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We calculate both the curvature and isocurvature density fluctuations that arise due to quantum
fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory.
The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general
have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and in-

teresting without having to tune any coupling constant to a very small value. The curvature pertur-
bations that arise due to the Higgs field are subdominant. If there are other massless fields in the
theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production
of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field

are also discussed. Several attempts at more realistic models of extended inflation are also analyzed.
The importance of the Einstein conformal frame in calculating curvature fluctuations is em-

phasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation
with an exponential potential, and the usual formula for the amplitude of curvature perturbations
applies directly.

I. INTRODUCTION

Extended inflation is a very interesting variation on
both old' and slow-rollover inflation. In old inflation the
inflaton field was the Higgs field responsible for grand-
unified-theory (GUT) symmetry breaking; while in slow-
rollover inflation, in order to achieve density perturba-
tions of an acceptably small level, the inflaton field had to
be a very weakly coupled gauge singlet. In extended
inflation it is possible for inflation to be associated with
GUT symmetry breaking, thereby once again "tying"
inflation to a cosmological phase transition. Models of
extended inflation have been based upon alternative grav-
ity theories where the value of the gravitational constant
is determined by the value of some scalar field, the sim-
plest theory being that of Jordan and Brans and Dicke.

In extended inflation it is crucial that the field that
determines the gravitational constant, which we shall
refer to as the Brans-Dicke field, vary significantly during
the inflationary epoch. The field that precipitates
inflation, which we shall refer to as the Higgs field o.,
does so because it gets hung up in a false-vacuum state-
a local, but not global, minimum of its scalar potential.
While the o. field is hung up, the Universe expands very
rapidly —as a large power of time, but not
exponentially —owing to the false-vacuum energy and
the varying "gravitational constant. " It is crucial that
the scale factor not grow exponentially, so that the prob-

ability (per Hubble volume per Hubble time) of nucleat-
ing a bubble of true vacuum, e(t)-I /H (t) fact, in-
creases with time (here l is the bubble nucleation rate).
At the start of extended inflation e is small so the o. field
remains trapped in the false vacuum; when it increases to
order unity the phase transition ends by the nucleation of
true-vacuum bubbles. The lack of a "graceful exit" back
to a radiation-dominated universe that plagued old
inflation is circumvented by the variation of e. Reheating
is accomplished by bubble collisions and should, unlike
reheating in slow-rollover inflation, be very eScient.
[The requisite variation of e(t) can also be accomplished
if H= const and the vacuum transition rate I varies with
time; this occurs in some models currently under study. ']

Density perturbations certainly arise as remnants of
the bubbles that are nucleated during the phase transi-
tion; these perturbations have been addressed elsewhere.
While it is possible that the density perturbations that
arise due to the bubbles are interesting, it seems uncer-
tain: If bubble nucleation turns on rapidly, there will be
very few bubbles of cosmologically interesting size; if
bubble nucleation turns on slowly, there will be too many
large bubbles to be consistent with the isotropy of the
cosmic microwave background radiation (CMBR). Un-
less the bubble nucleation rate is just so, it is not possible
for relic bubbles to be both interesting and consistent
with the isotropy of the CMBR. In any case, we will
focus on the density fluctuations that arise due to quan-
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turn fluctuations in the various fields in the theory during
extended inflation. For comparison, in slow-r olio ver

inflation it is these fluctuations in the inflaton field that
lead to the dominant density perturbation s: scale-
invariant (Harrison-Zel dovich) curvature perturbations
[by scale-invariant (or Harrison-Zel'dovich) spectrum, we
mean the spectrum of perturbations characterized by
constant amplitude at horizon crossing: (5p/p)=const],
and that also necessitate a very small coupling constant
for the inflaton field. Curvature perturbations arise in
extended inflation, but they are not quite scale invariant
(they have a power-law spectrum), and they arise due to
fluctuations in the Brans-Dicke field (the field whose
value controls the value of the gravitational constant).
Most importantly, no dimensionless parameter needs to
be set to a very small value to ensure that they are of an
acceptable, or even interesting, size: The amplitude of
the fluctuations is determined by the ratio of the
unification scale to the Planck scale.

In this paper we compute these perturbations by a con-
formal transformation to the Einstein frame, the frame
where the gravitational constant is constant. In this
frame, extended inflation closely resembles slow-rollover
inflation, with the Brans-Dicke field playing the role of
the inflaton with an exponential potential: For this
reason, the formulas derived for curvature fluctuations
and graviton production in slow-rollover inflation are
directly applicable. We also address the production of
massless Brans-Dicke particles and the isocurvature fluc-
tuations that can arise if there are other massless fields in
the theory, such as an axion or an ilion. Finally, we ana-
lyze density perturbations in several recent attempts to
construct realistic models of extended inflation.

II. BRANS-DICKK FIELD FLUCTUATIONS

54=&gn&b/co 5$ . (2.2)

This fact will be of some utility later.
This theory serves only as a toy model since the tem-

perature fluctuations in the CMBR that arise due to the
distribution of bubble sizes require that ~+20, while
precision solar-system tests of the theory require
co~500. However, this model will serve well to illus-
trate the salient features of the density fluctuations that
arise in extended inflation.

The matter part of the Lagrangian includes the Higgs
field cr and all other matter fields:
=(c}„cr) /2 —V(cr )+ . During extended inflation the
o field sits quietly in the false vacuum, and aft'ects the dy-
narnics only through the vacuum energy density that it
contributes to the energy density of the Universe:
p„„=V(et=0):—M, where the energy scale M charac-
terizes the energy scale of the phase transition.

