
PHYSICAL REVIEW D VOLUME 42, NUMBER 11 1 DECEMBER 1990

Low-energy technicolor Lagrangian with vector mesons

Robert Johnson and Bing-Lin Young
Physics Department and Ames Laboratory, Iowa State University, Ames, Iowa 50011

Douglas W. McKay
Department ofPhysics and Astronomy, Uniuersity of Kansas, Laurence, Kansas 60045

(Received 27 December 1989; revised manuscript received 12 July 1990)

We apply techniques used in QCD and the implied chiral symmetry to motivate a low-energy La-

grangian for technicolor theories. This allows one to cleanly introduce the gluon and the weak

gauge bosons at the technifermion level. The Higgs mechanism and techni-vector-meson domi-

nance are displayed. The effect of vector dominance on the 8' and Z masses, the techni-co and

techni-p couplings, and the sizable enhancement by the latter on 8' and Z production are demon-
strated. Differences between our results and some published results are discussed. The incorpora-
tion of extended technicolor interactions is also presented.

I. INTRODUCTION

In recognition of its nonperturbative nature, it is gen-
erally accepted that the low-energy region of QCD is
represented by a nonlinear O.-type model. ' The effective
Lagrangian of the model consists of pseudoscalar fields
which are the pseudo-Goldstone bosons resulting from a
global chiral-symmetry breakdown. Interactions with the
low-lying vector particles can be introduced via external
flavor currents coupled to the pseudoscalars. Further-
more, the effective Lagrangian can be divided into
normal-parity and abnormal-parity parts. The normal-
parity part contains the kinetic energy terms, and the
abnormal-parity part contains the Wess-Zumino
term.

The general nature of the derivation of the low-energy
phenomenological Lagrangian of QCD suggests that the
approach may be applied to other strongly interacting
theories based on non-Abelian gauge groups, in particu-
lar, to technicolor theory. ' '" The technicolor theory,
which is designed to provide a dynamical mechanism to
break the electroweak gauge interactions, shares some
common features with confining theories such as QCD
but is confined at a much higher energy and has a much
richer structure. ' ' Predictions of technicolor at the Su-
perconducting Super Collider (SSC) energy regime ob-
tained by drawing analogies with QCD can be found in
the literature. '

In this article we propose a low-energy effective La-
grangian for a class of technicolor theories motivated by
the chiral symmetry of the technicolor force and the ob-
servation of vector-meson dominance in QCD. The
general form of the normal and anomalous chiral La-
grangians of the technicolor theory is expected to be a
valid phenomenological framework for new strong-
interaction physics between 1 TeV and around the elec-
troweak energy scale. This effective Lagrangian allows us
to extend a previous treatment of technicolor phenome-
nology which described interactions among low-lying

technicolor bosons and the light gauge bosons, y, Z,
W —and gluons.

Since we concern ourselves only with the low-energy
effective Lagrangian for the strongly interacting, compos-
ite sector of the technicolor theory, we do not address
some of the important open questions of the theory, such
as the problem of the flavor-changing neutral current' '

and its proposed solutions. ' ' ' However, we shall ex-
amine the low-energy effect of the extended technicolor
theory relevant to the present purpose. The baryonic sec-
tor, which is above the range of interest in this work, will
not be considered.

In Sec. II, we present and examine a low-energy
effective Lagrangian containing pseudo-Goldstone-boson
condensates and low-lying vector excitations that are
composites of the fundamental fermion fields. A line of
argument that can possibly arrive at such an effective La-
grangian and which has been widely reported in the
literature is briefly recapitulated in the Appendix. This
argument may offer some insight into the effective La-
grangian used but the subsequent phenomenological de-
velopment is independent of the specific argument. We
also demonstrate the Higgs mechanism and vector-meson
dominance. Section III contains a discussion of the phe-
nomenology involving the technivectors and a compar-
ison with some of the earlier work. ' In Sec. IV, we
discuss the effect of the extended technicolor interaction
which introduces direct coupling between the technicolor
bosons and the light fermions. Such couplings could
have significant phenomenological implications. Section
V is the summary section.

