=1 (to-
gether with the N'=0 condition), the field equations look
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just like the familiar homogeneous equations for inflation
models, point by point. Fluctuations are described
through spatial variation in ¢,, a, and H. However, we
would have to ensure that the initial inhomogeneous data
satisfy the momentum constraint equation VH = — (47 /
m%)n"’kv(pk. The momentum constraint would, then,
hold at later times because of the equations of motion,
whereas in the Hamilton-Jacobi formalism it is automati-
cally satisfied at all times.

If there are many scalar fields, the SHJE is a partial
differential equation in ¢, space. One way to solve it is
by the method of characteristics, which involves integrat-
ing trajectories using Egs. (2.15). The initial-value prob-
lem is specified by a surface f(¢,)=0 upon which the
Hubble parameter is constant. A trajectory emanates
from each point on this surface, with the direction of
each initial velocity given by Vf and with the magnitude
given by the SHJE. Each path may then be integrated in-
dependently using Egs. (2.15), and H (¢, ) may then be
found from a catalog of trajectories.?* However, in cases
in which the functions H(¢,) can be found by other
means, the Hamilton-Jacobi approach is more straight-
forward to implement. In particular, this is the case for
the specific analytic solutions given in Sec. III.

Transformations of the timelike hypersurfaces do not
upset the solutions for the metric or the form of Egs.
(2.13) and (2.14) in a first-order gradient expansion. That
is, given a new time variable T =T(t,x/), we can find
coordinates X/(¢,x/) such that the shift remains zero and
the form of the metric, y;; =exp[2a( T,Xj)]ﬁ,-j(Xj), is re-
tained. This is demonstrated in Appendix A. Further,
derivatives of a quantity Q(¢,x’) with respect to the two
different time variables are equal up to second-order spa-
tial gradients:

oQ

oT

1

Nr

1

x/ Nt

at (2.16)

aQ]

where N,=N(3T /3t) relates the lapse functions on the
different hypersurfaces. This relation explicitly demon-
strates that Eqs. (2.14) are invariant under arbitrary
changes of the time hypersurfaces. Of course, we have
implicitly assumed that the function T is nonsingular.
For some choices of physical interest, this is not true, for
example, for T =4, if the scalar field ¢ undergoes oscilla-
tions. However, on restricted intervals it could still serve
as a valid local clock.

III. SOLVING THE HAMILTON-JACOBI EQUATIONS

In this section we illustrate the usefulness of the
Hamilton-Jacobi form of the long-wavelength fluctuation
equations equations, (2.13) and (2.14), by explicitly solv-
ing them in several situations of cosmological impor-
tance. In Sec. III A an analytic example for a single sca-
lar field interacting through an exponential potential is
given. In Sec. III B we analyze the general solution for a
single scalar field and extend the Bardeen, Steinhardt,
and Turner gauge-invariant metric variable £, which has
proved so useful in linear perturbation theory to the non-
linear case. We extend the analysis to n scalar fields in
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Sec. III C, showing that differentiation of the Hubble pa-
rameter solution of the SHJE with respect to its n in-
tegration constants solves the field equations. We also ar-
gue that a is the most natural choice of time variable for
this case. In Sec. III D we show how approximate solu-
tions may be obtained for multiple fields using the slow-
roll approximation and extensions based upon it. For ex-
ample, one may apply these results to determine analyti-
cally fluctuation spectra arising in double inflation as well
as other multiple-scalar-field models. In Sec. IIIE we
solve exactly the Hamilton-Jacobi equations for two sca-
lar fields interacting with a specific separable solution to
illustrate how the Hubble parameter may be a mul-
tivalued function of the scalar fields.

A. Exact solution
for a single inflaton in an exponential potential

An exponential potential of the form
172

¢

me

167
p

V(¢)=V,exp

has proved very useful for generating analytic results
(with p> 1 required for inflation). For example, Lucchin
and Matarrese®® gave an exact solution of the cosmologi-
cal background equations, and Ratra® has given some ex-
act results for linear perturbation theory. The particular
solution to the energy constraint equation (2.13b),

o) 87V, { 172
attd’ 3m%, 1—1/(3p)
4 172
Xexp | — 777 oy , (3.1)
P

defines the attractor of Halliwell,?’ toward which all tra-
jectories tend. A more complex parametric solution
H (¢) is required to describe the motion for arbitrary ini-
tial conditions. We obtain this by defining a new depen-
dent variable f,

87V,

2
3m:P

172
exp

172

¢

H(¢)= f(e),

which transforms (2.13b) to

me df _ 1 2 12
L 4f L iy
Vi2r d¢ \/3pf U )

A change of variables, f =cosh(u), suggested by this

equation, yields the following parametric solution,
H=H(u), ¢=¢(u):
8V 1172 172
H(u)= 20 exp | — 4m #u) cosh(u) ,
3mrp P mo
(3.2a)
-1
me 1
(W)=¢, —— |1——
) =en = |3
X[u +(3p)~?n|cosh(u)—V3p sinh(u)|],
(3.2b)
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FIG. 1. The analytic Hubble function H,, given by Eq. (3.2)
for an exponential potential V(¢)=Voexp(—(167/p)'"*¢/mp)
with p=2.0 is compared with the attractor solution H,, and
the slow-rollover function Hgg(¢). The scalar field begins with
a large value of H.,, moves rapidly to the left, and reaches its
minimum at ¢,,, where H,, has a cusp. The field then rolls
down the potential, quickly evolving to the attractor H,,. At
all times H(¢) must be greater than the Hgg(¢), which is typi-
cally a good approximation to H,,, if the potential is very flat,
p>2. Above the curve (3/2)'?Hg, the Universe is not
inflating. Even when inhomogeneities are incorporated, ¢,,
must be spatially independent, and remarkably, the function
H(¢) is the same at all comoving spatial points in the long-
wavelength approximation. Thus, if two spatial points have the
same scalar-field value, then their Hubble function must also
agree.

where

— oo <u <arctanh( 1/\/5 ) (3.2¢)
or

arctanh(1/V3p )<u <« . (3.2d)

The constant of integration ¢,, must be spatially indepen-
dent in order to satisfy the momentum constraint equa-
tion (2.11). There are two solutions corresponding to the
case where the initial value of the parameter u is in the
range (3.2c) or in the range (3.2d). The first case is in
general double valued, as shown in Fig. 1. For these, 4,
is the minimum value that ¢ obtains. As u increases from
—o to 0, ¢ and H decrease, until a cusp in H(¢) is
reached at the minimum ¢,,. Near the turning point at

bum>

8wV 172 4 172 ¢m
H($)= =1 =
# img, | P p mp
172 172 _ 3/2
Xlli 2] 167 l<¢ ) l l
3 P me
o=¢, . (3.3)

The + (—) sign corresponds to motion to the left (right)
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in the figure. For positive u, ¢ increases from ¢,, at u=0
to o at u=arctanh(1/V'3p ), while H continues decreas-
ing, rapidly approaching the attractor solution which is
marked by the broken line in Fig. 1. The second range of
u [Eq. (3.2d)] applies to the case where the scalar field
would be initially moving to the right in Fig. 1 with a
H(¢)>H,($). As u decreases from positive values to
arctanh(1/V'3p ), H quickly approaches H,,,.

Along the attractor solution the relation between the
scalar factor at each point x/ and ¢ is found by dividing
(2.14b) by (2.14a) and integrating, giving the linear law

al¢,x)—aldg,x!)=(4mp) " Hd—do) /myp , (3.4a)

which prescribes the point-by-point evolution of the ex-
pansion factor between the comoving hypersurfaces at
times ¢ and ¢, as shown in Fig. 2. This figure also illus-
trates how to transform from spatial fluctuations in a on
constant ¢ hypersurfaces to spatial fluctuations in ¢ on
constant a hypersurfaces, which is relevant for the treat-
ment of perturbations in stochastic inflation as we de-
scribe in Sec. III B.

Remarkably, one can solve for the a(¢,x’) trajectories

Trajectories for a Single Scalar Field
T T T4 T LTI T

/l I T T T , L
4 [

a = In(a)

FIG. 2. Trajectories in the ¢-a plane are displayed for
cosmologies driven by an exponential potential. The solid and
short-dashed lines represent trajectories of the attractor solution
[Egs. (3.1) and (3.4a)]. The long-dashed lines are surfaces of
constant phase S of the Hamilton-Jacobi solution (4.8); they are
orthogonal to the trajectories, as measured by the supermetric
(4.17a). The thick solid lines illustrate the mechanics of a hy-
persurface transformation. The length of the horizontal line de-
picts a variation A¢(a) on a surface of constant a, which is
analogous to the way the initial conditions for galaxy formation
are set when a scale crosses the Hubble radius during inflation.
The length of the vertical line represents the variation Aa(¢) on
a constant ¢ surface, which gives the fluctuations in the non-
linear analog of the metric fluctuation {/3. Long-wavelength
evolution in the time variable ¢ is simple to calculate. To effect
the hypersurface transformation, the left end point is projected
upward along a trajectory, whereas the right is projected down,
until their scalar-field values coincide.
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analytically in the general case as well, using the methods
described in Sec. III C:

al,x)—aldox))=b($)—b(dy) , (3.4b)
__1, |9H
bi)==7ln |30
_—_(4,,,‘,,)1/2_‘2__(4,,1,)1/2& 1—-L
mep mep 3p
172
2 _1, (327 Vo
S B e (3.4¢)

The linear law (3.4a) is recovered if ¢ or —¢,, is large.
We are primarily interested in the regime where
inflation occurs, in which case we must have p+3p <0,
ie, (IM??<V. In Fig. 1 this region is given by
H(¢)<V'3/2Hg4g(¢), where the “slow-roll-down” Hub-
ble parameter is
172
Vl/2(¢) .

8w

2
3m73

HSRE

The solution (3.4) is still valid in the upper noninflating
region above this line, whereas the region below Hgg(¢)
is forbidden.

B. General metric fluctuation formula
for a single scalar field in an arbitrary potential

For a single scalar field with a general potential, one
can view the separated Hamilton-Jacobi equation as a
first-order ordinary differential equation in the time vari-
able ¢. Each solution H (¢,I) is characterized by a single
parameter I, uniquely determined after one has specified
H, at ¢=¢, For example, for the exponential potential,
I can be taken to be ¢,,. As in Fig. 1 we must always
have H(¢)> Hgz and also have H(¢)<V'3/2Hg for
inflation to occur. Two different solutions H(¢,I,) and
H(¢,1,) will approach each other exponentially rapidly,
at least if I, and I, are close to one another. Letting
AI =1,—1,, we have, on comoving (constant ¢) hyper-
surfaces, H(¢,I,)—H(¢,I,;)~(3H /3I),AI for linear
perturbations. Taking the derivative of the SHJE with
respect to I at fixed ¢, we have

dIn(dH /3D, | 127 H
9¢ ; mb (3H/3¢),
da
=—3|=1 .
3 |,

In deriving the last equality, we have applied (2.14a) and
(2.14b). The solution of this equation may be written as

al¢,I)—aldg,])=—1In|(3H /3I)4(¢,1)|
+1In[(3H /31)4(¢o, 1| .