The equation of motion for 4 and the Friedmann equa-
tion are

4+3H+ '$2@—= (p —3p),
a 2'+ 3

Q 87Tp Q)

g2 34 6 q)2

(2.3)

During extended inflation p=p„„:—M, p= —p„„, and
the scale factor a and 4 evolve as

a(t)=ao(1+Bt) +' ao(Bt) +'~ (for Bt &&1),
(2.4)

4(t) =@0(1+Bt) 4Q t (for Bt »1),
where B is defined in terms of co, M, and the value of 4 at
the start of inflation ( =40) by

A. Some extended-inflation basics Bg, 1/2
0

' 1/2
1 2 (6co+ 5 )(2'+ 3 )M, q=

32m@
(2.S)

For simplicity we consider the original La-Steinhardt
model of extended inflation. The theory derives from
the action

B„@c}„4
~ + g + matter16m. 16m'

(2.1)

where the Brans-Dicke field 4 sets the value of the
"e6'ective" gravitational constant: G =4 '. The Brans-
Dicke field 4, which has dimensions of mass squared, can
be written in terms of a scalar field P with dimensions of
mass, curvature coupling g= —1/4', and a canonical ki-
netic term @=2m.P /co. [We warn the reader that rewrit-
ing the action in terms of P can be misleading: The kinet-
ic term for P appears canonical, but because of the ab-
sence of the usual —A/16mGN term, gravity is not
canonical, and by integrating by parts, derivatives of the
metric tensor (from %) may be shifted to the P kinetic
term. ] Fluctuations in 4 are related to those in P by

Eq. (2.4) implies that during inflation, the expansion rate
is time dependent:

(co+ ,' )B—
a 1+Bt

CO+
2

(for Bt »1) . (2.6)

Since there is little variation in 4 during the matter or
radiation-dominated regimes, the value of 4 at the end of
inflation is approximately equal to its value today, the
Planck mass squared:

t, M4 =G '—=m =40Bt =
e N = Pl 2 2

q co

Pl P1
=qco

M

(2.7)

where the time t, corresponds to the end of extended
inflation.

Around this slightly ill-defined time the cr field makes
the transition to the true vacuum through the rapid nu-
cleation of Coleman —De Luccia bubbles, and bubble col-
lisions reheat the Universe to a temperature of the order
M. The quantity q is a dimensionless constant of order
unity and for co»1, q~&3/SnThroughout w.e. shall
reserve GN for the present value of the gravitational con-
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stant, and the Planck mass m p]
—=Gz ' = 1.22 X 10'

GeV. (Since the value of 4 at the end of inflation will
affect our results for the amplitude of the density pertur-
bations, one should keep in mind the possibility that in a
more realistic model 4 might evolve significantly after
inflation, in which case 4, would be very different from

mp]. We will consider models where this occurs in Sec.
IV.)

B. Production of fluctuations

The physical wavelength of a linear perturbation grows
with the scale factor of the Universe: A. h„, o-a(t). Dur-
ing inflation, a given perturbation begins sub-Hubble
sized and then crosses outside the "horizon" [i.e.,
/(, ~h„,——H(t) ']; later, during the matter- or radiation-
dominated epoch, it crosses back inside the horizon
(A, h„, -—H ' again). We will need to know the time t that
a fluctuation of present physical wavelength A. crossed
outside the horizon during extended inflation; in terms of
this time, A, is given by

H '(r),
2. 751(. a (t)

(2.8)

t
1025/( —1

qm p1

1/(N —1/2)
gl/(co —I/2)

Mpc

(2.9)

It is interesting to exhibit the effective value of the gravi-
tational coupling 6 as a function of epoch when the fluc-
tuation of wavelength A. "went outside the horizon":

6
6

22m P1 te 25 M
10 ~M cC t qmp,

Mpc

2/(N —1/2)

(2.10)

for co=10 and M=10' GeV, 6/G~ ——10 A,M ', . In addi-
tion, since the bubble nucleation rate per Hubble volume
E(t)=I /H =(t/t, ), we can express e(t) in terms of the
scale that is leaving the horizon at time t instead of t:

E(r) ~ g 4/(ro (/2)
Mpc (2.11)

As bubble nucleation "switches on, " say e increases from
0.1 to 1, a range of scales cross outside the horizon:
From the relation above we see that the logarithmic in-
terval of scales [5(ln/(, )] that cross outside the horizon as
bubble nucleation commences is proportional to
(co —

—,
' )/4. This implies that the range of bubble sizes ex-

pected varies exponentially with co, and one can easily ap-
preciate why there is an upper bound to co from bubble
nucleation.

where the reheat temperature is assumed to be M and
a (to) la(t, ) =M/2. 75 K (i.e., we assume that the
Universe evolved adiabatically after inflation and ignore
the variation in g, , so that T~a ). Writing A, =A,M,
Mpc=A, M, 10 GeV ' and taking a(t, )/a(t)
=(t, lt) +'/ it follows that

qm p1
AM, =10 "

(&, /&)

(2N+ 1)/(N —1/2)

Xq
qm p1

g2/(ro —)/2) (2 12)Mpc

(Since P is only minimally coupled in the limit that
co)) 1, 5$=H/2~ is only technically correct in this lim-
it. ) We see that the size of the fluctuation can be large,
just like the value of mp)/4, and for the same reason:
During extended inflation, 4 can be very small compared
to its present value. Moreover, we see that in the limit of
exponential inflation, i.e., co &&1, the spectrum of fluctua-
tions becomes "flat", that is, independent of A., as one
would expect. Finally, the amplitude of the 4 fluctua-
tions decreases to zero as co~ ~ (in the limit of co~ oo,
the Brans-Dicke field 4 freezes out and the theory be-
comes general relativity).

