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Electron propagator in a strong electromagnetic field in the very-high-energy limit
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The solution of the Klein-Gordon and Dirac equation for the propagator (Green s function) in

the very-high-energy limit (1/E approximation) is studied in the context of quantum "beam-

strahlung. " The results obtained are necessary to consider bremsstrahlung energy loss by electrons
and positrons in high-energy e+e linear colliders when multiphoton radiation processes are taken
into account. The results can be useful also in other physical processes, e.g., photon radiation in

crystals.

In the near future beams of particles of very high ener-

gy (1 TeV and more) will be used, in machines which are
now being considered and built. In this context, consid-
ering the physics in such high-energy limits, it is
worthwhile to study the perturbation theory in which the
1/E expansion is used. By 1/E expansion we mean the
expansion in the power series of 1/E, where E is an ener-

gy of the particle. In many physical situations, high-
energy particles interact with the strong external field,
which practically makes it impossible to apply standard
perturbation theory. The 1/E expansion may (in some
cases) help us solve this problem. Moreover, in many
problems some effects can be treated perturbatively in the
standard sense (small coupling constant), and some can-
not be. The "classical" example of such a situation is
quantum radiation processes in the presence of a strong
external field. The "beamstrahlung" process, which has
been recently studied in detail, is of this type. In Refs.
2—5 the beamsstrahlung energy loss by electrons and pos-
itrons in very-high-energy e e linear colliders was cal-
culated for the case of longitudinally uniform and nonun-
iform bunches. A different approach to the problem is
presented in a series of papers.

One of the next steps in considering beamstrahlung is
to calculate the multiphoton radiation processes. In the
method proposed and developed by Jacob and Wu, '

beamstrahlung is calculated in terms of Feynman dia-
grams. To consider multiphoton radiation, we should
find first of all the formula for the electron propagation
function in the "external field" produced by a very dense
positron bunch.

In our paper we propose a method which allo~s us to
solve, in a systematic way, the equation for the propaga-
tor in the high-energy approximation. The method is
presented in Secs. II and III. In Sec. IV we calculate the
propagator for the spinless case in the 1/E approxima-
tion. The Dirac case (electron with spin) is discussed in
Sec. V.

[k +V —2kU(r)+U (r)]G(r, r')= —5(r —r'), (2.1)

where k =
~k~ =E is the energy of the electron

(E =k +m ), k ))m, and U(r) is a potential generat-
ed by the positron bunch. Let R=r —r', R =~R~, and
n=R/R. We assume that G(r, r') has the form

and

Go(r, r') =Go(R)S&(r, r'),
(2.2)

S(r, r')=So(r, r') 1+—V(r, r')1

Go(R ) = ( 1/4vrR )e '" is a "free" propagator for the
Klein-Gordon equation,

(k +V )Go(R)= —5(R) . (2.3)

tion function of an electron in the high-energy regime,
where the energy of the electron E =k is going to infinity
(k=~k~, where k is a momentum of the electron). We
have to solve the stationary Klein-Gordon equation in
the external potential field for the propagator (Green's
function) in the 1/k approximation. The 1/k approxima-
tion means that we consider the terms independent of k
and the terms proportional to 1/k, neglecting terms 1/k
and higher powers of 1/k. Such an approximation is
consistent with the high-energy regime where k ~ ~ and
with earlier papers. ' The external field is a potential
generated by the positron bunch inside which. the elec-
tron is running. We assume that the potential is indepen-
dent of time, which allows us to consider the stationary
Klein-Gordon equation. The simplest way to obtain the
desired result is to rewrite the Klein-Gordon equation in
the form of a set of the differential equations which can
be solved much more easily. Let us present this method
first.

We have the following differential Klein-Gordon equa-
tion for the electron propagator G (r, r'):

II. THE PROBLEM

First we consider the spinless case (we neglect the
spin of the electron). We will be looking for a propaga-

So and + are unknown functions.
The propagator should be symmetric: G(r, r')

=G(r', r), which implies that S(r, r')=S(r', r). We as-
sume also that So(r, r)=SO(R=O)=1. Now we can put
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the assumed form of G (r, r') into the Klein-Gordon equa-
tion (2. 1) and [using (2.3)] obtain the result

S(r, r')=1 —2k f Go(r —r")Go(r' —r")Go '(R)U(r")

V2S + gyV2S + VS Vgy + S V2gy +2 'I
0 k 0 k 0 k 0

II

X 1
U( ) S(r- r )d3r

2k
(2.9)

+2i+n-VSQ+2iSQn. V++ U Sp

+ —U %S —2U%S
1

0 J(r, r') = U(r) 2k—U(r)I, (2.10)

Now we define a new function J(r, r')=U(r)S(r, r')
which obeys the following integral equation:

—2kUS ——n V'S 1+—+ — S n V+=02 — 1 2

(2.4)

Consistent with our approximation, we limit ourselves to
considering only terms proportional to k and terms in-
dependent of k (1/k approximation in G). Neglecting the
terms in (2.4) proportional to 1/k and 1/k, we find that

V So+2k(in V —U)SO+ U So+2iSon V%

—2USoqi+2 i% ——n VS~=0 . (2.5)
1

where

I= GQ r —r" Gp r' —r" Gp
' R J r",r'

1
U(r")

2k

In the next sections we will solve this equation in the
high-energy approximation.