[With I =4¢,, that is what was used to obtain Eq. (3.4c)
for the exponential potential.] The conclusion
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oH

H(¢,I,)—H(¢,I)= 3l

AI xexp[ —3alé,1,)]AI ,
¢

(3.5)

is that all solutions rapidly approach one another in the
inflationary regime. The transient «<exp(—3a) corre-
sponds to the decaying mode which always appears in
cosmological perturbation theory.? In this sense, during
inflation, the solution of the separated Hamilton-Jacobi
equation is unique up to small perturbations. [This result
is not valid generally for multiple fields because of the
multivalued nature of H (¢, ) as is shown in Sec. III E.]
Given a solution of the SHJE, we now wish to integrate
the trajectory equations [Egs. (2.14a) and (2.14b)]. Since
H=H(¢), ¢ is the simplest choice for our time coordi-
nate if there is a single inflaton field. With the lapse func-
oH

tion
/ |56

given by Eq. (2.14a), substituted into Eq. (2.14b), the tra-
jectories a(¢,x”’) can be integrated, yielding

Ar

N(d),xj)‘—‘—

2
map x

al¢,x!)—alde,x))=b (¢, 1)—b (o, I) , (3.6)
where the function
4r ¢ 3H (¢',1)
b, =—2" ¢ |H ',1/——‘9— de’ 3.7
,1) m%f% @0 [ =55 ) (3.7

is independent of spatial coordinates, but, of course, de-
pends upon the parameter I needed to specify the specific
H($,I). As a consequence of the momentum constraint
equation, I is a global constant independent of space and
time. (This is not necessarily true for multiple fields.?*)
Consider a fiducial spatial point x{. The (nonlinear)
metric fluctuation on constant ¢ surfaces taken relative to
this point is

Aalp,x))=ald,x))—ald,x}) , (3.8)
which is constant in time:
Aa(d,x))=Aa(dg,x’) . (3.9)

Bardeen, Steinhardt, and Turner!* introduced an ex-
tremely valuable gauge-invariant variable { defined in
linear perturbation theory. The definition which is ap-
propriate for connection with our work here is that £/3 is
the fluctuation in a on uniform Hubble parameter hyper-
surfaces:

((H,x))=3[a(H,x))—a], (3.10)

where @ is a suitable spatial average of a. [The best
choice seems to be 3@=In{exp(3a)),, with the average
over a comoving volume V.] Since for one field
H=const surfaces coincide with ¢=const surfaces, the
quantity 3Aa(é,x’) is the nonlinear generation of £&. The
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importance (and beauty) of § for a single scalar field is
that it remains constant outside of the horizon even as
the field passes from a vacuum-energy-dominated regime
through an oscillating regime about its potential
minimum, even though II¢ can vanish and da/d¢ can
become singular. Equation (3.9) expresses the conserva-
tion of { in the nonlinear framework. Once we have set
the initial value Aa(dy,x’/), we have the complete solu-
tion.

In SBB we showed that Aa(¢,) is constrained to be
very small in popular models of galaxy formation. For
example, in the adiabatic scale invariant cold-dark-matter
model, Aa(¢y)=(1—3)X 107>, to explain the two-point
correlation function of galaxies. Determining the ampli-
tude of the initial fluctuations Aa(@g,x’) in inflation mod-
els can be a very complicated problem, even if we linear-
ize in the fluctuations occurring inside the horizon. In
this paper we adopt a crude model for the fluctuations
which contains the essence of the more detailed treat-
ment of SB2. In stochastic inflation the long-wavelength
fields are modified by the action of short-wavelength fluc-
tuations as they cross the horizon, become time coherent,
and contribute to the amplitude of the long-wavelength
fields. This initial value is set on a surface of constant
Ha. Because H is changing slowly during inflation com-
pared with the changes in the expansion factor, the
Ha=const surfaces are approximately those of constant
a. In this paper we take the fluctuation (8¢),(ag,x)
=d(agx)—¢layxy) as a function of position relative to
our fiducial position x, to be given at time a, The sto-
chastic addition to the scalar-field fluctuation at time a,
when the Hubble parameter is H is proportional to the
Hawking temperature Hy/(27) at that time,
(8¢) g, x) xHy/(27); the stochastic addition to the
metric approximately vanishes (except for the small
differences between Ha and H). A useful conceptual pic-
ture is to think of the background fields as receiving a
series of impulsive kicks from the fluctuating stochastic
forces, while in between kicks they evolve according to
the background equations (2.13) and (2.14). For simplici-
ty we here assume there is one stochastic impulse at a
and follow the subsequent evolution. In SB2 we present a
more general formalism for dealing with the fluctuations
in which stochastic and drift forces are treated together
and demonstrate that the approximations made here are
reasonable ones provided the fields are evolving slowly.
We also demonstrate that although stochastic kicks may
change I, it remains spatially independent.

We therefore need to connect the spatial fluctuation

(8¢),(ag,x) in ¢ on a constant a hypersurface to one in
a, ( Sa )¢(¢O,x) on a constant ¢ surface, so that we can
make use of the solution (3.9). A geometric representa-
tion of the transition from a constant a surface to one of
constant ¢ is shown in Fig. 2 for the case of an exponen-
tial point. The solid and short-dashed diagonal lines
represent trajectories. (The long-dashed are lines of con-
stant phase; see Sec. IV.) Given (6¢), a fluctuation
spread over the thick horizontal line, one must evolve
each spatial point independently to obtain (8a), to obtain
the spread over the thick vertical line. Thus the metric
fluctuation on constant ¢ surfaces is
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Aa(¢,x’)=(8a),(¢ex)

ms * %

bo+(89) (g, x7) ,
S . [H(q&’)/ulg;, L4

(3.11)

When Eq. (3.11) is linearized and Fourier transformed,
it describes the mode-by-mode evolution of the amplitude
in linear perturbation theory. In that case the interpreta-
tion of (8¢), is as Gaussian random perturbation with
power spectrum P,=k?>/(27%)|8¢(k)|*>, where 8¢(k) is
the Fourier amplitude, and a, is the time at which the
wave number k equals Ha. (See SBB.) For general po-
tentials and small fluctuations (8¢),=~H,/(2m), we re-

cover the usual result!! 14
H?/m} H?
Aa(P)=2 | — | =— - (3.12)
P72 \%H706 o |2mé/N

In particular, this is usually used with the slow-roll ap-
proximation 3H¢ /N = —3V /3d¢.

For the exponential potential, an exact result can be
given. For example, for the attractor (steady-state) solu-
tion b (¢)=(4mp)!"*(¢—¢,) /myp, we have

Aa(d)=— ) (3.13)

if we take (6¢),~H,/(2m).
would require that Hy/mp=
tions of cosmic structures.’

Thus, to have p ~10, one
1073 to agree with observa-

C. Multiple fields and the integration of trajectories

The separated Hamilton-Jacobi equation (2.13b) is a
first-order nonlinear partial differential equation for n
scalar fields whose complete solution depends on n con-
stant parameters I;. The general solution of the cosmo-
logical background-field equations follows from this, as in
the classical mechanics analog.?* In this subsection we
use a=In(a) as the natural choice for the time parameter
since in general for many fields there will be no preferred
¢, hypersurfaces.

Using a proof similar to that leading to Eq. (3.5), we
now show that the solutions H=H (¢,,I,) of (2.13b)
with differing I, also approach each other rapidly.
Diﬂ’erentiating (2.13b) with respect to I, gives

0H o . |dH
2 a¢c a¢c aIk
__ 13 |em
3N ot alk

The time derivative 3/9¢ is evaluated along a physical
trajectory ¢;/N =—[m%/(47)])(3H /3¢;). This equa-
tion may be integrated exactly with the help of (2.14b):

3H
I,

e 3y, =— , (3.14)

41r
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where the J, are integration constants independent of
time. Imitating (2.14a), we have introduced the numeri-
cal factor m%/(4w). Thus the difference in H for
different I's decreases as e > as in Sec. III B. Solving
(3.14) for ¢;=¢;(I),J;,a) gives the trajectories as func-
tions of a. This is the complete solution: Given arbitrary
initial conditions at a =a,, one may choose the parame-
ters I, ,J; so that

o, _ Mp 3H($i(ao)T})
kK 4 oI,

and

2
b =__.rn_7:> aH(¢k(a0),Ik)
™ (¢, (ap)) o “——'a¢k

are satisfied. More generally one may view the Hubble
function as the generator of a canonical transformation

from (¢k,[I¢") to the new canonical coordinates (I;,J; ),
which are constant parameters. In most cases it is
difficult to find an n-parameter solution of the separated
Hamilton-Jacobi equation. An explicit solution for n=1
was given in Sec. IIT A, where a was integrated as a func-
tion of ¢ by differentiation of ¢,, through (3.14). Analyt-
ic cases for many fields including gravitational radiation
are given elsewhere.?

The new canonical momenta J, are functions of posi-
tion, but not of time. For one scalar field, J(x)/J(x,) is
just the conserved quantity exp(3Aa) [Eq. (3.9)], i.e.,
exp({), where x is the fiducial point relative to which
spatial fluctuations are measured. With many fields there
are n constants Jy(x)/J,(x,) which describe the non-
linear state of the system just as the single constant §
does in the single-inflaton case. In the many-field case,
the nonlinear version of &, defined by (3.10) in terms of
uniform Hubble parameter surfaces, is still a useful con-
cept, but it approaches a constant only when one of the
fields dominates the energy density of the Universe.
Hence the {J; ] provide a more powerful description than
the single variable {. (In general, the Hamilton-Jacobi
equation for multiple fields is valid point by point, and
the parameters I, may also depend upon x. The conse-
quences of this point are explored by Salopek.??)

Although we showed in Sec. II B that the choice of
time surface is essentially arbitrary in Eq. (2.14), the vari-
able a is the best motivated choice since it does not ap-
pear in the SHJE, which leads to the natural expression
of the trajectories as functions of a according to Eq.
(3.14). It is also monotonically increasing in inflationary
models and, hence, is a viable clock at all times unlike the
scalar fields. (For a more general discussion of the prob-
lem of time in general relativity, see Unruh and Wald.??)

D. Numerical and approximate solutions
of the separated Hamilton-Jacobi equation

Since the Hamilton-Jacobi equations are analytically
solvable only for special cases, it is worthwhile to develop
approximate methods, the most important of which is the
slow-roll approximation®* in which the momentum
terms are ignored in the Hubble function.
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1. Slow-roll approximation for a single scalar field

For one field, neglecting the dH /d¢ term in the SHJE
gives the zeroth-order approximation

87
Vig) .
3m2, ¢

(3.15a)

I

2 — g2
H(O)_HSR

Although higher accuracy may be obtained by substitut-
ing H ,, into the right side of the SHIJE,

dinV
a¢

higher-order terms in this series only slowly improve the
accuracy over the zeroth-order approximation. We have
tried a number of other expansions, but none have proved
generally useful.

As a concrete example, we use the quadratic potential
V(¢)=m?¢$?/2. Even for this simple ¥, the SHJE can-
not be solved analytically since, as we have seen in Sec.
IIT A, H(¢) is singular whenever ¢ changes direction. In
Fig. 3 the solid curve shows a numerical integration of
the background scalar-field equations of motion (2.15),
beginning at ¢=10myp, well into the slow-roll regime.
Note the number of cusps in H in this case, associated
with the oscillations near the bottom of the potential
well. The other curves show the zeroth- and first-order
approximations:

2
87

2
m

- 1+—2

3m(p

HY, = V(g) |1+ ,  (3.15b)

Ho _|4r | "¢
m 3 mp ’
(3.16)
H 5 172
Zwo_1 1+12,T_¢_2
m 3 map

A nice feature of this potential is that the solution scales
in m according to H =mf (¢); one only needs a solution
for a single m to obtain all other solutions that begin in
the slow-roll regime. As mentioned in Sec. IIIB,
H , =Hgg defines the envelope for allowed solutions.
Figure 3 shows that H,, is accurate for ¢ >1m, and
H,, is accurate for ¢ >0.3m». Higher-order approxima-
tions than H,, do not aid matters much.