C. Evolution of Brans-Dicke-field fluctuations

Before we go on to analyze the curvature (density) per-
turbations let us first consider the evolution of the fluc-
tuations in the Brans-Dicke field itself (the isocurvature
perturbations). During extended inflation 4 grows as t ~;

using Eq. (2.3), it is simple to show that super-horizon-
sized fluctuations in 4 grow as t. Thus 54&/4 decreases
as t during extended inflation. During the radiation-
and matter-dominated epochs that follow extended
inflation the value of 4 remains roughly constant. Like-
wise, it is simple to show that super-horizon-sized fluc-
tuations in 4 also remain approximately constant. Once
a fluctuation in 4 reenters the horizon, it follows from
Eq. (2.3) that its amplitude decreases as a '(r). For fluc-
tuations that reenter the horizon during the present
matter-dominated epoch (A, & 13 Mpc), the decrease in
their amplitude until today is given by a(tH)=10 AM „
where t~ is the time when the fluctuation crossed back
inside the horizon and the value of the sealer factor today
is a0=1. For fluctuations that cross back inside the hor-
izon during the radiation-dominated epoch (/(, ~ 13 Mpc),
the decrease in amplitude is a (tH ) =10 A,M, .

Using all of these facts we can compute the present
amplitude of the fluctuations in the Brans-Dicke field.
For fluctuations of present wavelength less than about 13
Mpc,

64 —1/2 10
—5+25/( N —1/2 )

Xq'
qmpl

' 2N/(N —1/2)
g(N+ 1/2) /(N —1/2)

Mpc (2.13)

while, for fluctuations of present wavelength greater than
about 13 Mpc,

Now let us compute the horizon-crossing amplitude of
a fluctuation in the Brans-Dicke field (i.e., when it crosses
outside the horizon during extended inflation). We can
estimate its amplitude by setting the fluctuation ampli-
tude in the equivalent field P equal to the value of H/2m.
at the epoch of horizon crossing:

64~ —1/2 1050/(N —1/2)
4
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54~ —~—1/210 —6+25/(co —1/2)
where Vu=(2to+3)mp&/16m. .In the Einstein frame the
action is given by

Xq'
qmpl

2'�/( co—1/2 )

g2co/( co—1/2)
Mpc (2.14)

Again, we see that for the interesting values of M and co

the fluctuations are of interesting amplitude; e.g., for
co=10 and M=10' GeV,

+exp( —4/+o)g" B„o.B o.

—exp( —24/%0)M (2.17)

0 ~M (~513 Mp

=3 X 10 '
A,M', (A, ~ 13 Mpc) .

(2.15)

D. Curvature fiuctuations

Since the effective source of Newtonian gravity is pro-
portional to Gp and Gpo-p/4, one might expect that
fluctuations in 4 give rise to density fluctuations of a
similar amplitude. As we shall see this is essentially
correct. While it is tempting to try to analyze the pro-
duction of curvature fluctuations in the frame of Eq.
(2.1), known as the Jordan conformal frame, because the
eff'ective gravitational constant is varying [for interesting
models the value of G today is several orders of magni-
tude smaller than it is during inflation, cf. Eq. (2.10)] and
because the fluctuating field, the Brans-Dicke field 4, is
not minimally coupled, such a procedure is suspect.

The surest way to analyze curvature fluctuations is to
work in a conformally rescaled frame where the gravita-
tional part of the action takes the usual Einstein-Hilbert
form. This frame is known as the Einstein conformal
frame. The rescaling to the Einstein conformal frame is
accomplished by the conformal transformation

gp. =n 2(t)gp„, 02=m2pl/e, q =%Din(e/m2pl),

(2.16)

On scales less than that of the present horizon,
A, ~ 3000 Mpc, the fluctuations in 4 correspond to mass-
less 4 particles; while on the largest scales, X~3000
Mpc, they correspond to spatial fluctuations in the gravi-
tational constant. The consequences of such fluctuations
in the Brans-Dicke field, and any resulting constraints,
remain to be discussed. Brans-Dicke field fluctuations
should have numerous effects, including contributing en-
ergy density, causing temperature fluctuations in the
CMBR, affecting the timing of the millisecond pulsar,
and possibly affecting various precision solar-system tests
of general relativity. However, because the model we are
considering is truly a toy model which most certainly
needs modification —perhaps making the Brans-Dicke
field massive, or even massive and unstable —we will not
consider the (isocurvature) fluctuations in 4 any further.

The fluctuations in the Brans-Dicke field that arise
during inflation also correspond to energy-density fluc-
tuations and thus give rise to fluctuations in the space-
time geometry (curvature fluctuations) as a given mode
crosses outsize the horizon during inflation. We consider
curvature fluctuations next.

where 2B/C='1/4 / 0m, .pThese facts will be of use
shortly.

In the Einstein frame the Brans-Dicke field 4 takes on
the appearance of a minimally coupled scalar field with a
potential V(%)=M exp( —2%/40). The equation of
motion for 4 is familiar:

a
(2.19)

Assuming that the 4 field is homogeneous, its evolution
is just that of "slow roller": d%/dt = (dV/d%)/3H- .
(It is simple to show that 4/H4-tu ', which for co)) 1

justifies the slow-roll approximation. ) That is, when ex
tended inflation is uiewed from the Einstein frame, it
resembles slow rollouer i-ttflation og an exponential poten
tial, with the rescaled Brans Dicke fteld 0-' playing the role
of the inflaton

Because 4 behaves just like an inflaton field and be-
cause the gravitational part of the action is just of general
relativity, we can compute the curvature fluctuations that
result from quantum fluctuations in + by taking advan-
tage of the machinery developed for slow-rollo ver
inflation. %'hen a given scale A, crosses back inside the
horizon after extended inflation (denoted by "hor") the
amplitude of the fluctuation on that scale is given by

5p H
p h„d%'/d

3H
dV/d% ' (2.20)

where the quantities on the right side of Eq. (2.20) are to
be evaluated when the scale crossed outside the horizon
during inflation. Moreover, well after extended inflation

where an overbar indicates the value of a quantity in the
Einstein frame and as usual G~=mp1 is the present
value of the gravitational constant. We will assume that
the Higgs field cr is anchored in the false vacuum so that
its kinetic term can be neglected; the only effect of the o.

field is to contribute a false-vacuum energy whose value
in the Einstein frame is exp( —2%'/+o)M . Note too that
at late times, t &&t„when 4=m p&, the conformal factor
0~1, so that the Jordan and Einstein frames become
equivalent. (Since 4 grows with time, the conformal fac-
tor decreases monotonically to 1.) During extended
inflation it is simple to show that'

a(t)=a (1+Ct)
C(m/2+3/4) m/2+3/4 (f Ct ))I), (2.18)

1+Ct t

1+Ct=(1+Bt)2,
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5p

hor

2co+ 3

6 mp1

m p1

1/2

1050/( co—1/2 )4'iT g
—2/(6) —1/2 )

6
' (2'+ 1)/(a) —1/2)

X
mp1

g2/(~ —1/2)
Mpc (2.21)

Up to a factor of order co this is precisely the same as the
fluctuation amplitude in 4, cf. Eq. (2.12)."