III. INTEGRAL EQUATION
IN THE HIGH-ENERGY LIMIT k ~ ao

Let us consider integral I from Eq. (2.10):

Equation (2.5) can be rewritten as a set of two equations:
ikI Ir —r" +Ir' —r" —R) ~e

4~ 2k

in VSQ=USQ,
(2.6) (3.1)

V SQ + U Sp n'VSQ +2iSpn'V% =0

Now it is easy to solve (2.6) under the following condi-
tions: So(r, r')=So(r', r), qi(r, r')=%'(r', r), and %(r, r)
=%(R =0)=0. The solutions are

So(r, r') = exp i f U—(ns+r')ds
(2.7)

%(r, r') =
—,'[ U(r) —U(r')]+ —,

' f So '
V,SO(ns+r')ds,

where V =(n V) +(2/R)n V+V, .

The more elegant and systematic way is to solve the in-
tegral equation instead of the set of differential ones.
However more complicated, it may appear more efficient,
especially in the case when we cannot limit ourselves to
the 1/k approximation and must take into account terms
of order 1/k and more.

Now we will solve the integral equation in the 1/k ap-
proximation. The method used here is the method of the
stationary phase, applied and developed in the 1950s by
Wu, Schiff, Saxon, and others in the context of the high-
energy potential scattering, where it was used to calculate
wave functions and the S-matrix elements.

From Eq. (2.1) we can write the following integral
equation for G (r, r'):

I(1+—,'p' —
—,
' p' +

where p+ =
z +

2

1 1 2 1 1 2

To calculate I let us choose the coordinate system defined
as

r=(0, 0,z), r'=(0, 0, —z), z &0,
R =2z,
Ir' —r"

I =(p +z+ )', Ir —r"
I
=(p +z )'

where p =x" +y", z =z"—z, and z+ =z"+z. The
integral I will be calculated using the method of station-
ary phase. Because k~~, the dominant contribution
proceeds from such configurations where the expression
Ir —r"I+ Ir' —r"

I

—R =0. This means that p =0, and so
we can express integrand in (3.1) in terms of a Taylor
series near the configuration where p =0 (x"=y"=0).
We have

Ir —r"
I

= Iz I(1+-,'p' —
—,'p' + . . ),

2

where p z

G(r, r')=Go(R) —2k f Go(r —r")U(r") 1—U(r")

XG(r",r')d r" .

After simple modifications we have

(2.8)

it(x )=1——'x + —'x
2 8

J(r",r') =Jo+J x"+J y" + —,
' J„„x"

+Jz~.x y +
2 JJyy +
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where

Jo =J(0,0,z",r'),
and the same for J,J„,J

U(r") = U(0, 0,z")+ . (3.2)

J,„= (0,0,z",r'),a'J
Bx

The Taylor series for J is correct only if J is a slowly
varying function of x",y", and z". This assumption will
be checked after the calculations. Using above series
(3.2) —(3.1), we get

= z i&(Iz+ ~+Iz I
—2z)I= e

2n. Iz+z

1
X 1 — UOOz" +

2k
Jo+T'J x + Jyyy + ' ' ' P(p )P(p+ )e P y(p )dx dy dz

(3.3)

where

2 4
2)

—ika p + 1 1

21z+ I

1Q2 — +
2lz —I 21z+ I

The terms proportional to J Jy J y give no contribution to I.
Now let us change the variables:

where a =g+ gz. Then

. 1 24y(p )= exp i a—a —+
k

In the high-energy limit, y can be expressed by the 1/k power series

g=1 ——a a+2 4

k

In this way a systematic procedure is created which allows us to express integral I as a power series in 1/k. Now it is
easy to calculate integrals over g& and (2 (they are of the Gaussian type). We limit ourselves to (1/k) terms in I (we
calculate the propagator in the 1/k approximation). It is consistent with the results obtained by Jacob and Wu for the
wave functions. '

We have

p 1 ik(Iz j+~z l
—2z)

k
I z+ z

~2 —f2+ g2

' Jp Jp U 0 Oz" +i a a +—11„.421
k 2 2 z

'2

a +— a + (J„„g+J~~gz) e'" dg&d/2dz",
2 Z + I 2

(3.4)

To calculate integrals in (3.4), we have to consider three integration ranges for variable z": (
—oo, —z), ( —z, z), and

(z, ao ). The result is
2

f J(0,0,z",r')dz" + f iU(0, 0,z")J(0,0,z",r')dz"—
2(ik) —z 2(ik) —z

2

—f J(0,0,z",r')dz"1 1 z

2( ik z —z

1

2(ik)
z (z' —z"')Vr J(0,0,z",r')dz" +

2Z —z
[J(0,0, —z, r')+ J(0,0,z, r')],

2(ik)
(3.5)

where V'T= J +J~~, r'=(0, 0, —z).
Now we must come back to the previous coordinate system from our particularly defined one. In the arbitrary «arne

the result is
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1f J(r'+ ns, r')ds+
2ik o 2 ik

J

2

J(r, r')+J(r', r') ——f J(r'+ns, r')ds+i f U(r'+ns)J(r'+ns, r')ds
R o 0

+—f s(R —s)VTJ(r'+ns, r')ds
R o

(3.6)

where

VT=V —(n V), V =(n V) +—n.V+V„J(r', r')=U(r') .

