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Electroweak radiative corrections to the semihadronic decay rate of the r lepton
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The one-loop electroweak radiative correction to the decay rate of the r lepton into a neutrino

plus hadrons is calculated. The correction includes a large logarithm of Mz/M, whose coefficient
was calculated previously. The constant under the logarithm gives an additional electroweak
correction of 0.1%. It is argued that modifications of this electroweak correction due to nonper-

turbative QCD effects are suppressed by powers of M, .

The r lepton is unique in that it is the only charged lep-
ton that can decay semihadronically, i.e., into a neutrino
plus hadrons. The electron is stable and the muon is too
light to decay into hadrons. Precision measurements of
the total and partial decay rates of the r could be used to
sharpen the determination of the parameters of the stan-
dard model of particle physics and to search for deviations
from its predictions. The partial decay rates into the lep-
tonic modes v~ v, and v,p v„and the semihadronic
mode v, tr can all be calculated accurately. The lifetime
of the r and its branching fractions into the leptonic decay
modes and many of its semihadronic modes can be mea-
sured accurately. Combining these experimental mea-
surements with strong theoretical constraints from isospin
symmetry, one can determine whether the known partial
decay rates account for the total decay rate. Attempts to
carry out this accounting using the world averages for the
measured lifetime and branching fractions have revealed
discrepancies of several standard deviations. ' This puzzle
has opened up an opportunity for theoretical predictions
of the total decay rate of the r to point the way toward the
resolution of the discrepancy. An accurate theoretical
prediction for this decay rate will also allow a precise
determination of the QCD coupling constant from mea-
surements of the lifetime of the r.

The decay of the r into semihadronic final states neces-
sarily involves nonperturbative aspects of QCD. Never-
theless, the total semihadronic decay rate can be calculat-
ed theoretically. It is convenient to define a ratio R by
normalizing the semihadronic decay rate to the electronic
decay rate:

I (r v,hadrons(y))R=
I (r v~ v, (y))

The decay rates in (1) are for inclusive final states which

may contain additional photons or lepton pairs. A naive
estimate R =3 is obtained by comparing the decay rate
into the quark pairs dit and su with the decay rate into
e v, . The QCD corrections to this naive prediction can
be calculated systematically. The operator-product ex-
pansion can be used to organize the nonperturbative QCD
corrections into an expansion in powers of 1/M, . ' The
coeScients involve matrix elements of local operators for
which phenomenological estimates are available. These
estimates indicate that the nonperturbative corrections to
R are less than 1%. The purely perturbative QCD correc-

tions are much larger. They can be expressed as an ex-
pansion in the QCD running coupling constant a, (M, )
evaluated at the mass of the r. The corrections of order
a, and a, to the naive prediction R =3 are approximately
10% and 5%, respectively. In a previous calculation of the
order a, correction, it was found to have an enormous
coefficient so that it gave a correction of about 10/v, cast-
ing doubt on the validity of the entire perturbation expan-
sion. However, this calculation was based on a calculation
of the order-a, correction to the ratio R of e +e annihi-
lation. An error has been found in this calculation. The
order-a, correction is being recalculated and is expected
to be significantly smaller. Thus there is reason to expect
that the uncertainty in the QCD corrections can be re-
duced to the level of I%%uv of R, a truly astonishing accura-
cy.

If the uncertainty in the QCD corrections can be re-
duced to the 1% level, then the electroweak radiative
corrections become important. They are on the order of
2% of R, which is much larger than one would naively ex-
pect. The reason they are so large is that the purely QED
one-loop correction to the decay r veau is ultraviolet
divergent. In the standard electroweak model, the diver-
gence is cut off at the Z mass, but it leaves a large loga-
rithm ln(Mz/M, ). The coefficient of the logarithm has
been calculated' and this correction has been taken into
account in previous predictions. The purpose of this paper
is to present the calculation of the constant under the log-
arithm, thus reducing the uncertainty in R from elec-
troweak corrections to much less than 1%.

At the tree level, the decay r vt'z/'i proceeds
through an intermediate virtual IV via the diagram in

Fig. 1. We neglect corrections suppressed by M, /Mtv
and mj/M„where nt/ is the mass of a final-state fermion.
The tree-level result for the decay into v& v, is

M,r, = (2)
384xsw Mw

where a= )37 is the electromagnetic coupling constant,
s~ =sinO~, and O~ is the Weinberg angle. For the decay
into vPtt, (2) must be multiplied by 3~ V„q (, where V„q is
an element of the Kobayashi-Maskawa matrix.