II. EFFECTIVE LAGRANGIAN
FOR TECHNICOLOR MODELS

There is at present no derivation from first principles
of the low-energy phenomenology of a strongly interact-
ing field theory. However, for the case of QCD, much is
known about such a phenomenological Lagrangian both
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empirically and from general principles such as chiral
symmetry. The argument that leads to the low-energy
QCD effective Lagrangian is extracted from phenomenol-
ogy below 1 GeV; however, we envisage that it applies in
general to non-Abelian theories below their confinement
scales. The essential ingredients of such a low-energy La-
grangian are the pseudo-Goldstone bosons (PGB's) in the
nonlinear realization and the low-lying massive spin-1 ex-
citations which couple to the PGB s in flavor-symmetric
form mimicking a gauge interaction. In order to include
the standard-model gauge bosons, e.g. , the gluon, W, Z,
and y, we take the vector-meson-dominance (VMD) ap-
proach. In this approach the light gauge bosons appear
only in the mass terms of some of the vector- and axial-
vector-meson collective fields as shifts to the latter. This
form of effective Lagrangian with VMD for QCD has
been obtained in various approaches in the literature such
as the bosonization argument, ' the Legendre trans-
form, the hidden-symmetry approach, and the
minimal gauging method. In order to explore in sys-
tematic detail the physical assumptions involved and to
attempt to make some reasonable first approximation for
some extended technicolor parameters to be discussed in
Sec. IV, we offer a heuristic argument along the lines of
Refs. 3 and 4 in the Appendix. The subsequent develop-
ment of this section and Sec, III is of course independent
of this particular argument.

Adopting the general result of QCD as outlined above
we can write down the following effective action, based
on which we can carry out phenomenological analyses:

S,s= I d x tr (2)U) 2)U (F F—"+F—"F")

and Nd =Nf /2 left-handed doublets. The fiavor symme-

try of this model is therefore SU(Nf ) and the generators
can be written in a convenient form:

t"=(12X1~ )/2+Nd,

X'=(cr, X l~ )/2)/N„, i =1,2, 3,
(2.3)

A, =(1 XA,, )/2&2, a =1, . . . , N

fl,' =(cr, XA,, )/2&2,

where the o, represent the SU(2)-isospin generators and
the k, are the generators for SU(Nd ). When SU(Nd )

contains the ordinary color SU(3), we take the first eight
to coincide with the color-SU(3) generators. The

gauge vector and axial-vector currents can thus be writ-
ten as

&2g, QNdgLGap(3)+

+ B(YL+QNdX ),
(2.4)

A = — W;X'+ BQNdX
2g 2g

Before we proceed further, let us eliminate the true
Goldstone bosons by utilizing the Higgs mechanism and
going into the unitary gauge. Since X~, j =1,2, 3, in (2.3)
form a subalgebra of the flavor group, we can make a
right coset decomposition of U,

+m„[(v—V) +(A —A) ]
U =exp

i(
exp

where

+I q(U, V, A), (2.1)

2l
U =exp F

D„=a„ig[V„,—]+ig[A„,],
F„'„=a„v„—a„v„+ig[v„,v, ]+ig[A„,A, , ],
F„",=a„A. a.A„+—lg[A, V ]+lg[V, A]. ,

(2.2)

The quantity F is the "unrenormalized" technipseudosca-
lar decay constant; (() is the Nf XNf matrices of Gold-
stone bosons (all but three will become massive pseudo-
Goldstone bosons); Vand A are the Nf XNf matrices for
the vector and axial-vector technimesons; and V and A
represent the standard-model gauge bosons. All of these
will be further explained below.

Although the technifermion degree of freedom is lost
below the technicolor condensate scale, the symmetry of
the effective Lagrangian reflects the flavor symmetry of
the fundamental fermions and hence the latter needs to
be specified. We consider Farhi-Susskind-type models
which contain Nf right-handed singlet technifermions

where the set [X I contains the generators in (2.3) ex-
cluding the X'. Then the field m can be eliminated by an
SUI (2) gauge transformation with the transformation
matrix, Bz =exp( i mJX'/F) T—he Goldston. e bosons are
now eliminated from U and only pseudo-Goldstone bo-
sons remain. We shall work only in the unitary gauge in
the following discussions, and we use the same symbols to
denote V, 3, and Uin this gauge.

One can now diagonalize the vector states and calcu-
late the 8' and Z masses. The constraint from anomaly
cancellation ' in the electroweak gauge sector requires
the left-handed hypercharge matrix Yz to be traceless.
Thus we can write Yz as a linear combination of the di-
agonal A, :

(2.S)

with

2
r

Nd
(2.6)

To obtain the mass eigenstates, we note that the relevant
quadratic terms in (2.1) which determine the mixing are
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X,=Tr(d„pr)"P+Fg A„A"+2Fg A„d"P

+m ~ A „A"+m v V„V"—2m ~ V„V"

+m~V„V" 2m—v A„A"+m~A "A„).
We denote our states by

/=Pot +POA+P, A', +P,'0, ', ,

V=co't +coA+p, X, +co, A,'+p,'0,'
A =a't +aA+P, X, +a, A', +P', 0', ,

(2.7)

(2.&)

For the remaining fields, we must diagonalize:

F2 2 mv~EW F g + V p2+ ~( 2+ 2)
2 p co

J

—m vip'W —mvyp B m vy YcoB

+m~xP W —mvxP B+mvx W

Y 2

+m 2y2B2 1+v 2
(2. 12)

V =V,

P~ =RP,
F =RF,

(2.9)

m =R m V ~

' 1/2
g p

2mv

Note that the mass degeneracy of the vector and axial
vector is lifted and that the physical value of the decay
constant has been shifted. If some of the technifermions
are in a fundamental representation of SU(3) color, then
there will be mixing of gluons with the corresponding
technivectors denoted as co8, a =1—8, through the term
contained in (2.7):

where the original set of orthogonal generators A' in (2.3)
has been replaced by an equivalent orthogonal set A and
A". In the exotic sector involving only technivectors
whose quantum numbers are different from the gauge
particles, there are no contributions from TrVV and
TrAA. The physical parameters and mass eigenstates
are

gF
A~=A+

2 BQ~,
mv

M = g F [1—(1+R )x ]
Xd

w 4 L p
(2.14)

We give the next-order correction of Mw for later use.
One can check that the technipseudoscalar decay con-
stant is given to leading order by the standard result
F =250 GeV /QNd. In (2.13) we have neglected
higher-order terms which involve, for example, a tiny
mixing of p and P. This mixing will lead to a small
parity-violating coupling, such as the PPP coupling.

To diagonalize the neutral bosons we use the usual
redefinitions for the Z and the photon A

~
in terms of

the Weinberg angle 8; Z = —cos8 W +sing B,
A =sin0 W +cos08 and we find, for the mass eigen-
states,

where x =QNd(gt l2g) and y =QNd(g„l2g). We will

do this in the approximation that the gauge couplings are
much smaller than the technimeson effective coupling g.
For the charge sector we find the approximate eigenstates

/3-h„,=-p-++ xR W +—
,

(2.13)

W —„„,= W++xp- —xR P—.

The axial-vector and vector masses m z and m v are given
in (2.9) and the W-boson mass is

—2m&TrVV= —m~ co&G'+ .

phys sln08 cos08

2 —]/2

cos08 = 1+2

G
J

The mass eigenstates are

cos08 —sin 08 co8

(2.10)

(2.1 1)

cos0

p»„,-p — QN—d A +x — Z,3 3 cos20

g cos0

(2.15)

A „„,= A + QNd Yco+ QNdp-
2g g

cosh„,—-co —x sin 8Y( A r +tan8 Z ),
cos28 3 x 2p3
cos0 cos0

and have masses m„=mv and m6=0. Here we have

vector-meson dominance of QCD by a color octet of
technivector mesons.

The mixing is the electroweak sector involving the gen-
erators X, and A is more complicated and more interest-
ing. First we note that in this sector TrABQ contains
only —,'eBPo while TrAA contains no a terms. Thus the
isosinglet axial vector a and pseudoscalar I'0 decouple
from the rest and mix only with each other as indicated
in (2.9).

with a Z mass

xd gLFP — X2 ' 4Mz2- 1 — (Y sin 8+cos 28 +R )
4 cos 0 cos 0

(2.16)

where we have again given the next-order corrections to
Mz. It is clear from (2.14) and (2.16) that
Mw/Mzcos 0=1 to lowest order but will deviate from
unity in the next-leading-order x . This correction must
be consistent with experimental bounds from actual mea-
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surements of the 8' and Z masses and electroweak cou-
pling strengths. A detailed discussion of this constraint
including radiative corrections will be presented else-
where.

III. TECHNI-VECTOR-MESON DOMINANCE
AND PHENOMENOLOGY

We begin this section by reviewing the predictions for
the various parameters in the model (2.1). In addition to
the known SU(3) X SU(2) XU(1) gauge couplings there is
the strong coupling g associated with the technimeson
sector. Using scaling arguments for large ET one can
estimate g from our knowledge of g „/4~=2.7 in QCD:

1/2

g =gp~~ (3.1)
T

10

QN,
Furthermore, the technidecay constant is determined by
the electroweak breaking scale and the number of techni-
doublets in the model, Xd.

250 GeV

QNd
(3.2)

Finally, the mass of the technivectors can be estimated
using the Kawarabayashi-Suzuki-Riazuddin-Fayyazud-
din (KSRF) relation:

g 2F2

Pl v

which gives
' 1/2

=885
T d

1/2

GeV,

(3.3)

agreeing with the result obtained from scaling arguments
uSing ~ 1 Sy 2 1 y 34

P'
In the pseudoscalar sector the weak gauge interactions

and the extended technicolor interactions combine to
contribute masses to all of these states. As an illustra-
tion of the types of pseudoscalars that arise in these mod-
els, one can consider the one family technicolor model of
Farhi and Susskind. In this model there are six techni-
quarks and two technileptons. The techniquarks form
three left-handed weak isodoublets, each with a di8'erent

QCD color, and six right-handed weak isosinglets. The
color-singlet technileptons form one left-handed weak
isodoublet and two right-handed weak isosinglets:

U,
, U,~,D,~, E,X~,E~, a =1,2, 3 .