To estimate the degree of nonlinearity produced in
models with a power-law potential V' (¢)=V,¢", we con-
sider the nonlinear response of the background fields to
one e-folding’s stochastic impulse (8¢), applied 60 e-
foldings prior to the end of inflation, corresponding to
the scale of the current Hubble length today. Using Hgy
in Eq. (3.11) for the metric fluctuations on constant ¢ sur-
faces, we have

1 47

Aa(,x)=— [260(8¢),+(84)21 , (3.17)

mp
which is constant in time and depends only on the initial
value of the scalar field ¢,. The relation between the
number of e-foldings from the hypersurface ¢, to the hy-
persurface ¢ at a given position is the solution of (3.6):

al¢,x))—ale,x’)=——" (3.18)
n map
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FIG. 3. Solid curve shows a numerical solution H,,, of the
Hamilton-Jacobi equation for a quadratic potential. At large
values the scalar field follows the slow-roll solution Hgg (long-
dashed curve) and, even more closely, the next-order improve-
ment H,, [Eq. (3.15b)] (short-dashed curve), and then begins to
oscillate when ¢ =0.35m,. As in the solution of Fig. 1, there is
cusp behavior when the scalar field changes direction at zero
field momentum and thus along the Hgy curve.

For n=2, ¢q=3.1myp gives 60 e-foldings of expansion.
Recall that the rms value for the fluctuations crossing the
horizon in one e-folding is (8¢),~H,/(27). Thus the ra-
tio of the quadratic nonlinear term in (8¢), to the linear
one is (127)"2m /m,. We require m =5X10" 'm, to
give fluctuations Aa at the observational level
(~2X1073); hence, as expected, the corrections to
linearity are very small indeed, a conclusion which
remains valid even with the inclusion of the fluctuations
from all 60 e-foldings. '°

For a quartic potential V (¢)=A¢*/4, po=4.4m, is re-
quired to get 60 e-foldings and A=5X 10" 14 is required to
get the Aa amplitude at the observationally inferred
value. The quadratic correction is then at the 1077 level
for one e-folding’s worth of stochastic impulse.

2. Slow-roll approximation for multiple scalar fields

The slow-roll approximation also gives an accurate
treatment of fluctuations when there is more than one
scalar field for a large class of potentials V(4,). The
great advantage of this approximation is that it does not
depend upon any constants I, and can quickly and
elegantly yield quantitative results with much more sim-
plicity than, e.g., our previous linear perturbation theory
calculations.” We illustrate this for the double inflation
potential ¥V (¢, )=V (¢,)+V,(¢,), whose Hgy, is

Aaldy.,x)=ald,,,x)—ald,,,x)
by0t(88,) (xg)

__ 8= _T2\PeP
m%; $20+(882)6(x) (V' /33 )(3) m%g

$10+(88,)4(x,)

Vy(3)d ¢, 87
- f¢10+(8¢1)a(x)
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1/2
8w

Hg= [V ($)+ V()] (3.19a)

2
3Mrp

The exact solution H*(¢, ) does not maintain the separa-
bility of H §R, which can be seen at the level of the next-
order approximation. The equations of motion derived
using (2.14a) are the usual slow-roll ones:

b m2 oH av,/d
$_ _mpOdHy  3V,/3¢, ’ (3.19b)
N 47T a(ﬁ, 3HSR
b m% oH av,/d
ﬁ=_ P SR __ 972 ) (3.19¢)
N 47 3¢, 3Hg

Assume that the field ¢, is the one that dominates the
energy density of the Universe at late times. It is con-
venient to take it as the time coordinate, and so the lapse
is

3Hg
= av, /o4, (3.20)
and the remaining equation of motion is
d av,/a
a9, _ 9V, /04, (3.21)
d¢, dV,/3¢,
which is solved by two independent integrations:
4 d ¢, d
[hdh g db (3.22)
¢10 0V, /3¢, 600V, /3¢,
To obtain the metric fluctuations, we integrate (2.14b):
(B x/)—a(dyo,x))=b() ) —b(dyo) , (3.23a)
where
boym_ B (0P80
k m2 Y 410 (3V, /36))(&))
¢, V,(¢3)de;
. 8_77 2 2(3)d dy (3.23b)

mb Y20 (3V, /3¢5)(5)

The total expansion factor of the Universe is therefore
the product of the scale factors for two independent
inflationary epochs, a result derived by Starobinski.3! To
generally obtain the metric fluctuations at some late time
¢5., we first form al(¢,,,x)—a, with the ¢, integration
evaluated between ¢,(ay,x) and ¢,,, and the ¢, integra-
tion evaluated between ¢,(ay,x) and ¢,,.(x). We have
defined ¢,.(x)=¢,(4,,,x). In Sec. III B we adopted the
notation (8¢, Ja(x)=4¢,(ay,x)—do for the fluctuations
from the stochastic impulse at a;, and took it to vanish at
our fiducial point x,. The fluctuation between the values
at x and our fiducial point x is then

Vi(g1)dé, _sifme(x) Vi(¢1)d ¢
BV, /70¢1)(d})  m2 I 4x0) (3V, /3})($})

(3.24)
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Recall that we have adopted the convention that (8¢,),(xy)=(8¢,),(x,)=0 for the fiducial point at x,. To find the last
term in (3.24), we would have to make use of Eq. (3.22):

d¢1 fd’Ze d¢2

i) bt = - (3.25)
$10+(88)),(x) V| /0, $20(88,),(x) 3V, /0, ’

at x and x,, which can get messy. However, in most cases of interest the first field will have settled into the trough of
its potential and damped away, so that ¢,, will be spatially independent, and the last integral in (3.24) vanishes. In this
case the result is very simple, just the sum of the fluctuations form the two phases of inflation.! If the stochastic im-
pulse occurs in the first phase, both (8¢,), and (8¢,), contribute fluctuations of amplitude Hgg /(27), giving a large
amplitude response. If the impulse occurs in the second phase, after ¢, has settled down to its potential minimum, then
(8¢,), vanishes, and only ¢, fluctuations contribute, but at a diminished level since Hgg /(27) has dropped so much.

If we are explicitly interested in the time development of Aa, we would need to evaluate (3.25), which is messy for all
but the simplest potentials. To illustrate the main features, we adopt quadratic potentials V,(¢,;)=m3¢%/2 and
V,(¢,)=m3%¢3/2. In Fig. 4 we show the structure of the trajectories (solid lines) and lines of constant Hubble parame-
ter (short-dashed lines) for m3=2m3. Trajectories begin near the top of the plot where the energy density of the
Universe is dominated by ¢,. They then descend toward the origin, and as they cross the long-dashed line, the Universe
becomes ¢, dominated. When the Hubble decreases below m |, shown as the dark dashed curve, the slow-roll approxi-
mation breaks down because ¢, begins to oscillate. Integration of (3.25) yields

¢2e
[$20T(8¢;)4(x)]

and hence the fully time-dependent amplitude of the metric fluctuations as a function of ¢,, is

2,2
my/mjy

) (3.26)

1e(x)=[ 1o+ (86,),(x)]

Aa(d)ze,x):%[2¢zo(5¢z)a+(5¢z)§]+%[2¢;o(5¢1)a+(8¢1)§]
P

2
.
SN TR
[1+(865),/ 6]

¢Ze
b0

_ 27

(3.27)

2mi/m?
I l[¢10+(8¢1)a]2

mp

The last term rapidly decays for ¢,, <<¢,, giving an
asymptotic formula for the fluctuations which is the sum
of two single-field [Eq. (3.17)] contributions. These semi-
- analytic results give a simple qualitative understanding of
---------- A the time evolution of § revealed in the detailed numerical
T . = calculations of SBB as well as providing a rapid method
--------- T e for quantitative calculations.

Trajectories for V = m,2¢‘z/2 + m22¢22/2
T T T RSN L ST T T

¢/ my
-~

T
\

> g E. Separable example for two scalar fields

[
.“I
\
\

A In this subsection we use a two-field analytic solution
s X - i of the SHJE to illustrate the complexities that can arise
” ‘ 4 in practice. In particular, we wish to address the behav-
ior of the Hubble function when one of the scalar fields is
oscillating in its trough, a point we could not deal with in
Sec. IIID 2. In this case we find that at a given point in
the ¢,—¢, plane, the Hubble parameter is multivalued,

T
T
1]

o
[
[e]
-
o

FIG. 4. Surfaces of constant Hubble parameter calculated us-
ing the slow-rollover approximation (short-dashed curves)
are shown for the two-dimensional potential V(d,,¢,)
=m3¢i/2+mig3/2, with m?=2m3 The trajectories (solid
curves) fall towards the origin and are orthogonal to constant
Hubble parameter curves. Above the long-dashed curve, ¢,
dominates the energy density of the Universe, whereas below it
¢, dominates. This approximate solution breaks down when the
Hubble parameter decreases below m,; (heavy short-dashed
curve) because ¢, begins to oscillate (see Fig. 5). One may use
these results to analytically calculate primordial fluctuation
spectra arising from double-inflation models (Sec III D 2).

which makes the Hamilton-Jacobi approach cumbersome
to use for oscillating fields.

In classical mechanics the Hamilton-Jacobi equation is
not particularly useful unless there are separable solu-
tions. In this cosmological setting we would like to find a
separable solution which has a potential with a trough
that the field settles into. The potential

172

2)

me

167
p

U) (.29

V(g ¢d,)=exp
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has this property. A class of solutions to the SHJE can
be obtained by assuming H is separable:

172
$2

mep

41

p

H(¢)=exp | — H(,) . (3.29)

The two-dimensional SHJE is satisfied provided H obeys

;72:'"_"2” _ | fea )
127 3p 3¢,
8 U(4y)

3m3 1—1/(3p) (.30

This looks like a one-dimensional SHJE equation, a simi-
larity we can make more explicit by rewriting (3.30) as

_. m3 (aF | _
gr=—r |8 | 8T gy, (3.31a)
127 | 3¢, 3mp
in terms of the variables
$1=‘/1_1/(3P)¢1 s
3 (3.31b)
_ 1
7$)=U | ——m—o / 1——1.
¢ V1—1/(3p) 3p

If we can solve for the single scalar-field trajectories
é,(@) and H(&) associated with Eq. (3.31), then we can
solve the two-dimensional problem as a function of @.
The equations of motion become

L N —
A _Poa—
N yy 1—1/(3p)
ar |7 ¢, | 2m
Xexp | — = 2 -, (3.32a)
p mo a¢[
4;2_ mep 41 12 ¢ |
N~ Vang &P o | g |He B3
172
|
i=cxp _ |4 22 \q. (3.32¢)
N p mop

It is advantageous to choose a as time so that H disap-
pears from the ¢, evolution equation, giving

m
—L (a—ay) . (3.33)

¢2(a)_¢2(a0)= \/41Tp
If we reinterpret (3.33) to be an expression for a(é,), we
see that in the ¢, time variable the remarkable feature
that the evolution of the metric is independent of the first
scalar field, whether it is inflating or oscillating, although
the initial value a(é,,) will depend on the initial value
&1(d40), just as in double inflation (SBB).

By comparing d¢,/da with d§,/da, we see that a is
linear in @:

a=[1—-1/3p)la . (3.34)

Therefore, the ¢, trajectory as a function of a is given in

terms of the parametrized one-dimensional trajectory
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é,(a)=[1—1/(3p)]"V2$,([1—1/(3p)]a) .  (3.35)

As a concrete example, consider U=m?2¢?/2. In gen-
eral, orbitals will cross as shown in Fig. 5, where we have
taken p=1.01 (and the magnitude of m, is unimportant
for this illustration). Given one trajectory, one may ob-
tain all others by translating in the ¢, direction; hence
H(¢,,¢,) will depend upon a continuous index, and a
given point (¢,,¢,) may take on many values for the
Hubble parameter. The lines of uniform Hubble parame-
ter H shown in Fig. 5 are given by (3.29):

¢,/mp=(p/4m)In[H(V'1—1/(3p)$,)/H] . (3.36)

These curves each have cusps which would confuse the
figure, and so only small segments of the uniform Hubble
lines are shown.