This expression diverges in the large co limit because
the effective potential appearing in Eq. (2.17) becomes
flat, d V/d 4~0. In the Jordan frame, this theory
reduces to standard Einstein gravity in the same limit.
Once again, the fluctuation amplitude diverges because
the scalar field P does not roll if p„„:—M is a constant.

Implicit in computing (5p/p)h„was the assumption
that quantum fluctuations in the field 4 are given by
H/2'. Since 4 in minimally coupled and has a canonical
kinetic term this is the correct thing to do. ' What would
have been the outcome if we had worked in the Jordan
frame and assumed that 5$=H/2m. ? The fluctuations in
4 are computed from those in P by Eq. (2.1):

' 1/2' 1/2

H. (2.22)

the Jordan and the Einstein frames coincide so that the
curvature fluctuations in both frames are the same. That
is, the fluctuation amplitude in the Jordan frame, which
is what are interested in, is equal to that computed in the
Einstein frame, where the amplitude is most easily and
unambiguously computed.

Remembering that H =8~V/3m p1 and
d V('0)/d%= —2V/%0, it is simple to evaluate Eq. (2.20)
for (5p/p)h „..

r ' 1/2

Thus, only in the limit co)&1 is the result in the Jordan
frame assuming 5$=H/2m consistent with the result in
the Einstein frame assuming 5+=H/2m. This is simple
to understand: The fluctuation amplitude of H/2m ap-
plies only to a minimally coupled, massless scalar field
with canonical kinetic term. In the Einstein conformal
frame %' is a minimally coupled scalar field with canoni-
cal kinetic term, and because its potential is very flat it is
effectively massless. Thus 5%'=H/2m applies. In the
Jordan conformal frame the field P is only minimally cou-
pled in the co~ ~ limit, and thus 5$ =H/2n only techni-
cally applies for co~~: This is the limit in which the
two methods for estimating 5% agree.

Even if co is not large it is still possible to compute the
quantum fluctuations, 5$, in the Jordan frame. In this
case there is a subtle, yet important, correction to 5$ that
arises from the interaction of P with the curvature scalar.
In order to construct a Hamiltonian formalism and the
corresponding quantum theory, one must transform all
second-order derivatives in the —RP /8' term of Eq.
(2.1) into first-order derivatives through an integration by
parts. Consequently, there are terms containing deriva-
tives in P beyond the usual kinetic term, B&PB"P/2.
The equal-time commutation relationship
[P(t,x),8P(t,x')/dt]=ia (t)5 (x —x'), which deter-
mines the amplitude of the quantum fluctuations, is then
replaced by a more complicated expression (see, e.g.,
Salopek, Bond, and Bardeen, Ref. 8). Thus, it is much
easier, although not necessary, to work in the Einstein
conformal frame where one has a standard kinetic term
for the field whose fluctuations lead to density perturba-
tions.

Note that the power-law spectrum of curvature fluc-
tuations that arise due to quantum fluctuations in 4,
given by Eq. (2.21), becomes flatter as co becomes large.
The amplitude of these fluctuations is very interesting:
for co=10and M =10' GeV,

(2.23)

From this and the fact that 5%=%0(54/4), which fol-
lows from the definition of +, we find that

1/22'+ 3 2'+ 1 H
2N 2'+ 3 2a

hor

=4X10 'k'"
Mpc ' (2.24)

The associated temperature fluctuations on large angu-
lar scales, 8-1 to 180', corresponding to scales A, -100
to 10000 Mpc, are given by'

5T 1 H2
T s,. 1& d II/dt

' 1/2 (2'+ 1)/(6) —1/2)
1050/( co —1/2 )

6
—2/( cu —1/2) 104/(cu —1/2)( g P y

—2/(6) —1/2)

m p1 1

' 2/(60 —1/2)

(2.25)

where we use the fact that the comoving scale A, corre-
sponds to an angular size of 0=34.4 arcsec (Q0h }A,Mp, at
recombination. For co=10 and M=10' GeV, the tern-
perature fluctuations are certainly too large to be con-
sistent with the current limit to the quadrupole anisotro-

py, 5T/? ~ 3 X 10 . Increasing m or decreasing M
slightly can remedy this problem, while still predicting
fluctuations of an interesting size on smaller scales. That
bubble nucleation occur rapidly enough so that there are
not too many large bubbles requires that cv must be less
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than about 20. This fact together with the desire to as-
sociate M with a scale of order the GUT scale seems to
imply that the fluctuations will be both of an interesting
magnitude and not exactly scale invariant. The fact that
the amplitude of the density perturbations increases with
scale may be of some importance in that it boosts the
fluctuation amplitude on large scales. (According to
some observers, a scale-invariant spectrum lacks
sufticient power on large scales to be consistent with the
observed large-scale structure —large-scale streaming
motions, the cluster-cluster correlation function, and the
large voids seen in the Harvard Smithsonian Center for
Astrophysics redshift survey. )

Again, we remind the reader that the model considered
is truly a toy model which certainly requires
modification. However, since the key feature of extended
inflation is significant variation in the gravitational con-
stant during inflation, one might expect that this simple
toy model with co & 20 would at least mimic features of a
more realistic model of extended inflation. In Sec. IV we
will analyze curvature fluctuations in several attempts at
more realistic models.