We calculate the electroweak radiative corrections to
erst order in a. The natural choice for the electromagnet-
ic coupling constant is the running coupling constant
a(M, ) evaluated at the mass of the r, whose numerical
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FIG. 1. Lowest-order diagram for the decay of the r into v,
plus a fermion and an antifermion.

value is a(M,)=,», . We neglect corrections sup-3 1

pressed by mj/M„where my is the mass of a final-state
fermion, so the masses of all final-state fermions are set to
zero throughout the calculation. We also neglect correc-
tions proportional to M, /M~. We work in the on-shell
renormalization scheme" in which the parameters of the
theory are chosen to be the masses of all the particles (8;
Z, Higgs bosons, and fermions), together with a. The
Weinberg angle is then defined to all orders by
cos8ii —=Miv/Mz. We separate the radiative corrections
into three classes: QED corrections due to the radiation
of real photons, QED corrections due to the exchange of
virtual photons between the external fermion lines, and
the remaining weak corrections which arise from the

I

embedding of QED in the standard model. We calculate
the QED radiative corrections in the Feynman gauge and
we use the 't Hooft-Feynman gauge for the propagators
of virtual 8' and Z bosons. Ultraviolet divergences are
regularized using dimensional regularization in 4 —2e di-
mensions. It is verified that there are no ambiguities asso-
ciated with the definition of y5. Infrared divergences from
soft photons and from photons collinear to the massless
fermions are regularized by giving the photon a small
mass A, .

The electroweak corrections to the denominator in (1)
are identical to the corrections for muon decay and have
been calculated previously. " We therefore organize our
calculation so that this can be used as a check on our re-
sult. We calculate the correction for the decay of a lepton
with charge Qp

—1 into a neutrino, a fermion of charge
Q2, and an antifermion of charge Q3, with Qq+Q3 = —I.
In the case of the electronic decay, the charges are Q2—1, Qi 0. For the semihadronic decay, the charges
are those of the d quark and the a antiquark:
Q2- —3,Q3- —i

The matrix element for the QED real-photon correc-
tions is the sum of the three Feynman diagrams in which a
real photon is radiated from the charged-fermion lines in

Fig. 1. The matrix element is squared and integrated over
the phase space of the four final-state particles. The result
1S

1261 +2(
72

blgfj I p Q 21n + +(Q +Q ) —ln — +Qpg 2ln + ln +
2g ~ 24 ~ 24 ~, 3 ~ 24

+Q Q 2ln' + 1 + —( +Q Q, —41n — ln
M, 3 M, 72 M, 3 M,

(3)

correction is the sum of the three Feynman diagrams in

which a virtual photon is exchanged between two of the
charged fermion lines in Fig. 1, plus the three diagrams
with self-energy corrections on the charged lines (multi-
plied by one-half to account for wave-function renormal-
ization). The interference term is integrated over the
phase space of the three final-state fermions. The result is

2

BI I- a 4'
VIrtual 0 ~ Q2

where g2 x /6. The diagrammatic origin of each term is
evident from the electric charges in the coefficients multi-

plying it. Infrared divergences from soft and collinear
photons appear as logarithms of the photon mass A,.

The QED virtual-photon corrections come from the in-
terference between the lowest-order matrix element and
the order-a corrections to that matrix element. The

I

1 —2ln —2 +(Q2+Qi) — +ln +—1 A. 1

2e M, 2e M, 4

+Qpg2 21n —21n
t

17 X 1

3 M, 8
ln ———5(2

19 X 47
+Qpg3 8ln —21n — ln + —5(i

7

In the expression raised to the power e, y is Euler's con-
stant and p is the arbitrary mass scale introduced by di-
mensional continuation. They will cancel out of the final

answer. The diagrammatic origin of each term is again
evident from the electric charges in the coefficient multi-

plying it. The infrared divergences in (4) cancel against
those of {3).The ultraviolet divergences in {4)appear as

+Q2Q3 ——+4 ln + ln + —2/2
1 2 k 43 X 895 (4)