The indices of the technicolor group SU(Nz-), Nr ~ 4 are
omitted. The Aavor group of this model is SU(8) and
hence it has an SU(8) X SU(8) X U(1) global chiral symme-
try at energies above the condensate scale. The pseudo-
scalars can occur in color singlets, triplets, or octets. For
color singlets, one finds

8 GeV &M(P )&40 GeV, —

2 GeV &M(P', P ') &40 GeV,

and for the color triplet P3 and color octet P8 one has
(see, for example, the third article of Ref. 22)

' 1/2

M(P3 ) = 160 GeV
4

M(Ps ) =240 GeV
4

It should be noted that the above estimates of pseudosca-
lar masses may have a sizable uncertainty. The upper
limit of the color singlet could exceed 100 GeV and the
masses of the color triplet and octet could be increased by
50%. These uncertainties come from two sources, both
related to the extended technicolor contribution. One
uncertainty is the AE~& scale which is related to the scale
of ordinary fermion masses and can be much larger than
that used in the above estimates in view of the apparent
higher quark mass limit. For a discussion we refer to
Ref. 22. Another uncertainty is caused by the unknown
value of the technifermion condensate scale, which can be
much larger in an extended technicolor theory with a
slowly running coupling constant. We will be omitting
the axial vectors from the following discussions since,
analogous to QCD, they are expected to be heavier and
thus less accessible to experiment. It is clear from (2.12)
that (in addition to the extended technicolor interactions
to be discussed in the next section) the primary coupling
of the technimesons to ordinary fermions is through the
mixing of the technivectors with the gauge particles.
Therefore, it is of interest to clarify the form of the in-
teractions of the techni-p, techni-e and, in some models,
the color octet cu8 ~

Let us first consider the couplings of the technivectors
to the pseudoscalars in (2.3). The primary vertex is

X yyy
—2lg Tr V [BP& P] (3.4)

where all the fields are the physical fields while the small
mixing due to the (2.12) can be neglected here. The de-

cay width of the techni-p into pseudoscalars is

2 mV
I

4m 12' (3.5)

I (co' P P')=I (co' P'P')=
~ (f,b, ) m~

4 24
(3.6)

and summing over final states gives a total width into
pseudoscalars of

where we have neglected the pseudoscalar mass with
respect to the vector mass. The index a is not summed
over and corresponds to the generators of the SU(Nd )

group and hence there are Nd —1 channels for decay.
Thus for A'd/XT & —,

' the techni-p total width would

exceeds its mass and, for practical purposes, would not
appear as a resonance. The decays of the co and co~ are
more model dependent but can be given in terms of struc-
ture constants f,I„ofthe particular SU(Nd ) generators of
the model,
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g2 mv

4~ 6

g ijkgg .

iii N„
(3.7)

wow — gL eijk 8&W„pW

where we have to rewrite p and 8'in terms of the physi-
cal states given in (2.13) and (2.15). Combining the two
contributions from (3.7) and working to first order in

(gL /g) in mixing, we find
'2

gL QNqg

QNd
e; k d~', W'„W",, + .

(3.&)

which has a suppression of (gL /g), compared to the
strong coupling of p to pseudoscalars. This suppression
is exactly compensated for in the decay rate by a
kinematical enhancement due to the longitudinal polar-
ization of the 8 s. The decay width is given by

which is twice the width for techni-p decay. At this point
one might ask what has happened to the analog of the
QCD decay p~mm. This channel would have appeared
in (3.4) had we not been working in the unitary gauge.
Now, of course, it must show up as the decay into longi-
tudinally polarized gauge bosons. To illustrate this and
other features of the model we consider the p8'8'vertex.

The interaction of the technivectors and gauge bosons
arises when one replaces the original interaction states
with the physical mass eigenstates. Equivalently one
could work in a perturbation expansion with insertions
in, for example, the W propagator of the p and P mixing
terms given in (2.12). The pWW vertex arises from two
sources: the strongly coupling ppp vertex and the 8'8 8'
gauge vertex,

&vvy=gvvy&i & pTr([~"V" ~ V )4)

2g 2NT

(4 )'F,
(3.1 1)

Since the group generator corresponding to the techni-co
is A, from anomaly constraints, one sees that there is no
pTcoTvrT coupling in Xvv& of (3.11). This is a general
feature of these models and is not the result of a specific
substructure. The techni-co will not be produced by
gauge-boson fusion in pp colliders but could still be pro-
duced via a Drell-Yan process through its mixing with
the Z and y. The cross section for co T production can
be taken from Table II of Ref. 23 with their factor
(2A —1) being replaced by

'4
2 TeVNd

4
p 2

A comparison with (3.5) and (3.3) shows that (3.10) agrees
with the equivalence theorem and a scaled-up version of
QCD. However, this is not necessarily the case for the
techni-~ decays.