IV. HAMILTON-JACOBI EQUATIONS
FOR INFLATING COSMOLOGIES

In this section we demonstrate explicitly how the
separated Hamilton-Jacobi (HJ) equation [Eq. (2.13b)]
may in fact be derived from the Einstein-Hamilton-Jacobi
equation and the functional momentum constraint for in-
homogeneous long-wavelength fields. We discuss the lim-
itations inherent in following a truncated form of the full
equations. We also relate the form of the probability
functional for ensembles of universes on various hyper-
surfaces which plays an important role in stochastic
inflation.

A. Overview of Hamilton-Jacobi theory in general relativity

Although Misner, Thorne, and Wheeler, ?! for example,
extol the virtues of the Einstein-Hamilton-Jacobi equa-
tion as providing the fastest route to quantum theory, it

_l T 1T , T T 17 7T l T 11T ] T T 17T ] T 1T I TT
H-J Solution for V(¢,¢.)=
Vo exp(-(16m/p)"¢;) m,’¢,°/2

llllllllll

¢1/my
o

¢, Oscillates

II||IIIIIIIIIIIII|

cov b b b b by
-3 -2 -1 0 1 2
$2/m,

'C"J_lllllllll

FIG. 5. Separable Hamilton-Jacobi solution is shown for two
scalar fields rolling down a trough in the potential. Shown are
surfaces of constant H (short-dashed) and their orthogonal tra-
jectories (solid) for a potential which is a product of an exponen-
tial in ¢, and a term quadratic in ¢, [Eq. (3.28)]. The trajec-
tories start in the slow-rollover regime, but as ¢, increases, ¢,
begins to oscillate and damp. The trajectories eventually cross;
hence the Hubble function may take on many values at the same
point in the ¢,-¢, plane.
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has not been exploited in the study of inhomogeneous
systems. Let us recall the basic framework. The action J
of Sec. II A in the ADM formulation is computed only
for those y,;(¢,x/) and ¢, (z,x/) histories which extremize
it. In the integration the lower end point is taken to be
on a hypersurface with three-geometry spemﬁed by 'y,j
upon which the initial scalar-field values ¢ are specified.
This is considered fixed. The upper end point of the in-
tegration is taken to be a hypersurface with three-
geometry that of y,l(x’ ) with scalar-field values ¢, (x/).
Hamilton’s principal functional Sy ;( (x7), ¢, (x7)] is just
I computed this way, which can also be written as

. . Yij b " a'}’ ¢ a¢k
(xd HN= J Vij LUy Pk TR | g4
Sy ;(x), ¢ (x9)] fy{j,qsi G v K e
(4.1)
The momenta conjugate to y;; and ¢, are
2
Yij( vy — N — me _in iig _ ®rij 4.2
T=E 0 Ter? WKTKD, 42
Sy OS  _ ip i
= = — . 4.2b
T (x) 8¢k(x) Y (¢k N¢k,t) ( )

In terms of these momenta, the energy and momentum
constraints (2.2) and (2.3) are

16 _ . 1
0=7{(x)z——;r7/ 1257 Vi SYiiY mi

’ij‘yi[_ 2

+%(7r¢k R+y1 2V () (4.3a)

2

mao
+ | = 71/2( 3)R)+ ,}/1/2,,/1]¢ l¢k,j ’ ,

167

(4.3b)

0=FH,(x)=—2yym'™) , +7" "y TG (44)

The Einstein-Hamilton-Jacobi equation is (4.2) with the
momenta expressed in terms of the functional derivatives
of & given in (4.2). One can interpret § as a generator of
a canonical transformation in terms of which the new
Hamiltonian functional vanishes strongly. In this ap-
proach the solutions of the HJ equation depend on an
infinite number of parameters which are interpreted as
new canonical coordinates.?*3? The functional & can
also be viewed as the phase of the wave function
W[vi,¢x] that appears in quantum treatments of the
grav1tatlona1 field in the semiclassical approximation

=P'%', Ply,;,¢:] is the probability functional for
the three -geometry  y;;(x) and the scalar-field
configuration ¢, (x), which is of importance in the theory
of fluctuations for cosmic structure, a connection we ex-
plore in Sec. IV D.

Although significant progress with the full nonlinear
system does not seem feasible, a reasonably large subclass
of problems in which the fields only contain long-
wavelength contributions is tractable. The key approxi-
mation is to neglect the (4.3b) terms in the #=0 equa-
tion. In the case with no scalar fields, Pilati'® and Teitel-
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boim?® have considered this same situation, which they
labeled the strong gravitational coupling limit
G=mp?— . Their application was to quantum gravi-
ty (see Sec. V). In addition to incorporating matter fields,
our long-wavelength limit interpretation has the flexibili-
ty of allowing for interactions with short-distance effects
through the stochastic formalism. As a warmup, we re-
mind the reader how HJ works in minisuperspace model
before turning to the long-wavelength inhomogeneous
model of interest to us.

B. Homogeneous and isotropic minisuperspace model

The simplest derivation of the SHJE from the full HJ
equation occurs in a minisuperspace model of homogene-
ous scalar fields ¢,(¢), evolving in a homogeneous
universe with metric ds’=—N2(t)dt*+e?*(dx?+dy?
+dz?) analogous to (2.10). The ADM action is

l¢k
2N2

3’"P a

1= [dt UNe P
o

—Vigy) |, (4.5)

where we denote U = f d’*x as the comoving volume of
the Universe. The momenta are given by

3s _ 3mp Ueley

Pa™ da  4r N
i (4.6)
_os _ Ue7é
p¢k a¢k N ’
in terms of which the Hamiltonian is
H:_Z—W;U—le~3ap2+ U—l *3ap2 +Ue3aV(¢k)
3m«p
=0. 4.7)

The Hamilton-Jacobi equation (HJE) is obtained by sub-
stituting the derivatives of Hamilton’s principal function
S for the momenta. The HJE is most transparently writ-
ten in terms of the combination exp(—3a)S. If we as-
sume this quantity is independent of a,
m2

s=—74—§Ue3aH(¢k) (4.8)
then H must satisfy the SHIE. Furthermore, if we substi-
tute (4.8) into (4.6), we find that the scalar field velocity is
just the gradient of the Hubble parameter, and we thus
recover Egs. (2.14). However, it is also clear that solu-
tions to (4.7) exist for which exp(—3a)S is not a indepen-
dent. In the inhomogeneous case the momentum con-
straint prohibits these solutions. Lines of constant S are

shown in Fig. 2 for the attractor solution (3.1) of Sec.
IITA.

C. Inhomogeneous long-wavelength fields

We now demonstrate that the solutions of the long-
wavelength version of the HJE and momentum con-
straint equations lead to a separation of variables in the
Hamilton principal function analogous to that in Eq.
(4.8), point by point. In this section we restrict ourselves



3950

to a single scalar field.

In the long-wavelength approximation, we neglect the
(4.3b) second-order gradient terms in the energy con-
straint functional #. Motivated by the results of Sec.
I1 B, we shall also assume that Hamilton’s principal func-
tion =&, ¢] is only a functional of

a=<¢lny, y=det(y;), (4.9a)

and of the scalar field. The gravitational momenta are
then proportional to the three-metric,

LEY

i(x)= 5 :%yijSa(x) , (4.9b)
which leads to the following constraint equations:
o e [ 88 1 |88 T
3m3 da(x/) 2 8¢(x7)
+e3 P (g(x7))=0, (4.10a)
3 [5ate? ,izsoiif)a"‘(xjH 5¢(if) $.x
(4.10b)

The momentum constraint, which may be rewritten in
the suggestive form

1, _ _
g(e Sare) =e emt 4.11)
where 7%(x)=388/8a(x), can be solved following the

same line of argument as in Sec. II B: For given func-
tions ¢ and a, we conclude that e ~3**")7%x/) is only a
function 3F (#,J) of the local value of the scalar field as
well as some integration constant J,

—3alxa(y )y =3F[(x)), T] . (4.12a)
The scalar-field momentum is then necessarily
e 3 pd(xJ (4.12b)

=___ ]
¢[¢( ), 7]

On the right-hand side, no local dependence on a(x’) is
allowed. The integration constant may actually be a
functional J[a,$] of the fields ¢ and a because
37 /x'=

The volume factor y enters only in a separ-
able way to preserve the density character of 7* and 7°.
Substitution of Egs. (4.12) into the energy constraint
=0 leads directly to the SHJE [Eq. (2.13b)], provided
we set

i
l/2=e3a(x )

2
. mg .
F[¢(xf),7]=—j4fH[¢(xf),j] . 4.13)

The momentum constraint therefore serves to reduce the
full class of solutions of the HJE to those which are se-
parable and satisfy the SHJE.

Although we have now completed our promised
demonstration that Eq. (2.13b) should rightly be called
the separated Hamilton-Jacobi equation, it is of interest
to integrate (4.12) to obtain the explicit form of the phase
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functional 8. Consider the case when the functional J is
independent of ¢ and a; § is then essentially the same as
the homogeneous result (4.8):
mb ,. _
§=——— [d’x e H[¢(x)), 7], (4.14)
4T
but it is valid point by point. The integral is convergent
if one considers a finite patch of comoving space, corre-
sponding, for example, to our observable Universe.
There are, however, more complicated solutions if
Jla,¢] is nontrivial:

2
m i .
§=——L [d’x e H[¢(x)),9($,a)]
41
— [Tg(7d 7.
This phase function describes the evolution of many

universes, each with differing values of J, which are
defined implicitly through the relation

(4.15a)

.xJ) aH

2
mgq
g == [dx T [6(x), 9], @.150)
41

where g is an arbitrary function, as is shown in Appendix
B. This solution is used in the semiclassical treatment of
Sec. V describing the wave functional of many universes.
However, each distinct universe is characterized by a sin-
gle value of J, as we now show. Let us assume that g is
not constant. Take a sequence of field configurations
a(x),¢(x), corresponding to one evolving universe. If
Eq. (4.15b) is satisfied at one time for a given J, then it
will be satisfied at all subsequent times with the same T,
since by Eq. (3.14), exp[3a(x/)](dH /3T)[¢(x7),T] is
conserved in time.

Imposition of the momentum constraint, which has
played such a crucial role in our analysis, has effectively
been neglected in the literature because a theorem proved
by Moncrief and Teitelboim!” showed that if Hamilton’s
principal function satisfies the energy constraint every-
where in space, then it also satisfies the momentum con-
straint. (See also Kuchar?® for a more general discussion
of constraints.) The reason we cannot apply this theorem
is that, by neglecting second-order spatial gradients, we
have lost terms whose presence were crucial for the
proof. For example, the Poisson brackets between our
approximate Hamiltonian densities at two different
points,

SH(xT) 8H(xT)

Saly’) &m%(y/)

N 8F(x7) 8FH(x’)
dp(y)) 8mt(y/)

(F(x)), H(xT)}

=[d

—(xde>xd") (4.16a)

vanishes, whereas the exact Poisson brackets gives the
momentum constraint
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F(x)), H(x ) = [y x )P (xF)+y x5 )H (x )]
J J

X 8% (xk—xk) . (4.16b)
The Moncrief and Teitelboim (MT) redundancy theorem
depends crucially on (4.16b). If one were to include
second-order gradient terms such as ¢, ;¢'"in (4.16a), one
would recover the exact Poisson brackets but this would
take us back to the full nonlinear gravitational problem.
(MT actually forsaw that their theorem would break
J

172

Vom?
o~ P fd3xexp

6m(1—1/3p)

S=— 3alx’/)— A

where I (x) is independent of either a or ¢. Unless I(x)
is suitably restricted, & is not even invariant under
reparametrizations of the three-metric, whereas the
momentum constraint guarantees this property for the
solutions (4.14) and (4.15) (Ref. 21, p. 1187).