Finally, we again emphasize that curvature fluctua-
tions are most directly and unambiguously addressed in
the Einstein frame. In the Einstein frame the gravitation-
al part of the action is just that of general relativity, and
the redefined Brans-Dicke field 4 precisely resembles a
minimally coupled inflation filed with canonical kinetic
energy term. Because extended inflation, as viewed in the
Einstein frame, directly corresponds to slow-rollover
inflation, the usual formulas for computing curvature
fluctuations apply. On the other hand, in the Jordan
frame the gravitational part of the action is not that of
general relativity, the effective gravitational constant
varies by several orders of magnitude from the time of
inflation until the present, and the Brans-Dicke field 4 is
not minimally coupled. By working carefully in the Jor-
dan frame one can get the correct result. "'

(We should remark that working in the Einstein frame
is not without its disadvantages: All the scalar fields have
nonstandard kinetic terms; the complexity has been shift-
ed to them, so to speak. However, during inflation the
matter fields play a very passive role, and the trade-off of
simplicity in the gravitational sector for complexity in
the matter sector is worthwhile. Ater inflation, when the
matter fields play a more significant role, it makes more
sense to work in the Jordan frame, where the matter
fields take on the standard form. )

III. FLUCTUATIONS IN OTHER FIELDS

A. Higgs field u

During most of extended inflation the Higgs field plays
a very passive role, quietly resting in the false-vacuum
state, o. =0. At the end of extended inflation the o. field
tunnels to the true vacuum; density fluctuations will cer-
tainly arise from the nucleation and thermalization of
bubbles. Here we are interested in the perturbations that
might arise due to quantum fluctuations in the o. field
long before the end of extended inflation. However, we

will not find them. Quantum fluctuations in the Higgs
field are highly suppressed for a very simple reason: The
mass of the cr field m = V"(0)-M is much larger than
the Gibbons-Hawking temperature TGw =H /2m. Very
roughly, m /(H/2n)-. &3n/2. ( 1 /&GM ) where
G ' (mp~ during inflation. As we have seen in the pre-
vious section, M must be significantly less than mp~ to en-
sure that the Brans-Dicke fluctuations are acceptably
small. Moreover, G ' must be much less than M dur-
ing inflation, otherwise quantum gravitational correc-
tions, which have not been taken into account, would be
important. Thus, the mass of the Higgs field is several
orders of magnitude larger than the Gibbons-Hawking
temperature, and so fluctuations in the o Geld are highly
suppressed. Note that we have addressed the fluctuations
in the u field in the Jordan frame, as in this frame the ki-
netic term for o is canonical. Were we to carefully ad-
dress the fluctuations in the cr field in the Einstein frame
by using a redefined field X which has a canonical kinetic
term, we would find that mz/(H/2m)=m /(H/2m).

B. Other massless fields

Any nearly massless scalar field, i.e., m &&H, in the
theory will have fluctuations of order H/2n. imprinted
upon it on all scales, as they cross outside the horizon. In
the case that the energy density contributed by that field
is subdominant, i.e., much smaller than that of the Higgs
field, these fluctuations will not contribute significantly to
the curvature fluctuations, but instead give rise to isocur-
vature fluctuations. This occurs in much the same way it
does in slow-rollover inflation. ' As a simple and in-
teresting example, we will treat isocurvature axion fluc-
tuations.

To analyze these fluctuations it is most appropriate to
work in the Jordan frame, where matter fields have their
usual kinetic and potential terms, but where the gravita-
tional constant is varying. [In the Einstein frame kinetic
terms in the matter Lagrangian are rescaled by factors of
0 =exp( —4/%o) and potential terms by factors of
0 =exp( —2%/VD). ] Since the fluctuations we are in-

terested in do not involve the gravitational degrees of
freedom, the variation of 6 is only of interest in so far as
it affects the expansion rate H. As noted earlier, a slow
variation in the expansion rate H only changes the ampli-
tude of quantum fluctuations in a massless scalar field by
order H /H. '

Consider a complex scalar field P that carries PQ
charge and undergoes spontaneous symmetry breaking,
after which P obtains a vacuum expectation value

(P) =f, exp( —i8), where f, = ( ~P~ ) is the vacuum ex-
pectation value that breaks Peccei-Quinn (PQ) symmetry.
The axion degree of freedom is 8. Suppose that PQ-
symmetry breaking occurs before, or early on, during
inflation. Since 0 is massless, no particular value is ener-
getically favored during inflation. Later, around a tem-
perature of 1 GeV, instanton effects become important,
and 0 develops a potential of depth about m and
minimum at 0=0. Within the inflationary region, 0 will
take on some arbitrary value 0&WO. The misalignment of
0& with the eventual minimum of the axion potential
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leads to coherent axion production, with the number den-
sity of axions produced being proportional to 81. ' Fluc-
tuations in 0 will lead to fluctuations in the number of ax-
ions produced and correspond to isocurvature axion per-
turbations: (5n, /n, ) =2(58/8, ).