It has been proposed that since the ordinary co decay
modes in QCD contain information on the constituent
quantum numbers, one might be able to use the techni-co
to obtain similar information about the underlying tech-
nicolor theory. For example, co~m. y contains informa-
tion on the number of colors in QCD. As (2.15) shows,
the coupling of the techni-co does depend on the charges
of the techniquarks through Y [see (2.5)]. But because
the Aavor-symmetry group for technicolor includes the
ordinary low-energy gauge group there are restrictions
from the requirement of anomaly ' on the possible co cou-
plings. From the general construction of the effective La-
grangian in Sec. II it can be shown that there is no analog
to the pc@~ coupling of QCD. The anomalous VVP cou-
pling can be taken from Refs. 7 and 8:

r(p' w+ w-) =
16am v

where

2

(P+ P) e"(P+ )e"—(P )e (P++P )
2g

(3.9)

to generalize it to our model. The authors of Ref. 23 also
computed the Drell-Yan cross section for techni-p pro-
duction. However, in their approximations they did not
include the mixing of the po and the 8 gauge boson. In-
cluding this mixing would give, for inclusive production,

(3.10)

is the amplitude derived from X ~~. In computing the
sum over polarization of the 8 s the dominant contribu-
tions come from the k„k„/M~ terms. Keeping only
these leading terms and using (2. 15) we find

2 2
g2 ~v 1 ~v

r(p ww) =
4m. 12Nd 2 g F

cr(pp ~p ) =0 7cr(ppp+). +0.40(pp~p ) (3.12)

instead of their Eq. (4.37).
In view of the strong decay of the techni-p into 8 s

and Z's it has been proposed ' that a possible signature of
technicolor might be a resonant enhancement of
q, q, ~ WZ. The cross section for this process can be con-
veniently written as

do (ud~W Z)=
dt

~a'/ U„,/'
6s X~

2
S

(s —Ms, )

eu e
+

u

Mz Mz

8 W

2,

2e, e, e
(fi —fz)

t u8

f, +2f~
4MzMw

2

(e, +e„—e, )
—2e, (e, +e„—e, )

s —Mw
(3.13)
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where

Xi=sin 0,
f, =ut —MzMw

f~ =s(Mz+Mw)

(3.14) PT

and quark masses are taken to be zero. The e„e„,and e,
parameters are the relative s-, u-, and t-channel cou-
plings; i.e., in the standard model,

e, =cot0,
—1+=', X~

sin20

e = 1 —4X~

sin20

7TQ

6s X~
4

1 ut mv

(s —M~) 4 (s —Mv)
(3.15)

It is clear that this modification is small for s small but is
resonantly enhanced for s around the techni-p mass m v.
Let us now see how this effect comes about directly from
(3.13), using the physical mass eigenstates. We are in-
terested in the last term of (3.13) which shows an
-.nhancement for large ut. Thus we must compute e„e„,

I

Hence in the standard model the last term of (3.13) is
zero and one does not see an enhancement at large ut. In
a theory with a techni-p one can appeal to the
equivalence theorem to replace the longitudinal gauge
bosons with the Goldstone bosons and then couple the
Goldstone bosons to the transverse gauge bosons through
vector-meson dominance with the techni-p. This
amounts to replacing, in the s channel, the Higgs-gauge-
boson vertex of the standard model in diagram (a) of Fig.
1 by the techni-p exchange in diagram (b).

The couplings for diagram (b) of Fig. 1 can be obtained
from (2.12) and (3.4). Computing the contributions to the
cross section, we find the modification to standard cross
section to be the additional term

FIG. 1. Vector-meson dominance in FZ production. In dia-
grarn (a) we show the conventional coupling of the intermediate
8' to a longitudinal 8'and Z. In diagram (b) we show this same
coupling in the vector-meson dominance picture of a tech-
nicolor theory where the coupling to the Higgs technipions is
through an intermediate techni-p, pT.

and e, in the physical basis. The s-channel coupling e,
now involves two diagrams for W and p exchange. The
u- and t-channel couplings e„and e, change due to the
mixing angles of the Wand Z and the technivectors. We
will work to order (gL /g) -M~/mz in the mixings
which is equivalent to the perturbative mixing approach
taken earlier.