Recall that Hamilton’s principal function is the phase
in semiclassical theory, a nice reinterpretation of the
momentum constraint, implicit in (4.10b), is to recast it in
terms of the phase of each cell volume, S(x’)
=—(m%/4m)Ue**H (¢, ), as in 4.8): VS=p,Va
+p¢k V¢k. We also have S=p_ & +p¢k ¢, and so the to-

tal spatial and temporal variation obeys dS (x/,1)
=pa(x1,t)da(xf,t)+p¢k(xf,t)d¢k(x’,t). That is, the lo-

cal minisuperspace criterion dS =p, da-+p b d¢, must

hold point by point and moment by moment. Within this
language the nonduality between a and ¢, that seemed
apparent in (4.10b) is therefore easily understood.

D. Probability functionals

The probability functional P[y,¢,] for field
configurations 'yij(xf ) and ¢,(x’/) has encoded in it the
full history of the ensemble of universes. Time does not
explicitly appear. It is an intrinsic quantity to be defined
in terms of the fields.>® A typical choice for us is the
measure of the local volume expansion factor det(y;;),
i.e,, of a. To find the probability that the fields ¢, have
configuration ¢, (x/) at time @, we must determine the
constrained probability functional P[h;;,¢, |a(x/)=a,],
where h;;=exp(—2a)y;. To evaluate this we need to
make use of the conservation law that P[y;,4,] obeys
(in the absence of stochastic forces), which expresses the
vanishing of the divergence of a probability current in su-
perspace. This follows from the Wheeler-DeWitt equa-
tion (see Sec. V).

Instead of presenting the general case, we confine our-
selves to the long-wavelength approximation where &
(and P) are functionals only of the three-metric deter-
minant and scalar fields. We also only treat a single sca-
lar field. We first discuss the minisuperspace model of
Sec. IVB. The conservation law for ? is most con-
veniently expressed in terms of flows on superspace. Su-
perspace has a geometry described by a supermetric
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down if one neglected second-order terms. See also Ref.
20.) We conclude that within a spatial gradient perturba-
tion framework, both momentum and energy constraints
must be explicitly satisfied.

A concrete example of a functional which satisfies the
energy constraint for a scalar feld with an exponential
potential (Sec. III A), but not the momentum constraint,
is

) 172 I .

) J ;
$x7) cosh 3 a(x’)— V12m(x )—I(xf) ,
me p mep

ds’=G ,pdX 4dX?® , (4.17a)
X°=a, X'=¢,
(4.17b)
G —_ 3mb U _ Ue™
00 4vr N> U N 7

designed to make the kinetic terms in the action «ds?.
The flow velocity is just the contravariant momentum p 4,
given by G 4595 /3X % [Eq. (4.6)]; the covariant momen-
tum is p , =3S /80X 2. The conservation equation for the
probability current is

1 —_—
(p"P);A=\/—_—EaA(P\/—GG”BBBS)=O, (4.18)
where the semicolon denotes covariant derivative in
minisuperspace.

Let us choose a as our time measure. The constrained
probability of observing a scalar field value ¢, given a, is
defined by

P(dladp= L @)V =G dé (4.19)

~ [P(@,¢V=G d¢

By integrating the equation of continuity over all ¢, we
find that

[P(a,$)V=GG™ dé

as
da

is constant. However, from the definition of the momen-
tum [Eq. (4.6)], G®(3S /da)=q is unity for the a time
choice, and thus

P(¢la)dp=K V' —GP(a,$)dd

3Im3, 172 3
yym [Ue*“H (¢, )]P(a,d)d ¢ ,

(4.20a)

=K

a

where K, is some normalization constant. More simply,
note that P(¢|a) is just proportional to the 4=0 term
appearing under the derivative in (4.18):

P(¢la) <PV —GG™X,S . (4.20b)
The notion of constrained probability was first intro-

duced by DeWitt.** For a more recent discussion, see
Kandrup.?’
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One may generalize the above argument to other
choices of time surface. For example, if ¢ is the inflaton
(as in Sec. III D 2), we would wish to form

P(al¢p)da=K,V'—GP(a,¢)da

172
=K 3m%> Ue3® .__m_%iéﬂ
¢\ 4m 47 3¢
XP(a,¢)da . 4.21)

where K;'= [P(a,$)V'—G da is constant. [Again,

note that P(a|@) is just proportional to the 4=1 term
appearing under the derivative in (4.18).] Since

—G = N~! changes when different hypersurfaces are
chosen, and so the normalization K will also depend upon
this choice. Thus the probabilities measured on different
hypersurfaces may differ considerably because of the
different V'—G. The ability to transform from one to
another is useful for stochastic inflation calculations. !°

The continuity equation for the probability current im-
plies that P is conserved along classical trajectories.
Choosing a as the time coordinate, we find the following
general solution for the constrained probability:

P(¢(a,dlay)),la)=J "'P(d(ay)lay) ,

_ 9(¢(a,play)))
d(dlay))

Here ¢ =¢(a,d(a,)) describes the evolution of the scalar
field as a function of time a and the initial field values
#(ag). Jis the Jacobian of the transformation linking the
Eulerian coordinates ¢(a,d(a,)) to the Lagrangian (“ini-
tial”) coordinates ¢(a,). Applying Eq. (3.7), we find that
J =[db(dy)/ddy]/[db($)/dp]; we can therefore write
the solution in terms of an arbitrary function f:

(4.22a)

db

P(dla)=f(a—b(4)) s

(4.22b)

For example, in the case of an exponential potential
b=Vamp ¢/my,, Eq. (4.22b) describes a-form-invariant
probability. However, every time the system receives a
stochastic kick, we would generally expect the form to
change.

Our analysis can be generalized to inhomogeneous
fields. The supermetric ds’(x) has the same form as
(4.17), but varies from point to point, with U now inter-
preted as a cell volume of the scale we have smoothed
over. We define the probability functional on a(x) hyper-
surfaces to be

|

Plo(x)|alx)]=exp

1

3a(x ) 2
°H
X e
Videt(§) I;I

V27 0I 3¢

(p(x9),T)
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Plo(x)|a(x)]=Plalx),d(x)1H,

, (4.23)

X 1V —G(x)G®(x) 8;9

da(x)
where ¥, is a normalization factor. It is conserved be-

cause it is the first term appearing under the derivative in
the functional equation of continuity for 7:

)

gﬁ—) ?\/—G(x)GAB(x)—S——S— =0.
X

(4.24)
8X2(x)

Since the configurations allowed in the probability func-
tional should be required to satisfy the energy and
momentum constraints, we expect that 7 must obey cor-
responding functional equations expressing this. The en-
ergy constraint on 2 is (4.24). The momentum constraint
on P can be derived within the context of canonical quan-
tum theory, as we describe the next section, and takes the
same form as the momentum constraint equation obeyed
by &

1
3

5P
Sa(x’)

S . 2
i Salx’) d¢(x7)

¢,,-(xj) .

(4.25)

A consequence of this is that P[a, ] is reparametrization
invariant under spatial coordinate transformations. Just
as we showed for the phase at the end of Sec. IVC, a
transparent way to rewrite (4.25) which makes the invari-
ance manifest is to use the density InP(x7,t) for a cell
volume of size U [defined by 18In?P/8a(x/)]. The
momentum constraint is just VInP=VadInP/da
+ V¢ d1InP /3¢, requiring that coordinate changes respect
the functional form of InP.

An explicit solution of (4.24), for a single scalar field
with Hamilton’s principal function given by the general
class of solutions (4.15a), is

Plo(x)|a(x)]=flal(1)=b[p(1)],a(2)—b[$(2)],...]

db db
X ) [¢(1)] 4o [#(2)] , (4.26)
where f is an arbitrary function. This result may be
verified using the identity (B3a) in Appendix B. Usually,
one chooses all of the a(x) to be identical, in which case
we interpret this functional to be the probability on a uni-
form a surface.

A sample functional form that arises in most single-
inflaton models is the Gaussian-like form

__%f fd3xd3yeSa(xj)%_}}I((b(xj)’I)g‘l(xj’yj)e3a(yj)%fll—(¢(yj),1)

4.27)
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Here £ '(x7,p/) is the inverse of a two-point correlation
function. We have assumed that e3?dH /0l <exp{3[a
—b(¢)]}, which follows from (3.7) and (3.14). Such a
form could describe the spatial correlations that give rise
to galaxy formation. Note that the connectlon between
different spatial points expressed through & 1in (4.27)
cannot come from our truncated equations. For this
reason, (4.27) does not obey (4.25). Within stochastic
inflation these connections arise from spatial correlations
in the quantum fluctuations cross the horizon and feeding
the long wavelengths. Thus a self-consistent framework
requires the explicit connection to the short-distance
forces. 106

V. QUANTUM EVOLUTION
OF LONG-WAVELENGTH FLUCTUATIONS

Only within the quantum theory can the intimate rela-
tion between Hamilton’s principal functional § and the
probability functional ? introduced in Sec. IV be proper-
ly appreciated. The wave functional W[y ;;,¢,] can be
written in terms of a phase & and modulus 7:
¥=7!"2¢¥  Canonical quantization using Hamiltonian
methods yields functional differential equations for ¥ ex-
pressing the constraint equations, which, when written in
terms of & and 7, bear much similarity to the equations
for & and P given in the last section; indeed they are
identical in the limit in which #—0: in Sec. IV we are
dealing with the WKB limit of the quantum gravity
theory.** Of course, the canonical quantization method
has its unresolved controversies,'® but it is at least
straightforward for the well-studied homogeneous min-
isuperspace models for which the energy constraint
(Wheeler-DeWitt) equation is all that is required. Our
long-wavelength metric with its restricted degrees of free-
dom generalizes these homogeneous models. '>?° Indeed,
the Hamiltonian constraint commutes at different spatial
points, so that at one point the Wheeler-DeWitt equation
is the same as for homogeneous minisuperspace models.
We solve exactly the Wheeler-DeWitt equation with finite
# for the case of an exponential potential, the principal
analytic model of this paper (Sec. V B). (We restrict the
discussion in this section to one scalar field only. We also
set #i=1 in the subsequent equations.)

As in the last section, the issue of the averaging volume
U arises. In minisuperspace it is the comoving volume of
the Universe. We view U as the comoving horizon
volume when fluctuations in our observable Universe ex-
panded beyond the Hubble radius during inflation, as
motivated by our long-wavelength framework in which
we spatially average the full theory over the horizon size.
Since U is much larger than the Planck volume, quantum
corrections to long-wavelength evolution are necessarily
small. We conclude that quantum corrections to the
WKB solutions of Sec. IV are unimportant for galaxy for-
mation and do not result in significant non-Gaussian
modifications on observable scales.

In Sec. VC we discuss the functional momentum con-
straint, which must also be explicitly satisfied along with
the functional Wheeler-DeWitt equation. We find that
the long-wavelength Wheeler-DeWitt equations do not,
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in general, satisfy the momentum constraint except in the
WKB limit. We have not been able to construct a self-
consistent quantum theory of long-wavelength fields.
Since the short-wavelength components are integrated
over to yield the long-wavelength quantum theory, our
construction based on a wave functional of the long-
wavelength fields may be fundamentally flawed.