Quantum fluctuations in p give rise to quantum fluc-
tuations in 8: 58&-H/—f„where H is value of the Hub-
ble parameter when the scale A, crossed outside the hor-
izon. During extended inflation H0-(co+ —2)/r, and we
have previously related t to A, , cf. Eq. (2.9). Bringing this
all together, we find that the spectrum of isocurvature ax-
ion perturbations is given by

6n,

n, q 8, f,mp, r

H
hq-—

mP1
(3.3)

Sm

3 mp1

m p1

' 1/2 (2'+ 1 )/( co —1/2)
~ ~50/( co —1/2) —2/( co —1/2)

q3 mP1

where H is to be evaluated at horizon crossing during ex-
tended inflation. Once the mode is outside the horizon its
amplitude remains constant until it reenters the horizon
after extended inflation. It is a simple matter to evaluate
Eq. (3.3) for the amplitude of the tensor-metric perturba-
tion h& at post-extended-inflation horizon crossing:

' 1/2

1025/(co —1/2)8 —1 ~
1

fg

gamp)

X g1/(co —1/2)
Mpc

' (a+1/2)/(co —1/2)

(3.1)

& ~2/(~ —1/2)
Mpc

For cu=10and M=10' GeV we find that

h~ —-5 X 10 iP' '
Mpc

(3.4)

(3.5)

na

n,
=3X10 A, Mpc &

(3.2)

which is definitely cosmologically interesting.
Any field that could develop isocurvature fiuctuations

in slow-rollover inflation can also do so in extended
inflation. A second interesting example is provided by
the "ilion" field, which in a particular model of baryo-
genesis gives rise to the baryon asymmetry. ' In this case
case ilion fluctuations result in isocurvature baryon-
number fluctuations. ' In general, in slow-rollover
inflation the spectrum of isocurvature fluctuations was
scale invariant; in extended inflation they will have some
scale dependence because the Hubble parameter is not
constant during inflation (inflation is power law rather
than exponential).

C. Graviton perturbations

To analyze gravitational-wave perturbations (the trans-
verse, traceless tensor metric perturbations) it is most ap-
propriate to work in the Einstein frame, as the results de-
rived or slow-rollover inflation' are directly applicable.
As mentioned previously, long after extended inflation
the Jordan and Einstein frames coincide so that the re-
sults we derive for tensor fluctuations in g„at late times
are identical to those in g„—the ones we are interested
in.

The dimensionless amplitude of a gravitational-wave
perturbation as it crosses outside the horizon during ex-
tended inflation is

When the Universe is matter dominated and a given scale
has crossed back inside the horizon, these isocurvature
perturbations will give rise to density perturbations of the
same amplitude. In the limit that co &&1, the spectrum of
isocurvature axion perturbations given by Eq. (3.1) is
identical to that in slow-rollover inflation. ' For M/f„
8, —1, co=10, and M =10' GeV the amplitude of fluc-

tuations is

The gravitational-wave mode just reentering the horizon
today, k-3000 Mpc, leads to a quadrupole anisotropy in
the CMBR of amplitude 5T/T-hz, which for the pa-
rameters above correspond to 5T/T-3X10 —very
close to the current upper limits to the quadrupole an-
isotropy.

At post-extended-inflation horizon crossing the ratio of
energy density in the gravitational-wave mode just cross-
ing inside the horizon to that of the total energy density
is given by

A,dpow/d A,

ptot

'2
4 H

3K mp1
(3.6)

for the mode that is just crossing inside the horizon today
(A, -3000 Mpc) this is

Adp /dA,PGW 1~114/(co—1/2) —4/(cg —1/2)
~A, -3000 Mpc

Pcrit
' 2(2'+ 1)/(a) —1/2)

x
mP1

(3.7)

13 ~ A, ~ 3000 Mpc

~A. ' ' 10 (mp, /M) 5'A. ~13 Mpc,
(3.8)

and can by normalized by the result above for
Op 3QQQ Mp In the limit that co && 1 this is the same spec-
trum as that predicted in slow-rollover infiation.

In addition to the relic gravitational waves that arise as

For the parameters above, Qp 3QQQ Mp 10
—10

It is straightforward to compute the spectrum of relic
gravitational waves today they extend from
A, -10 (mp, /M) Mpc, the mode that reentered the
horizon just after reheating, to A, -3000 Mpc, the mode
that is just reentering the horizon today. The fraction of
critical density contributed today varies with k as
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quantum fluctuations, there is an additional source due to
bubble collisions, which is considered elsewhere. '

IV. OTHER MODELS OF EXTENDED INFLATION

(4—m )
A.co 2 2 (4.1)

Such a potential for 4 would both "anchor" 4, thereby
preventing the gravitational constant from varying, and
provide a mass for the Brans-Dicke field, m ~ =A,m p, . As
we shall now discuss, in so doing it would not adversely
affect extended inflation provided that
m@ &(16m/co)'~ M /mp, —10 GeV (for M=10' GeV).

The addition of such a term to the Lagrangian density
of the theory modifies the equations of motion for a (t)
and 4; in the Jordan conformal frame they become

Were it not for the fact that precision solar-system
tests of the Brans-Dicke theory require u to be greater
than about SOO, Brans-Dicke theory with co-10 and
M-10' GeV would provide a very elegant and viable
model of extended inflation. The rub is that for co & 500,
the effective gravitational constant today, which varies as
6 '=4~41nt/3(2m+3), is changing too rapidly to be
consistent with the most stringent solar-system limits to
G. If, after extended inflation, there were some mecha-
nism to prevent the time variation of 4, e.g., a potential
of the general form A,(4—mp&), the above difficulty
could be circumvented. In many theories, including
superstrings and other theories that involve higher di-
mensions, a field such as the Brans-Dicke field arises, and
is known as the "dilaton. " There are a variety of reasons
for wanting and expecting the dilaton field to acquire a
mass, and extended inflation provides yet another. For
the sake of a simple model, imagine that the Brans-Dicke
field does acquire a mass, in the form of an additional
(potential) term in the Lagrangian:

Both of these conditions are met during extended
inflation provided that m~ &(16m./co)' M /mp, . Like-
wise, if these conditions are met, the new terms in the
equations of motion for a(t ) and 4 are subdominant. In
addition, conditions (4.3) also guarantee that 4 «H/2m
(and equivalently that mz, «H/2m. ); therefore, during
extended inflation the Brans-Dicke field 4 still behaves
like a massless scalar field (mass much less than the
Gibbons-Hawking temperature) and 5%'=H/2~, imply-
ing that our previous calculation for the curvature fluc-
tuations is applicable here.