IV. SOLUTION OF THE INTEGRAL EQUATION
FOR THE PROPAGATOR

J(r, r') = U(r) exp i f—U(r'+ns )ds
0

(4.2)

Now it is easy to find the first approximation for S(r, r'):
T

So(r, r') = exp i f —U(r'+ ns )ds (4.3)

To calculate the propagator [S(r,r')], we need to solve
Eq. (2.10) with integral I given by formula (3.6).

First, we find the solution to zeroth order in the 1/k
approximation (only terms independent on k). In such a
case we have, instead of (2.10),

J(r, r') = U(r) —iU(r) f J(r'+ns, r')ds, (4.1)

with the condition J(r, r) = U(r). The solution is simple:
Let us introduce a new function f (r, r'):

f (r, r') =1 i f J(r'—+ns, r')ds .
0

(4.4)

We have f'=r}f/dR = —iJ(r, r') and the first iteration
for f (f, ) is equal to f, =So.

Now we can rewrite Eq. (2.10) as an equation for f' in
the 1/k approximation:

So(r, r)=So(R =0)=1,
So(r, r') =So(r', r)

(see Ref. 7), which is exactly the result of Saxon and
Schiff and our result (2.7).

The first approximation of S can now be substituted in
(2.10) in order to obtain a second approximation to J and,
as a consquence, to S(r, r'). Let So(r, r') =e "' ', where

K(r, r' }= i f—U(r'+ns )ds .
0

f'+iU(r) f+—U(r) —(f, —1)+i,' U(r') —
—,
' f—U(r'+ns)f, (r'+ns, r')ds+ —U(r}f,

f s(R s)VTf'~(r'+n—s, r')ds =0 . (4.5)

Because of the fact that S(r, r')=So(r, r') 1+—%(r, r')1
(4.6}

V2rf', =(VTSo) z So+—Vz.SoR

where the prime means n-V, in the last terms in the
above formula (with VT), the integration by parts can be
done. The solution of (4.5) is easy, and because of the
connections

if'=J(r, r'), and J(r, r')= U(r)S(r, r'),

it is easy to find the function S(r, r') in the 1/k approxi-
mation.

Our final result is

where

R
%(r, r')= —U(r) ——U(r')+ —f S 'V S (r'+ns)ds .

2 0 t 0

This is exactly the result (2.7).
From (4.6) we see that our assumption about J (J

should be a slowly varying function) is justified: J does
not contain any exponential factor involving k (has no os-
cillation terms). The propagator S is a symmetric func-
tion in r and r', as should be.

As an example, we consider the simple potential
U(r)=a(x +y }=ap (a means constant} discussed in
Refs. 2 and 3. For K (r, r') and %(r, r'), we find



3874 KRZYSZTOF KUREK

K = —
,'i a—R(p +p' +pp' cosP),

a[(pp') +pp'(R p—p—' +pp'cosp)cosp+ —,', (z z—')'(p +p' 2p—p'cosp)] (4.7)

where pp' cosP=xx'+yy' and So = exp(K) GD = —Go(R)SO(r, r') (1+an)[k —U(r)+%(r, r')]

V. THE DIRAC CASE +mP+i —a n —a V,K(r, r') ',
The Dirac equation for propagator (propagation func-

tion where the spin of electron is taken into account) is

given by
where V=n(n V)+V', .

VI. CONCLUDING REMARKS

(5.3)

[E—U(r)+ia V mP]—G&(r, r') =5(r r'), — (5.1)

G(r, r') =Go(R)S„(r,r') 1+—qt(r, r')1

[see Eq. (4.6)], we can conclude, consistent with our con-
sidered approximation, that GD has the form

where m is the mass of electron, E =k is energy, a,p are
Dirac matrices, and U(r) is an "effective potential" in-
side the positron bunch. It is not diScult to guess that
the solution of (5.1) is

GD(r, r')= [E—U(r—)+mP —ia V]G(r, r'), (5.2)

where G(r, r') is the propagator for the Klein-Gordon
equation discussed in Secs. II—IV. Because

This paper can be considered as the next of the series
of papers in which the "beamstrahlung" is discussed.
However, we hope that the results obtained by us will be
useful not only in the context of beamstrahlung, but also
in other contexts, for example, in solid-state physics,
when we consider the processes with very energetic elec-
trons (from a high-energy beam) running inside the crys-
tals.
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