A. Review of canonical formalism

Through this section we consider the case of a single
scalar field only. In the canonical approach to the quan-
tum theory of the gravitational field, the Hamiltonian
and momentum constraints [Eqs. (4.3) and (4.4)] are ex-
pressed as functional operator equations acting on the
wave functional W, with the momenta replaced by the

functional derivatives vy"f(x)=—i8/8y,.j(x) and 7%(x)
=—i8/5¢(x)
H(x)W=0, F#,(x)¥=0. (5.1)

In the long-wavelength approximation we drop all
second-order spatial gradients. We further assume that
W[a,$] depends on the metric only through the volume

factor a(x)=In[y(x)]/6, in which case the constraints
become
27 e-3a(x) 82 _ le—3a(x) 52
3m} da(x)? 2 8¢(x)?
+e3 PP (p(x)) |[W=0, (5.2a)
1 ) _ & _
3 | 3alx) a’i(X)Sa ¢ i(x )8¢ ¥=0.
(5.2b)

The above expressions must be regularized to be mean-
ingful. Here we split the spatial space into cells of equal
comoving volume U and replace the functional derivative
by an ordinary partial derivative &/8a(x)—U '3/
da(x). With this substitution the Wheeler-DeWitt equa-
tion is the same as that for homogeneous minisuperspace,
except that it holds point by point (over cells of volume
U). Although it generally has operator-ordering ambi-
guities for our choice of variables (5.2a) gives the correct
ordering. It can be recast in a manifestly field-
reparametrization-invariant form. >’

=1y, SALNUV (¢, )W=0. (5.3)
All covariant derivatives are taken with respect to the
metric (4.17a). Note that for a single scalar field the
Wheeler-DeWitt equation is independent of N; i.e., it is
conformally invariant in the supermetric. However, this
is not necessarily true for multiple fields unless one ex-
plicitly introduces a term < R WY coupled to the Ricci cur-
vature of the supermetric. Otherwise, the time surface is-
sue would have to be addressed.

To make contact with the classical analysis of Sec. IV,
we express the complex wave function in polar form,
WY=pP!2S and split (5.3) into real and imaginary parts:
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—1p~12pl2 441848  +NUV(¢,)=0, (5.4a)
(V—GPS'*) 4=0. (5.4b)

The phase and modulus have a quantum nature since the
first term in (5.4a) is actually proportional to #%, and,
hence, is of a quantum origin. The remainder is the clas-
sical Hamilton-Jacobi equation (4.7). Further, Eq. (5.4b)
is just the equation of continuity (5.6). We now recognize
these as the WKB or semiclassical limit of the quantum
equations in which #i—0. In these equations # always ap-
pears in the combination 7/U. Hence the semiclassical
limit #i—0 is essentially equivalent to the infinite volume
limit U— . In these cases S— S, Hamilton’s princi-
pal function of Sec. IV, and P— P, the classical proba-
bility function of Sec. IV.

However, it is not P we want, but the constrained
probability on a specific time hypersurfaces. As in Sec.
IV, we do this (up to a constant normalization factor) on
a surface of constant a through the p, operator:

ov* ov
Y —y*—
da da

P($la)=i (5.5)

as
=2y
A dEr.

It is conserved, as one may readily verify through the
equation of continuity

i[V—=G(w*wi—py*4)] =0, (5.6)
which follows from (5.3). In the general inhomogeneous
case, one replaces the partial derivative by a functional
derivative at point x.

The probability function Eq. (5.5), which coincides
with our classical definition (4.20b), is positive for an ex-
panding universe. However, one of the problems with
the quantum theory is that P(¢|a) may become negative,
depending on the sign of —3S/da. We do not consider
this a major problem, at least in the semiclassical limit,
since a would have ceased to be a viable time coordinate.
For if —dS /3a changes sign, then, by continuity, it must
at some time vanish. Within our long-wavelength equa-
tions, this would imply that the positive-definite quantity
1U 275435 /3¢)*+ V (¢, ) in Eq. (4.7) would vanish as
well, describing a universe which is static and with no
matter energy. Of course, if we consider universes with
positive three-curvature 'R, —3S /3a does change sign,
and a can be a valid time coordinate only for either the
expanding or contracting portion of the spacetime. With
quantum fluctuations it is no longer clear that P(¢|a)
will always remain positive. In fact, our exact quantum
solutions to the Wheeler-DeWitt equation can have ap-
parently negative values of the probability.

B. Analytic long-wavelength Wheeler-DeWitt solutions
in an exponential potential

Even for the quantum theory, the exponential potential
leads to analytic solutions, which we display here. By
making a change of variables, one may reduce the long-
wavelength Wheeler-DeWitt equation describing a single
scalar field with an exponential potential into a Klein-
Gordon equation. By constructing analytic Green’s func-
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tions, we can explore the entire solution space. Although
there are numerous solutions depending upon boundary
conditions, the Feynman Green’s function, which in-
cludes the Vilenkin wave function®®® as a special case, is
particularly useful because it describes an expanding
universe with a scalar field rolling down the potential. By
contrast, other Green’s functions such as the retarded
one, an example being the Hartle-Hawking wave func-
tion, have components which describe contraction. We
show that quantum corrections to the long-wavelength
evolution of the probability function derived from the
Feynman Green’s function, which is of relevance for
galaxy formation, are usually small.

The Green’s function is a solution of Eq. (5.3) with a
8-function term 18(a—a()8(¢—¢d,)/V —G added to the
right-hand side. (The factor of 1 has been inserted for
later convenience.) To transform the Wheeler-DeWitt
equation into a Klein-Gordon form for a massive field,
we change variables:

4 1/2
e =exp (3a— =T ¢
p me
1/2 I
‘/
Xcosh | | — a— 127 , (5.7a)
p me
4 1/2
f=exp |3a— - ¢
p mp
172 —
‘/
Xsinh 3 a— 127 (5.7b)
p mp
e
T K T T\ T T T T T T T T 7T T A T
1.5 \ J Attractor /

X aat

o

Coordinates of -

Wheeler—DeWitt—

Eqpation -

1 | P 1 | 1 1 f
1

1 177

0
Initial Singularity

FIG. 6. The Wheeler-DeWitt equation for a scalar field with
an exponential potential is transformed into the analytically
tractable two-dimensional wave equation for a massive scalar
field if one defines new fields e(a,¢) and f(a,¢) [Eq. (5.7)].
These new coordinates must lie with the region defined by e > 0,
| fl <e. Trajectories of the classical attractor a=V 4mpd—+const
are straight lines. The hyperbolas are surfaces where
Hamilton’s principal function S,, is constant, i.e., where
a=V'4xw/p ¢/(3my)+const. The Universe has zero volume at
the initial singularity e = f =0.
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The inverse transformation is given by

o= 1 In(e®>—f?) _ arctanh(f /e) ‘

3(1—1/3p) 2 Vi3p ’
(5.8a)

_ 1 mp | ln(e?—f2) f
¢ 1=1/3 vVizs 23 arctanh . .
(5.8b)

Note that e must be positive and that |f| <e. The ex-
ponential term in (5.7) is proportional to the attractor
solution of the classical Hamilton-Jacobi equation [see
Egs. (4.8) and (3.1)]. The argument of the cosh and sinh
is a constant along the attractor trajectory [Eq. (3.4a)].
The new coordinates are plotted in Fig. 6. The super-
metric line element now becomes

-1

2
1
Ds>=U—L |1—L | (—de?+ds?
27 |13, | (T
Xexp | —3a+ 16w /N (5.9)
mep

and the Green’s function equation simplifies to

2 2
a_‘ll_a__+ KKy = 8e—e0
de?  3f?

with

ffo:

(5.10)
=U*Vym%/6m[1—1/(3p)] .

Changes of variables in the Wheeler-DeWitt equation

have also proven to be useful in numerical’***’ and ana-

Iytic solutions*! of homogeneous closed-universe models.
We wish to describe an inflating universe with a scalar

J

Yele,fie0,fo)=LHP (k[(e —eo)*—(f —fo)*—i€]'?),

where € is a positive infinitesimal. If the expression under the square root is positive, (e —ey)*—(f — f,

tion is complex,

Wele,fieq,fo)=1{Jolk[(e —eo)*—(f —f,)?
whereas it is purely imaginary for (e —e;)
= fo?

—(e —ep)

=t
\I,F(e’f:eO’fO)_ o0r KO(K[

1) —iNy(k[(e —eq)*—(f — fo)?
2—(f —f,)?<0:
]1/2) .

10 L L L L L L B B
- i ! i | i H -
- H ‘ .
— ! B
‘s | 4
> 5 £ ll —
> [ \ .
Iu C \ a=0.5
> = 4
w0 7
I L ]
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FIG. 7. The Feynman function [Eq. (5.11a)], which includes
the Vilenkin wave function as a special case, is the most useful
Green’s function of the Wheeler-DeWitt equation if one wishes
to evolve a probability function giving the fluctuations for
galaxy formation. Originating at a;,=0, ¢,=0, the conserved
probability P(¢|a) [Eq. (5.12)] is plotted at the three times
a=0.1, 0.3, and 0.5 for a scalar field moving in an exponential
potential with p=2 (see Sec. IIIA). It is positive for
|¢| <V'3/(4m)am,p and vanishes elsewhere. The singular be-
havior at the leading edges is removed if one smears over initial
field values ¢, giving a solution which agrees well with the clas-
sical probability function if the initial comoving spatial volume
is large, corresponding to x= 10°.

field moving down the potential. The appropriate bound-
ary conditions for the Green’s function are the Feynman
boundary conditions. The Feynman Green’s function ¥
can be expressed*’ in terms of a Hankel function of the
second kind, H{? (consult Abramowitz and Stegun*® for
notation):

(5.11a)

)2> 0, the func-

1'%y, (5.11b)

(5.11¢)

Here K is a modified Bessel function, which decays exponentially for large values of its argument. The constrained

probability (5.5) has a very simple form:

—1/vV3p
P(¢Ia)—— 1—1/V3p

N 1+1/V3p

1—exp—(1—1/V3p )[3(a— a0)+\/127r¢ do)/mp]

1—exp

—(1+1/V3p )[3la—ay)—V12a(d—¢y) /mp]

(5.12)

for V' 12m|¢— @yl /mp <3(a—ay); and it vanishes elsewhere. This solution is shown in Fig. 7 for several times. It is

positive everywhere and is singular whenever the fields approach “the null trajectory,” |¢—,| /mp=

V3/(4m)a—ay);

hence it is not normalizable because its integral over ¢ is divergent. However, linear combinations of the various Feyn-
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FIG. 8. (a) Retarded Green’s function [Eq. (5.13a)] originating at a;=0, ¢,=0, is shown at the times a=0.3 and 0.5, for the same
situation as Fig. 7 except that here the wave amplitude W is plotted. It is oscillatory for |¢| < V'3 /(47)amyp and vanishes otherwise.
Since W is real, the conserved probability P(¢|a) vanishes, implying these boundary conditions for ¥ are uninteresting for galaxy for-
mation fluctuations. x= 10 is shown for plotting purposes, although k~ 10° is preferred. (b) The Hartle-Hawking wave function of
the Universe [Eq. (5.13b)], shown here at one instance in time, is just the retarded Green’s function originating at the singularity
ay,=— . It oscillates vigorously for large negative ¢, but approaches a constant in the opposite limit. It moves in time a as a wave
of constant shape, with uniform phase velocity d ¢/da=V'ar/pmy/3. For closed homogeneous universes this wave function fol-
lows from a specific choice of the ground state. However, we consider the inhomogeneous long-wavelength Wheeler-DeWitt equa-
tion as an evolution equation for an initial probability function which is generated by quantum effects within the Hubble radius, as
suggested by stochastic inflation. Linear superpositions of the Feynman Green’s functions are then more relevant. k=1 is shown for
plotting purposes.

man functions are not guaranteed to yield positive probabilities. The Hankel function phase is just S, which is negative,
describing an expanding universe, as recommended by Vilenkin. %%

Other Green’s functions with differing boundary conditions are also of interest, but these are combinations of terms
with positive as well as negative phase components. For example, the retarded Green’s function is essentially the first
term of Eq. (5.11b):

Yrle, fieq,fo)=10(le —eol —|f —fol) okl (e —eo)?—(f —fo)?1') . (5.13a)

Unlike the Feynman function, it vanishes for |e —ey| <|f —f,| because of the theta function: 6(x)=1 for x >0,
0(x)=0 for x <0. It is displayed in Fig. 8(a). If the initial value q is taken to be the zero volume limit a¢y3— — o, then
e, and f, vanish, yielding the Hartle-Hawking** wave function for the exponential potential case:

172

%

me

47

Yyula,¢)=¥r(e, f;0,0)=1J, »

Kexp [3a—

\ . (5.13b)

As Fig. 8(b) shows, it describes a wave moving with uniform velocity and constant shape. W approaches a constant in
the zero volume limit with ¢ held fixed, as required by Hartle and Hawking. In a homogeneous closed model, which
cannot be treated with our first-order gradient expansion, (5.13b) would follow from the ground-state wave function of
the Universe. There has been much controversy in the literature over whether the Hartle-Hawking wave function or
the Vilenkin wave function offers a better description of the ground state of the Universe. For us, however, the ground
state for long-wavelength fields is irrelevant. By analogy with stochastic inflation, we consider the long-wavelength
Wheeler-DeWitt equation as an evolution equation for some given initial wave function. This initial state is generated
within the Hubble radius by short-scale physics which has not been included in our long-wavelength treatment. (There
may not even be a ground state, as for the inverted harmonic oscillator in ordinary quantum mechanics for which the
evolution of some initial probability distribution using the Schrodinger equation is still meaningful.)