There is one new and potentially worrisome wrinkle as-
sociated with the mass term introduced for the 4 field:
In general, extended inflation need not end when the
value of 4 is precisely equal to mp1, because the end of
inflation is determined by the tunneling of the 0 field to
the true vacuum. Thus, after reheating, 4 may be left os-
cillating about the minimum of its potential. These
coherent 4-field oscillations behave just like nonrelativis-
tic matter and will come to dominate the mass density of
the Universe long before the Universe is supposed to be-
come matter dominated (at a temperature of about 10
eV). To be more specific, if these oscillations come to
dominate the energy density of the Universe when the
temperature is T, )&10 eV, then the Universe reaches a
temperature of 3 K at the age of 10 Gyr (T, /10 eV)
(A similar problem was encountered in slow-rollover
inflation with the Polonyi field. )

The cure for this dread disease is simple: The Brans-
Dicke field must be unstable and decay. This is not
difficult to arrange for a field of such large mass. A more
thorough discussion of a model of extended inflation
where the Brans-Dicke field acquires a mass and how ex-
tended inflation fits into a realistic particle-physics model
will be given in Ref. 23. In addition, if the value of 4 at
the end of inflation (—:4, ) is not equal to m p~, then the
formula for (5p/p)h„must be modified.

To begin, Eq. (2.7) which defines t, becomes

4+3H4-
Q

87K 2kco
(p —3p )+ m p~(m p] 4),

(4.2}
H2= 8~P+ N i' HC'+ AN(C, — 2 )2

34 6 4 4 64

t2M4
m' =4 08't'=

m, qco

QC, mp,
qco

mp1

(4.4)

During extended inflation p =M, p = —p, and the vacu-
um energy associated with the airfield being in the false
vacuum controls the right-hand sides of both these equa-
tions. If the potential for 4 is not to interfere with the
implementation of extended inflation, then the additional
terms on the right-hand sides of Eqs. (4.2) must be sub-
dominant; this requires that

—1025667—1/2 )
m 1/(co —1/2)

where Q4, /mp~ is not necessarily equal to 1. Now Eq.
(2.9) relating t, It to M/mp&, A.M „and ro becomes

2 2
m~mp1 1—

16m M4
«1,

m p1

' 1/(o) —1/2)
M g1/( co —1/2)

Mpc
qm p1

(4.5)

2 2 2
mC, mpl 1— (&1 .

16~ M4 m p1

(4.3)
which is the same as Eq. (2.9} except for the factor of
V 0', /mp&. Equation (2.21) for the amplitude of the cur-
vature fluctuations becomes
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5p

hor

2'+ 3

6

' 1/2

mp1

1Q50/( co —1 /2 )4
6

' 1/2

mp1

' —(2a)+ 1)/(co —1/2) (2'+ 1)/(r0 —1/2)
—2/(co —1/2) M

? 2/(ro 1—/2) (4 6)q Mpc
mph

The amplitude of the fluctuations is changed by a factor
of (m /4 )' +' ' ' ' '. The amplitude of graviton
perturbations is changed by the same factor, while isocur-
vature perturbations are changed by a factor of
(m /4 )' +' ' ' ' ' If the value of 4, is greater
than m p1 then all the fluctuation amplitudes are smaller;
if the value of 4, is less than m p), then all the fluctuation
amplitudes are larger.

Steinhardt and Accetta have proposed a different ap-
proach in constructing a realistic model of extended
inflation, which they call hyperextended inflation. They
start with the action

S= fd xv' —g
4 M %

16m

PA@
16~M2

„(a„e)2
matter

(4.7)

where P is a dimensionless constant, M is an energy scale
less than the Planck mass (the GUT scale' ?), and 4 is, as
before, the Brans-Dicke field. The key modification is to
include higher-order terms in the coupling between the
Brans-Dicke fiield 4 and the curvature. (We have adopt-
ed a slightly different notation than theirs; in their nota-
tion co is a function of 4 which is then expanded in
powers of 4.)

In general, the conformal transformation to the Ein-
stein frame is quite complicated because of the three
different terms involving 4 and R. However, the
analysis can be simplified by considering regimes where
one of the three terms dominates. Those regimes are (a)
4 & M, where the first term dominates, (b)
M 4 M /P, where the second term dominates, and
(c) 4 & M /P, where the third term dominates. In regime
(a), the theory is a rescaled version of general relativity
where 6=M . Since a crucial feature of extended
inflation is the time variation of the gravitational con-
stant it is pointless to address regime (a). In regime (b),
the theory resembles the Brans-Dicke theory, and in re-
gime (c), the theory also has a time-varying gravitational
constant. We can exclude the possibility that we are in
regime (b) today, since if we were, we would again be con-
fronted by the problems of a simple Brans-Dicke model.
Today then, the effective gravitational theory must be
described by regime (c), in which case we can read off
the gravitational constant GN=M /PeI)„and deduce
the present value of 4: 0& =Mmp) /&p
=mp, (M/mp, &P). If M &&Pmp„ the value of 4 today
is less than the Planck mass squared, which will be the
case unless P«1. The value of 4 today can be much

I

greater than m2p„provided that p«1. We will return to
the significance of this point shortly.