M, 3 M, 72
I

poles in e and the overall coefficient of the pole is propor-
tional to Qp+(Q2+Qi) . The terms proportional to
Qpg2 and Qpg& are ultraviolet finite because the W prop-
agator provides a convergence factor at large momen-
tum. An ultraviolet divergence is recovered in the limit
~~~ oo

A momentum cutoff A could be used to cut off both the
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1/e divergence in (4) and the divergence as Miv
The net effect is the replacements I/e 21n(A/M, )+ —,

'

and ln(Mg /M, )~ln(A/M, ). The divergence is then
proportional to Qo —2Qo(Q2+4Q3) + (Q2+ Q3)

3(—1 —Q2+Q3). In the case of the electronic decay
(Q2 —1, Q3 0), the dependence on the cutoff' A can-
cels and the correction factor in the sum of (3) and (4)
reduces to (a/2m)(25/4 —x ). This is the classic result
for the QED correction to the muon decay rate in the Fer-
mi model for weak interactions' and provides a valuable
check on our calculation. For the semihadronic decay
(Q2 3 Q3 3 ), the QED correction in the Fermi
model is divergent. In the standard electroweak model,
the divergence is replaced by a large logarithm 'o

ln(M, /M, ).
The remaining radiative corrections are weak correc-

tions that arise from the embedding of electromagnetism
in the standard model. They are all short-distance correc-
tions that reduce to a multiplicative renormalization of
the tree-level matrix element. The diagrams consist of
four box diagrams in which a virtual Z is exchanged be-
tween the fermion lines in Fig. 1, six vertex corrections in-

volving a virtual Z, four vertex corrections in which a vir-

tual photon attaches to the 8'line, plus propagator correc-
tions on the W line and the external fermion lines. There
is also a counterterm associated with the renormalization
of the W vertices in Fig. 1." The sum of all these correc-
tions is

3+3Qo(Q2 Q3) In cw (5)
II~«) a 4~p' 1, Mw

Mw 2m eM, & Mi sw 2 sw sw

where sn sin8~ and cia cos8~. In the first term in (5), II'(0) is the W propagator correction renormalized on the
mass shell and evaluated at zero momentum. It cancels between numerator and denominator in the ratio R defined in

(1),so its explicit form is not needed here.
Adding (3)-(5),we get the complete electroweak correction to the decay rate:

~eleetroweek I o 2 + 3 [I Qo(Q2 Qi ) ) ln +11~(0)
Mw 2K

0 2 3 M 4

4 6
lncw+

sw $8'

r

——+ —~ Qo
1 89
2 24

(6)

Setting Qo Q2
—1 and Q3 0, we get the complete order-a correction to the electronic decay rate of the r in the stan-

dard model. The correction is identical to the correction for muon decay in the standard model, " thus providing another
check on our calculation. The electroweak correction to the semihadronic decay rate proceeding through the du current
or the su current is obtained by setting Qo= —1, Qz

—
—,', and Q&

—-', . Taking the ratio R defined in (1), we find
that the result is

R 3(IV„qI + I V„, I ) 1+ 41n +—+QCD corrections
2x M, 6

The logarithm in (7) represents a short-distance correction due to virtual particles with energies ranging from M, to
Mz. It should therefore be pulled out as an overall factor S(M,) =1+2(a/ir)ln(Mz/M, ) multiplying both the elec-
troweak and the QCD corrections. Its numerical value is 1.018. If the renormalization group is used to sum up all the
leading logarithms of Mz/M„ it increases slightly to S(M,) 1.019. Our final result for the ratio R, including the lead-
ing electroweak correction together with the known perturbative QCD corrections is

R 3(IV„~I2+ IV»I2)S(M. ) 1+ + +5 20 + ' ' '5 a(M, a, (M, ) a, (M, )
(8)

In addition to higher-order perturbative corrections to
(8), there are also nonperturbative corrections. One
might expect the nonperturbative QCD corrections to be
large, since the invariant-mass distribution of hadrons
differs dramatically from the invariant-mass distribution
for quarks and gluons computed in perturbation theory.
However the total decay rate is given by the integrated
distribution and this is much less sensitive to nonperturba-
tive effects than the shape of the distribution. The
operator-product expansion can be used to systematically
organize the nonperturbative corrections into an expan-
sion in powers of 1/M, . The coefficients involve vacuum
matrix elements of local operators such as the quark con-
densate (y'y) and the gluon condensate (G„'„G'"").'i The

I

values of these matrix elements can be estimated phenom-
enologically. The best available estimate is that nonper-
turbative QCD effects should give a negative correction
between 0.3% and 0.6%%uo.

The remaining nonperturbative corrections involve the
inffuence of nonperturbative QCD effects on the elec-
troweak correction. The spectrum of photons emitted in
semihadronic decays of the r diA'ers significantly from the
spectrum obtained by the perturbative calculation of the
decay into quarks plus a photon. However it is likely that
the integrated spectrum is much less sensitive to nonper-
turbative eAects. It is possible that these nonperturbative
corrections can also be systematically organized into an
expansion in powers of 1/M, . The coefficients would in-
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volve vacuum matrix elements of local operators evaluated
in the presence of a weak background electromagnetic
field, ' such as the magnetic susceptibility of the quark
condensate. A careful treatment of these effects analo-
gous to the operator-product-expansion treatment of the
nonperturbative effects of pure QCD has not been carried
out. If it is indeed possible, then these corrections would
be suppressed relative to the perturbative electroweak
corrections by the ratio of some hadronic matrix element
to the appropriate power of M, and would be much small-
er than 1%.

We have computed the order-a electroweak correction

to the ratio R for the decay of the r. The correction con-
tains a large logarithm of Mz/M, which gives a short dis-
tance enhancement of +1.9%. The constant under the
logarithm increases the correction further by 0.1%. A
precise theoretical prediction of the r lifetime, or a precise
determination of a, (M, ) from the measured lifetime,
must await the recalculation of the order-a, perturbative
QCD correction.
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