An interesting question is whether quantum gravity corrections will affect the fluctuations for galaxy formation. For
the long-wavelength component, the answer is probably no. Our version (5.2a) of the Wheeler-DeWitt equation is, of
course, only an approximation to the full quantum system since all operators have been averaged on the comoving
volume U, which is justified only if it exceeds the comoving horizon volume H ~3e 3%, In this case there is no causal
contact between different spatial points, and they may be treated as independent universes, just as explained in Sec. II.
However, when ay— — o, the argument of the Hankel function in (5.11a),

172 2 2
1

¢ Ue*H3> — ~10°, (5.14)
m? 41T

m

4m P
H

p

1

47

mp

Kexp |3a— o
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is exceedingly large, since the correct level of fluctuations are produced when H /myp =~ 1075 [see discussion after Eq.
(3.12)]. One is justified in using the asymptotic expansion of the Hankel function, H{ (x)=V2/( 7x)e 1> 7™/4. The
analysis is essentially classical to 1 part in 10°. However, it is quite possible that quantum gravity effects could affect
the fluctuations for galaxy formation by altering the perturbations that arise within the horizon. One expects that
something must happen here because scales less than the Planck length expand to encompass our present horizon size.

To see more clearly that long-wavelength quantum effects will not be of importance for the fluctuations useful for
galaxy formation, consider a more general expansion solution, in which the Feynman function is smeared over a weight
function W (é,):

V= [Wele,fieq,fo) W (do)ddy , (5.15a)

Consider, at fixed «, scalar-field values which are far from the edges of the null trajectory,
|6 — ol <V'3/(47)(a—ay)my; there, the argument of W may be approximated as

172
K(ez_fz)l/Z! 1————%_?0] —eo_:_ff
e — e
172 172 172 172
~klei— A2 K2 _gapn||etS eo—Jfo L |e=s eot+fo
2 e—f eot+fo etf eo—fo
172 172 1/2 —_—
Vamp (¢—dq)
=kexp |3a— 4 9 —kexp |3a,— 2 io_ cosh 3 a—ay— P (9— ¢ .
P mo P me )4 myp

[Keeping away from the null trajectory is justified after the fact by noting that the wave function we obtain in (5.15b)

. . . L . 3ay—Van/p ¢y/m, .
has little weight on the null trajectory.] If the initial value ¢, is chosen so that ke STV ATP /e 10°, motivated by

the maximum fluctuation level allowed by observations, then one can apply the asymptotic expansion of the Hankel
function, yielding

- —Varn m, —iK —V4r p —
W(a,é)~e (Ba—Van/p o/ /,)/Ze ikexp(3a—V'4 /P¢/m/,)g(a_‘/47rp é/mp) . (5.15b)
The wave form g is
172 172 oy
o« —Vn Vg
g(x)=|— fd¢oW(¢o)exp {iK83 0™ VA2 %0/ osh % ] x _ao'*"”Tnp—% l l . (5.15¢)
P

To make this tractable we assume that the weight function W (4,) is sharply peaked about ¢,= ¢y, the classical initial
value. In this limit we can show that g is related to the Fourier transform of W. For real g the probability
P(¢la)=6kg* (a—V'4mp ¢ /my), evolves in a similar way to the classical evolution [Eq. (4.22b)]. Thus we conclude
that, provided the averaging volume is large compared to the Planck length and provided transients have decayed,
long-wavelength quantum effects are tiny.

The Klein-Gordon equation admits a complete set of wave solutions W =exp[ —i (we —kf)], with w =+ (k*+k?)!/2,
where k is the ‘“wave number.” However, for these, narrow wave packets describe collapsing probability distributions,
as we now show. If one sums over a narrow band of positive-energy waves centered about k =k, with weight given by
W (k), then it is a well-known result that the wave form moves at the group velocity f /e =(dw /dk)(k), with a con-
stant shape:

do

\I}zfdk W(k)e—-i(we—kf)ze—i[w(E)e~Ef]g P (E)e —f] ,

where
glx]= [dk W(kje k=5,

which, for convenience, we shall assume has its maximum at x=0. The constrained probability
12 3
Cz)( E )m 78 2 _

9

is explicitly conserved; for simplicity, g was assumed to be real. However, in the large a —aq, limit, it approaches a 6
function. For example, the argument of g2 may be written as

k

K

1/2 Vi
a— ——ﬂi —arcsinh
mep

40 Fre —f

do -
(k)e—f K

P(¢la)= ik

_{,+. 3a—Var/p/m, .
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The point of maximum probability, x =0, evolves according to the attractor solution of (3.4a), and its width decays ex-
ponentially, (A¢?)!/2 e ~2371/P)72 This does not mean that a typical long-wavelength wave function collapses, but
rather that these solutions correspond to classical trajectories in the decaying mode. One must work to a higher order
in k —k,, as given, for example, in the Feynman functions, in order to produce probability functions of physical in-
terest. Furthermore, in order to describe the generic collapse of a wave function, one must somehow introduce short-
scale fluctuations. *’

The change of variables [Eq. (5.7)] is the crucial step in obtaining our exact solutions. We end this section by show-
ing how it was obtained. The homogeneous Wheeler-DeWitt equation is

172
2 2
dm 0¥ O o uWiexp |6a— [T | 2 |w=0.
3mp da d¢ p mep
When expressed in terms of null coordinates,
, 1172 , 172
—ot 3m ? _ 3m P
u=¢ o a, v=¢ e a,
this equation has a simpler structure:
V27 V12
4exp | — 127 1— 1_ u 9 exp 127 1 v +2UV ¥=0 .
me V3p ou mep V3p o

The obvious thing to do now is remove the exponentials through the change of variables
Vir
me

Vidn 1— 1 u| and y =ex
myp V3p Y P

1
1+ —
V3p

X =exp v

’

and finally revert to a diagonal D’Alembertian, by introducing
x=e—f and y=e+f .
This yields the Klein-Gordon equation in the form (5.10).

C. Inhomogeneous fields

As in the semiclassical theory of Sec. IV, we might expect to have difficulties satisfying the quantum version of the
functional momentum constraint. Just as for the Hamiltonian constraint, the momentum constraint for the wave func-
tional ¥ =2"/2$ has both real and imaginary parts. The real part of ¥*#W¥ gives the Hamilton-Jacobi equation for &,
and the imaginary part yields the equation of continuity for the probability 7 [Eq. (4.24)]. The real part of W*#, ¥ is
the familiar momentum constraint on & [Eq. (4.10b)], and the imaginary part is an identical equation for 7 [Eq. (4.25)].
Taken together, the two imaginary parts impose the requirement that the probability be both field reparametrization in-
variant and spatial coordinate reparametrization invariant.

Since the energy constraint (5.2a) holds point by point, a natural long-wavelength wave functional to adopt for an ex-
ponential potential is a product of Feynman Green’s wave functionals, one for each cell of coordinate volume U =d3x:

172 ,

v=T] La@ | kexp |3alxi— |47 LE SN ) I1 Lap |- St (5.16)

o 4 mo o 4 U
|

We have taken ay= —c. Writing it in terms of the one- it was found that subsets of the Hamilton-Jacobi solution
point classical Hamilton-Jacobi principal function attrac- space do satisfy the momentum constraint.
tor solution S, [see Egs. (3.1) and (4.8)] makes the We do not know how to proceed with this long-
asymptotic ~exp(iS, ,,/U) semiclassical phase behavior wavelength formulation beyond the semiclassical level.
manifest. To be more general, we could smear the Hank- Indeed, it may be that the fluctuations must be semiclas-
el functions at each x over ¢, as in Sec. V B. Direct sub- sical if one neglects second-order spatial gradients, as sig-

stitution indeed shows that the trial solution does not  naled by commutation of the long-wavelength Hamiltoni-
satisfy (5.2b); indeed, even the real part of W*#,¥ does an densities at different spatial points. Within a full
not vanish. Thus, in quantum theory, the redundancy quantum treatment it may be that the quantum commun-
theorem, which states that if the energy constraint is ication between short and large scales invalidates the con-
satisfied, then the momentum constraint is automatically cept of a wave functional obeying long-wavelength func-
true, breaks downs in the long-wavelength limit as ex-  tional equations.” Since many of the issues raised by the
pected from Sec. IV. At the semiclassical level, however,  Problem of cosmic structure formation ultimately require
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us to address the quantum nature of W to get 7, even an
approximate quantum theory based on the long-
wavelength formulation would be worthwhile.

VI. DISCUSSION AND CONCLUSIONS

Misner, Thorne, and Wheeler?' extol the virtues of the
Einstein-Hamilton-Jacobi (EHJ) equation, for containing,
as it does, ““as much information as all ten components of
Einstein’s field equations” —provided its solutions are
properly parametrized—and for providing the shortest
“leap from quantum to classical dynamics.” In spite of
this, the EHJ equation has not been widely to solve inho-
mogeneous problems in general relativity. This is similar
to the situation in nonrelativistic dynamics in which the
Hamilton-Jacobi formulation provides valuable insight,
but is not generally a good calculational tool. The
surprising thing in our long-wavelength application to
inflation is that Hamilton-Jacobi methods are extremely
useful for rapidly providing quantitative results (Sec.
III D).

At the level of the first-order spatial gradient expansion
explored in this paper, the Hamilton-Jacobi equation
does not contain as much information as advertised. Al-
though there is a general theorem that the momentum
constraint is redundant in the full theory, it is not so for
our truncated system. Accordingly, a crucial ingredient
in our analysis is a careful treatment of the momentum
constraint which, if one neglects the evolution of gravita-
tional radiation, gives the Hubble parameter as a function
of the scalar-field values and some integration parameters
H=H(¢,,I,). Without the momentum constraint, the
long-wavelength equations describe each point evolving
like a separate universe. The momentum constraint must
be explicitly satisfied in order to provide the first-order
patching required to glue the points together. The
momentum constraint was explicitly shown to restrict the
solutions beyond the full set of solutions of the zeroth-
order equations.

The momentum constraint provides the first level of
patching required. The inclusion of higher-order spatial
derivatives modifies the energy constraint and scalar-field
equations as well. The ability to make a consistent ap-
proximation scheme at higher order is explicitly explored
in a third paper in this series.’® There, in a nonlinear ex-
tension of the longitudinal gauge (the same a parametriz-
ation of the metric but a specific lapse defining the time
foliation), second-order spatial gradient terms are includ-
ed. This gives both linear perturbation theory at one lev-
el and these nonlinear long-wavelength equations at
another, and provides a self-consistent arena for match-
ing the short- and long-distance fluctuations inherent in
the stochastic approach.