There are severa1 possible scenarios for hyperextended
inflation. First, that the period of inflation relevant for
us, the last 60 or so e-folds, occurred during regime (b), in

which case the analysis of the previous sections applies
since the effective action during inflation is just that of a
Brans-Dicke theory. There is one important difference
however: the final value of the 4 during phase (b), denot-
ed by 4„may not be equal to m p1. We have just treated
this possibility above, in the model where the Brans-
Dicke field is given a mass; the amplitude of fluctuations
is this circumstance is given by Eq. (4.6). If Ct, is less

than m P1, the amplitude of the curvature perturbations is

increased relative to the original La-Steinhardt model by
a factor of about (mp)/4, ). Since the largest possible
value of 4, is M /P, the increase in the amplitude of cur-
vature perturbations is at least a factor of
(&PM/mpi) '"+"/' '/ ', which nearly cancels a similar
factor of M /m p, in Eq. (4.6):

T 1/2
2co+ 3

6
fiP & 1050/(cu —) /2)4~

hor
q

—2/(40 —1/2)

Xp(co+ ) )/(co —1 /2)g2/(ro —1/2)
Mpc (4.8)

a„ea.c

By means of the conformal transformation

g„„~Qg„„, II =M mp)/)P4

the theory can be written as

(4.10)

S=fd'x& g — — +-'g&"a qa.q —V(q)
16~6

(4.11)

where V( tll ) =(M /P m p, )exp( —2tIr /tII0) V( o ),
46 =exp( tli/2%0), and the new definition of %0 is

+0=3m~1/16~. In rescaling the theory, we have as-

sumed that cu &&6, in which case the kinetic term for +

In this case it is difficult to achieve curvature perturba-
tions of an acceptable magnitude. If P«1, so that

mp1, the amplitude of the density perturbations is

smaller than the original La-Steinhardt model, and it is

quite possible to achieve density perturbations of an ap-
propriate size.

Now consider regime (c). In this regime the action is

effectively given by

S= d4X —g
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that arises from the original kinetic term for 4, cf. Eq.
(4.7), is negligible compared to that which arises from the
conformal transformation involving A. The evolution of
the rescaled scale factor a and N are easy to analyze in
the Einstein conformal frame:

(4.12)

5p =4m &N/3 10

m =N/2-30. Returning to Eq. (25) we find, provided
that co ~ 240,

In the Jordan frame it follows that

a cat1 (avoca ct:t (4.13)

2(N —1)/(N —2)
M A2/(N —2)

Mpc
mp1

(4.19)

In this regime there is no inAation. However, 4 does
evolve, as it must to reach its final value, 4=Mmp~/+p.
Because of the large density perturbations that may arise
during inflationary regime (b) unless p && 1, care must be
taken in implementing this version of hyperextended
inflation.

There is one last possibility, that the inflation relevant
to us occurred during regime (c), which requires that
cok6. In this case, the transformation to the Einstein
conformal frame is not a simple one. If we treat 4 as
slowly varying, the transformation above is valid with the
change

2
P1 ct) M

16m 6 P4
(4.14)

In this case

a~t, m= —+—,4~t3 coM
(4.15)

4 8'
Early on, when 4~coM /2P, inflation occurs as m & 1;
as 4 increases to the value A@M /2p, m —+ I and super-
luminal expansion ceases. In terms of the evolution of 4,
the epoch of inflation lasts from 4 =M /p to
@=coM /2P. During inflation,

a~t ' @~a' ' (4.16)

Using the usual formula for the amplitude of the curva-
ture fluctuations, (5p/p)„„=H /0, we find that

' (2m —1)/(m —1)
M g1/( m —1)

Mpc
mp1

(4.17)

Since m varies during inflation, we cannot immediately
evaluate this expression.

During inflation, that is, while M /p ~ 4 ~ coM /2p,

d lna =(2m —1)d in@= —+ d In@ . (4.18)
1 coM

2 4'&

Integrating this expression, we find that the total number
of e-folds in the scale factor a(t) during inflation is
(co/2) exp(co/4 —1/2); we immediately see that in order
to achieve the 60 or so e-folds of inflation necessary, co

must be excess of about 240. Further, it is straightfor-
ward to compute the value of m around the time that the
cosmologically interesting scales went outside the hor-
izon (N=60 or so e-folds before the end of inflation):

Since m =N/2))1, this expression is very nearly in-
dependent of N and kM~, . (5p/p)h„-—300(M/mp~) .
Fluctuations of a cosmologically interesting amplitude
can be attained for M-10' GeV or so, provided that
co ~ 240. Whether or not this leads to an overproduction
of large bubbles remains to be seen.

V. CONCLUDING REMARKS

In slow-rollover inflation the dominant curvature fluc-
tuations arise due to quantum fluctuations in the inflaton
field. In extended inflation, there is no inflaton field per
se; the Higgs field o, whose vacuum expectation value is
the order parameter for the phase transition, plays a very
passive role until it makes its transition to the true vacu-
um at the end of inflation, thereby reheating the
Universe. It is the quantum fluctuations in the Brans-
Dicke field that give rise to the dominant curvature fluc-
tuations (aside from those associated with bubbles).
These curvature fluctuations are most directly addressed
in the Einstein conformal frame: In the Einstein confor-
mal frame extended inflation resembles slow-rollover
inflation with the Brans-Dicke field playing the role of
the inflaton, with an exponential potential; the calcula-
tion of curvature Auctuations is precisely the same as in
slow-rollover inflation. Unlike slow-rollover inflation,
these fluctuations are typically not scale invariant and,
even more important, it is not necessary to tune any pa-
rameter to a very small value to ensure that they have an
acceptable amplitude: The requisite amplitude,
(5p/p)&, „-10,is obtained provided that the scale M
(GUT scale?) is of order 10 that of the Planck scale. In
principle, the density perturbations that arise from bub-
bles can also be important; however, that seems to re-
quire that a parameter, in the Brans-Dicke example co, be
tuned to be just so.

Just as in slow-rollover inflation, isocurvature fluctua-
tions can arise in any massless field present in the theory,
e.g., the axion or the ilion. Such isocurvature Auctua-
tions are of a similar magnitude as they are in slow-
rollover inflation, but they too typically have a non-
scale-invariant spectrum. Because ordinary matter fields
have canonical kinetic terms in the Jordan frame, these
fluctuations are most appropriately computed in the Jor-
dan frame.

While we have only analyzed density Auctuations in ex-
tended inflation for the simplest toy model and a couple
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of attempts at a more realistic model, there is some hope
that these models will serve to illustrate the general
features that one can expect in a viable model of extended
inflation; the reason to expect that this is true is that the
key feature of extended inflation is significant variation in
the gravitational constant, which occurs in the toy model
analyzed here for co ~ 20.
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