Using (2. 13) and (2.15) it is straightforward to show

Mz'
(e,. +e„—e, ) =cot9

s —mv+irmv
(3.16)

where I is a width for the techni-p. Since we are in-
terested in the energy region around s =m v, we take I to
be the decay width of the techni-p. However, a more
complete treatment" of the composite nature of the
techni-p propagator, such as the threshold effect, would
be required at energies far from the resonance region.
See, for example, Ref. 21 for their treatment of such
effects in the pair production of pseudoscalar tech-
nimesons by gluon fusion. From (3.13) and (3.16), we ob-
tain an additional term to the standard cross section
without the techni-p:

f)+2fp
cot 0

dt 6s X~ 4MzM~

M

(s —my) +I m~
1 —2

2s —mv

~~'/ U„„/'
6s X~

ut m v+m vl4 2 2

—1
4(s —Mu, ) (s —mq) +m~. l" (3.17)

which is in agreement with the perturbative VMD result
(3.15). The enhancement for pp~ W+Z+X is cornput-
ed in Ref. 21 for two technicolor models: the "minimal"
model with Nd=1 and the Farhi-Susskind model with
Nd=4. The difference in the models is basically the
width of the techni-p which increases relative to its mass
as Xd increases: I —3m z/4(Xd /XT ). Even for the case

Nd =NT =4 their calculations show that it is quite possi-
ble that such an enhancement may be seen at future pp
colliders if technicolor is relevant to electroweak symme-
try breaking. We should also remark that our expression
for the enhancement differs slightly from that of Ref. 21
in the dependence on techni-p width. This expression for
the modification can be written in the form
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IV. EXTENDED TECHNICOLOR CONSIDERATIONS

The technicolor model described in Sec. II is incom-
plete in that it provides no mechanism of mass generation
for the quarks and leptons. This can be amended by in-
troducing extended technicolor (ETC) interactions' cou-
pling technifermions to ordinary fermions. The tech-
nicolor group GTc is embedded into a larger group GETC
which is assumed to break down to GTC at a scale
AETC&A where A is the technicolor scale. There is as
yet no completely satisfactory extended technicolor mod-
el, however, progress' ' has been made to remedy the
problem of possible flavor-changing neutral currents
(FCNC's). In this section we will consider briefly some
consequences of the ETC interactions for our effective
Lagrangian.

Let us denote' the currents of the ETC vector bosons
coupling to ordinary fermions and technifermions as

-8
10

0. 4

I I I 1

0. 5 0.8 0. 7 O. S 0. 9 1 1. 1

poli Mess (Tev/c*)

J„"=f Li gLia'YiA'La+f Ri gRia Ypfaa+'H'c' (4.1)

FIG. 2. $Vand Z production in pp colliders at 10 and 40 TeV.
The y cut has to be satisfied by both the Z and 8'+. The
curves are without the techni-p (dashed curves), with the p T

enhancement given by the first article of Ref. 21 (dashed-dotted
curves), and with the pT enhancement according to (3.13) and
(3.17) (solid curves). The dashed and dashed-dotted curves are
part of Fig. 180, first article of Ref. 21.

~ do
dt 6s X~ 4(s —M~)

4mv
X

(s —m )+I m
(3.18)

One notes that the factor in large parentheses is not
suppressed for s well below the resonance as one would
expect. This is in contrast with our corresponding factor
in (3.17), which vanished as s ~0. For the Farhi-
Susskind model when I is close to mv our expression
(3.17) would yield roughly 50%%uo more enhancement than
(3.18). We illustrate this additional enhancement, which
should make it easier to detect the techni-p effect over the
@CD background, by comparing in Fig. 2 our enhance-
ment with that of Ref. 21. In the minimal technicolor
model, the width of the techni-p is about —,', of its mass
and the difference between the enhancement in (3.17) and
that of (3.18) is negligible. However, in this case, the res-
onant effect of the techni-p is apparent (see Fig. 179 of
the first article of Ref. 21) and the detection of the pres-
ence of the techni-p is unambiguous.

[Gnm]
2N„A2

p gLiagRjb ™A

2NI-A
Iij )ab X gLiagLjb jMrl (4.2)