At this order, gauge issues are not significant. It is
possible to include gravitational radiation, and it is not
necessary to assume that the shift function vanishes.??
However, hypersurface shifts do play an important role
in our formulation. Although we showed that the choice
of time variables is arbitrary at first order in the spatial
gradient expansion, a is a natural time choice as long as
the Universe continues expanding. Nonetheless, other
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choices for time hypersurfaces are more useful in certain
physical contexts. To determine matching with the
short-distance physics, it is natural to use a hypersur-
faces to evaluate the ¢ fluctuations crossing the horizon.
In SB2 we argue that In(Ha) hypersurfaces, which are
not that different from a hypersurfaces in inflating mod-
els, is a somewhat better choice in the stochastic frame-
work. Once the initial conditions are set at horizon
crossing, however, the propagation phase is much more
easily calculated on H hypersurfaces; when one scalar
field ¢ dominates the energy density, these are almost
identical with the ¢ hypersurfaces during inflation, but as
a time variable, H does not break down during scalar-
field oscillation at the end of inflation. Inflation ends
when H(¢,)>V'3/2Hgy (¢, ), which translates to a criti-
cal value of the Hubble function or of the inflaton field;
thus H surfaces tell us when the Universe reheated. On
these surfaces a fluctuations are precisely the nonlinear
analog of the § fluctuations of linear perturbation theory.
We also described the hypersurface shifting techniques
that are required to follow through this picture of initial
conditions for ¢ fluctuations specified on a surfaces, but
for propagation of a fluctuations occurring on a foliation
of ¢ surfaces.

We found that the Hubble function solutions of the
separated Hamilton-Jacobi equation were often mul-
tivalued and characterized by different integration pa-
rameters, but that they rapidly approach each other as
expansion proceeds. The loss of memory of detailed ini-
tial conditions signals the presence of an attractor solu-
tion. That transients are decaying and often ignorable
lies at the heart of the calculational approach we take to
stochastic inflation in SB2. Here we have noted that ana-
lytic solutions of the evolution equations can often be
found if one knows the detailed form of the attractor.
The attractor may be as simple as the slow-rollover Hub-
ble parameter, which is approximately valid in a wide
class of inflation models. For this case we showed that
fluctuations can be obtained analytically even for ap-
parently complex models with many scalar fields of
dynamical importance, for which we previously resorted
to numerical integration (SBB), such as double inflation.
The attractor can also differ substantially from the slow-
rollover form, as we saw for inflation with an exponential
potential. As several other researchers of inflation have
found, and as we have extensively shown in this paper
and also show in SB2, the exponential potential serves as
a nice proving ground for ideas since it is so amenable to
analytic solutions.

Probability functionals are fundamental to any stochas-
tic description. To be meaningful they must be referred
to the time hypersurface they are measured on, described
here by conditional probabilities. We explored the trans-
formation from one time surface to another and related
the probabilities to the modulus of the wave functional of
the Universe. Although the full quantum theory is far
from complete, we showed that the long-wavelength ap-
proach is self-consistent at the semiclassical WKB level
where one considers only the phase of the wave function.
During the propagation (drift) phase of evolution, quan-
tum effects are small for the fluctuations of relevance to
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our observable patch of the Universe, within the local
Hubble volume.

This paper is really just one step to the larger whole of
building a consistent short-long split for inhomogeneous
early Universe field theories. Although the approximate
equations that one uses cannot do justice to the full range
of nonlinear behavior expected, we believe that they can
be developed sufficiently to capture the essence of fluctua-
tion generation and propagation in inflationary cosmolo-
gies, and yet be amenable to numerical calculation.
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APPENDIX A: TIME HYPERSURFACE INVARIANCE
IN A FIRST-ORDER GRADIENT EXPANSION

In deriving the long-wavelength equations [Egs. (2.13)
and (2.14)], we did not make any special assumption
about the time coordinate. these equations were valid for
any time choice. In this appendix we show explicitly that
the long-wavelength equations are invariant under an ar-
bitrary time hypersurface transformation. In particular,
we demonstrate that choosing a new time hypersurface
T=T(t,x’) does not change the form of the three-metric
[Eq. (2.10)], provided our new spatial coordinates
X’/=X/(t,x’) are projected orthogonally to surfaces of
constant T, and if, further, one neglects second-order spa-
tial gradients.

Assume that the new time surface T'(¢,x/) is arbitrary
and choose a set of spatial coordinates X/ on a T=T,
hypersurface. Spatial coordinates on the other surfaces
of constant T will be labeled by orthogonal projection of
these initial spatial coordinates, giving us a complete set
of new coordinates. This prescription ensures that the
metric components & r.x)) vanish. Along lines of con-
stant X’/ the old coordinates change according to
dx#=T"ds, where s is some arbitrary parameter, which
we eliminate in favor of the new time parameter T

dT=T ,dx*=T ,T%ds ,
so that

dxt
oT

__T*
xi T, T

(A1)

We have thus found 4 of the 16 transformation deriva-
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tives relating the old and new coordinates. The remain-
ing 12 will depend on the initial choice of X/ coordinates,
and so we do not expect to obtain an explicit expression,
but one can obtain differential equations for them which
we now derive. The transformation matrix

dxH*
Bf= | — (A2)
£ ax* |,
evolves in T according to
OBE | _ {2 |axt
oT |yi oT | ax* |, |y
- |9 |ox*
an aT x/\r
- |8 (_T*
axk | T, ||,
Changing the derivative in X7 to one in x* gives
dBf T+
— | =B|—— . (A3
AT |xi k[T’aT"’]‘v )

This expression allows us to verify that the orthogonality
relation

B{T ,=0
is constant in time; that is, the columns of the transfor-

mation matrix are tangent to a surface of constant 7.
The first row of the matrix

BIT,
D= — S0 A4
By T, (A4)
can be substituted into Eq. (A3) to yield
3By T T, | T By
AT |y || T, T° To [T T |, ¢
(A5)

The right-hand side vanishes if we drop second-order spa-
tial gradients; hence, to this order, B} =B}(X/) is in-
dependent of T.

By integrating x/ along a line of constant X/ using
(A1), we obtain

xi=fixi+ [ =L

oJ
,0
T,T

dT , (A6)

in terms of an arbitrary spatial function f i(x7), which for

simplicity we take to be f/=X/. Thus x/ and X" differ by

a term that is first order in spatial gradients. A function

g evaluated at x/ or X/ will then be equal up to this order:
T

T, T°
T/

T T°

=g(X/)+second-order terms .

gx))=g |x/+ [ dT

=gx)+g,; [ dT

If we write the metric as y;;=exp(2a)h;;, then the

transformed 4;.; in the T-X system is a function only of

the X/ coordinates:
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Vi =2 BE(XI)BL(X by (x)
=2 XBk (X))BL(X )y (X)) .

This completes the proof that the form of the three-
metric given by (2.10) is invariant under the arbitrary
time hypersurface transformation since it may be written
as a conformal factor multiplied by some three-metric
which is only a function of the spatial coordinates X.
Finally, it is useful to note that there is a simple rela-
tion between time derivatives of a quantity Q on different
hypersurfaces. Applying the chain rule and Eq. (A1), we

find that
aQ 99 / aQ k/ 0
99| - To+ |22 | T /(1,1 .
oT | ot | i/ ° axk |, (T

Neglecting second-order spatial gradients, the second
term drops out, leaving Eq. (2.16), which was used to
show that the evolution equations (2.14) and the energy
constraint (2.13b) are invariant under arbitrary time hy-
persurface changes if one neglects second-order spatial
gradients.

APPENDIX B: FUNCTIONAL MOMENTUM
CONSTRAINT SOLUTIONS

We show that a general class of solutions of the func-
tional momentum constraint equation (4.10b) for long-
wavelength classical fields is

§= [ d*x F[g(x)), 71— [g(7)dT", (Bla)

where g and F are arbitrary functions of one and two
variables, respectively. Given F and g, the functional J is
defined implicitly through

g(9)= [d*x e3*"F ,[¢(x)), 7] . (B1b)
The notation F, denotes the derivative with respect to
the second variable J. If we set F=—[m3/
(4m)]H[¢(x7), ], as in (4.13), then this leads directly to
Hamilton’s principal function (4.15a). The functional J
can be determined by an iterative method: Given the
functions ¢(x) and a(x), choose a sequence of J’s for
which (B1b) is satisfied to progressively higher accuracy.

In Sec. IV C we showed quite generally that the solu-
tion to the momentum constraint equation is given by Eq.
(4.12):

B8 _3p3a [ g(x)), H(ya)] s

Sa(x’) (B2)
8"9 — _3alx)) j

———SdJ(xj) =e F [¢(x"), I(¢,a)] .

We can integrate & if we know what forms of the func-
tional J are allowed. Nontrivial constraints on J follow
from the integrability condition that derivatives commute
in the infinite-dimensional gradient appearing in (B2).
For example, [6/8¢(y7),8/8a(x/)]8=0 implies that

1 59 _ 1 59
e} () 88(y)  3e)F ,(x)) Salx’)

(B3a)

[the abbreviated notation F(x’/) denotes the full expres-
sion appearing in (B2)]. The remaining cross derivatives
are [8/8¢(x7),8/8¢4(y/)]8=0 and [6/a(x/),6/8a(y’)]S
=0:

1 59 _ 1 59 _
e3a(y/)F,1’2(yj) 5¢,(yj) e3a(‘J)F,1’2,(xj) 5¢(xj) ’
(B3b)
1 59 _ 1 59 _
3e300F L (y)) Baly))  3e3aF (x)) Bal(x)
(B3c¢)

The left side of (B3a) is a function only of y’/ and the
right-hand side is a function only of x/, implying that
each is just a functional @, which is independent of y’
and x’. Because there an infinite number of variables ap-
pearing here, it proves illuminating to first consider a
finite model with only three spatial points, denoted by 1,
2, and 3. Define a,=a(l), a,=a(2), and a;=a(3), as

well as f,=¢(1), f,=¢(2), and f;=¢(3). Equation
(B3c) then becomes
al 3a
2a; 3G EASLD), (Bda)
A e’ (D), (B4b)
da, ’
B _3ce™sp, 55D, (B4o)
da, ’

where I and C are functions of six variables, i.e.,
I=I(a,,ay,a3,f1,f5.f3). We can eliminate C from
these expressions by dividing (B4a), and (B4b) by (B4c)
and applying the relation

. / or |__ (%
da, da, da, |,’
yielding
d 3a, —
3a [e F,z(fsyf)]“_F,z(fl’I) ’
ale™ ") |y
aJ 3a, _
o le °F,(f3,1)]=—F,(f,,I).
e %) |y

Holding I constant, one may integrate this equation:
3a 3a 3a
e 'F(f,])+e PFy(fy,])+te F,(f3,1)=g(I),

with g(I) an arbitrary function of I. Repeating this
analysis for (B3a) and (B3b) leads to the same conclusion.
In the infinite-dimensional case, the sum over all spatial
points becomes an integral [Eq. (B1b)], which is the gen-
eral form of the functional J consistent with (B2).

We now wish to integrate (B2) to determine the phase
function §. Define the functional @ by

= fd3x [ p(x)), T]—@ . (BS)

When substituted into (B2) this gives
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SCQ~ -8 ran 3 F [¢(x), T,
8o(y))  B(y”)
8Q &

J 3 3a(x)) j
—=———|d’xe F ,[¢(x7),T] .
Sda(y’) daly’) f oL

Since the integral appearing in these equations is just
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g(J), the solution
Q= [g(9d7
follows, which leads to (B1). Although we have thus

shown that Eq. (B1) represents a general class of solu-
tions, we do not know if all solutions are of this form.
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