2N~ A
(GRij lab g gRiagRjb ™A

where M~ is the effective ETC gauge-boson mass. Then
the direct coupling terms of the technipseudoscalars tech-
nivectors to the ordinary fermions can be written as a
trace over techniflavor indices:

where gL, is a left-handed technifermion of species a, fL;
is an ordinary left-handed fermion of species i and gen-
eration n, and g is the appropriate coupling to the ETC
vector boson A. In general, the interactions in (4.1) will
lead to flavor-changing neutral currents which must be
suppressed in any realistic model. One mechanism, re-
ferred to as monophagy, ' does this by requiring each fer-
mion to be coupled only to one type of technifermion. In
the Farhi-Susskind model, for example, this can be done
by assuming the extended technicolor gauge bosons
which couple to the ordinary fermions carry none of the
electroweak quantum numbers so that each fermion is
coupled to the technifermion of the same type, i.e.,
( u, c, t)~U, (d, s, b)~D, (e,p, ~)~E, and (v, v„v,)~N.
We define the following coupling matrices in techniflavor
space:

f nT . ra Gnm2l ll —
n

P

1+y5
2

Gmne
JI

,fmrna

gog I n pT, ra Gnm
2 g

Rij

1+y~ +Gnm
Lip 2

.fm ya
l P (4.3)
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The parameters go and g& are model dependent and their
ratio is expected to be of order one [see (A18)]. The pa-
rameter p is related to the condensate scale and is es-
timated to be p=mv/&6, assuming a KSRF-type rela-
tion [see (2.9), (3.3), and (A12)]. We have omitted axial-
vector couplings and contact four-fermion interactions.
The axial vectors are dropped as before because we anti-
cipate a heavy mass for them. The main pseudoscalar in-
teractions in (4.3) can be simplified somewhat in a
monophageous-type model. In Ref. 19 these interactions
are written for the Farhi-Susskind model and it is explic-
itly shown that there are no FCNC's. For definiteness we
will now specialize our discussion of the technivector in-
teractions to this model. We remark that even with these
simplifications the vector and also the leptoquark pseu-
doscalar interactions are not amenable to definite predic-
tions due to the complexity of (4.2) for the couplings. To
get some feeling for the strength of these ETC couplings
we make the further assumption that generation mixing
can be neglected. In particular, the ETC couplings are
taken to be diagonal:

MA

' 1/2
2NTp

gLia +d+m d'8An~i a (4.4)

1/2
2NTp

gp

An
Pl;

gRia & An ia
ad~md

(4.5)

g go (&d) m d — o"
~d„z g, 4 p "2

&&&" fdp (4.6)

while the right-handed currents in (4.3) are assumed to be
small enough not to be observed in the low-energy elec-
troweak experiments. Recently it has been suggested '

that perhaps the ETC interactions for the techni-p in
(4.6) might further enhance the resonant cross section
o(pp~8'ZX) discussed in Sec. III. Following the treat-
ment of that section we compute the addition to the s-
channel coupling e, from the ETC coupling in (4.6) and
compute

(e, +e„—e, ) =cot8

where

Mz~(1+ es )

$ PPz v+1 I Pl v
(4.7)

where the subscript d stands for the particular isodoublet
the ith fermion belongs to, m d is the average mass of
that doublet for the nth generation, m, is the mass of the
ith fermion, and o.d is a free parameter. First we note
that (4.4) and (4.5) will give the correct diagonal mass
matrices. Next we note that since gI should be invariant
under SU(2) the natural strength should be some average
measure of both up and down species; hence, we expect
ad to be of order 1. In this simple toy model the left-
handed interactions for the techni-p are given by

go ~2 Pl~ + rPld

P
(4.8)

The addition to the differential cross section for
ud ~8' Z will then be

do ~a ut (mv+s'e) +P mv —16s~ 4s (s —m )+I m
(4.9)

Our expression differs slightly from that of Ref. 41 in the
s behavior of the ETC contribution, but this difference is
slight around the region s -Iv where the formulas are
supposed to be valid. What is more to the point is the es-
timate of e in (4.8):

(4.10)

and for techni-p masses in the TeV range this still leaves
a 10 suppression relative to the VMD contribution. It
seems unlikely that in a more complicated model with
mixing one could overcome this suppression although
with a heavy top-quark mass, m, /md —10", it is not ruled
out a priori.

V. SUMMARY

We have presented an effective Lagrangian to apply to
technicolor theories for energies below the condensate
scale of 1 TeV. This general framework includes the
technivector mesons as well as the pseudo-Goldstone bo-
sons and the weak gauge interactions via vector-meson
dominance. It is hoped that this may serve as an explicit
setting for analysis of physics above the electroweak ener-

gy scale and below 1 TeV.
We have demonstrated the Higgs mechanism for a gen-

eral class of models and clarified the mixing of the tech-
nivectors with the gauge sector. Because of the con-
straints of the Higgs mechanism and the cancellation of
anomalies, the mixing of the technivectors and gauge vec-
tors depends on only one parameter Y, which is propor-
tional to the sum of the squares of the hypercharge of the
left-handed technidoublets in this model. The resulting
mass matrices for the vectors lead to an interesting devia-
tion for the 8' and Z masses at the tree level. It is possi-
ble to use experimental limits to then place some con-
straints on technicolor model parameters.

Of particular note are the interactions of the techni-co.
This techni-~ is not simply a scaled up version of the the
QCD co. For the case of QCD, it is well known that the
gauged Wess-Zumino term gives rise to anomalous co de-
cays. Replacing the QCD mesons with technimesons and
using the equivalence theorem to replace the technipions
by the longitudinal components of the electroweak gauge
bosons would lead one to speculate on coT~ O'O'Z. We
have explicitly demonstrated that this mode does not
occur in models consisting of technifermions in left-
handed weak doublets and right-handed weak singlets
only. That is, when identifying the techni-co that mixes
with the gauge bosons, one finds no analog of the pea~
vertex in the anomalous part of the Lagrangian. Thus
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some recent phenomenology suggested for the techni-co is
not consistent with this class of models.

We have also illustrated the use of the effective La-
grangian in developing the phenomenology of the techni-
p. Our treatment involves ordinary perturbation theory
for mass eigenstates rather than the use of approximate
vector-meson dominance and the approximate
equivalence theorem employed in earlier treatments. In
the appropriate limit our results reduce to those in earlier
works as we have shown, for example, in (3.17) for the
techni-p enhancement of F,Z production from quark an-
nihilation. However, we point out that our formalism
lends itself to better control over the approximations used
and can in principle be used to calculate corrections to
the leading-order approximation. For example, we find a
significant further enhancement to the 8', Z production
in pp colliders in the Farhi-Susskind model, which makes
the technicolor signature more pronounced.

APPENDIX: HEURISTIC APPROACH
TO AN EFFECTIVE LAGRANGIAN

WITH VECTOR-MESON DOMINANCE

Consider an SU(NT ) theory with NI flavors of massless
fermions. Below an energy A„fermion-antifermion con-
densates break the SU(N&) X SU(N&) XU(1)-flavor chiral
symmetry to a diagonal SU(NI) and Goldstone bosons
(some become pseudo-Goldstone bosons) which are asso-
ciated with the. broken generators appear. The low-
energy world is describable by an effective Lagrangian
containing phenomenological fields of pseudoscalars and
possibly other low-lying bound states. In the following
we illustrate how such a picture may emerge in a certain
approximation.

We begin by writing the generating functional of an
SU(Nz ) theory, denoting the fundamental fermion fields

by it and the strong gauge-boson fields by C„:
Z=&f DQDQDC exp i f L(P, P, C)

z

where f indicates the integration over space-time, A' is

a normalization factor, and the integration over ghost
fields is not exhibited. We write L as a free-fermion part
Lo, plus an interaction part LI =PC'P, and a gauge piece
Lc. In general, one can include the standard-model
gauge interactions in Lo(f):

SyLo(f)=$ iQ+g, g+ gl W+ SYI

1+y5
2

—:g(if+&+&)p . (A2)
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Note that Lo could also contain other terms such as
effects from the extended technicolor sector discussed in
Sec. IV or a bare-quark-mass term for an application to
QCD. We can formally integrate out C„to obtain

Z=A" D D exp i Lox
X

n

X exp g f G,(")FiFz . . F„,(A3)
2nf n

where G, " are the pure Yang-Mills connected n-point
Green's functions and f indicates integration over the n

space-time coordinates; F—:g(x )r„T'P(x~), and the

T', a =1, . . . , N, 1 ar—e the generators of SU(Nz ). We
note that the leading Nz- behavior of G(") is (1/NT)"
and simple dimensional analysis would also suggest it
scales like A (1/A)" where A is the confining scale.
Thus the expansion in fermion bilinear operators is
effectively an expansion in powers of (1/NT~ A )".

In the limit of large NT one can approximate by trun-
cating the series at n =2. As an illustration, we drastical-
ly approximate the two-point function keeping only a
contact piece:

(z). , g, g 5(x, —x, )

G,„„''(x, xz) —i 5„„5,, (A4)

where we show the leading NT behavior. It should be
noted that (A4) does not follow from a short-distance ap-
proximation of the strong gauge-boson propagation func-
tion but instead from the expectation that the strong-
interaction gauge bosons are frozen and localized below
A and the localization region should be smaller than the
typical size of a technihadron. This approximation
amounts to neglecting all derivative-type terms in (A4).

To obtain technicolor-singlet states, one can perform a
Fierz rearrangement and write the effective Lagrangian,
using (A3) and (A4),

f g —
ro )z

Nr 2NTA
(A5)

where the t' are the U(N&)-flavor generators and

No =28' =R.
Although this exercise is by no means a derivation, it

does illustrate a connection between the exact functional
(A3) and a Nambu —Jona-Lasinio —type model (A5).
Note that the g term in (A5) is suppressed by 1/Nz and
should be dropped in a large-XT expansion.

We can recast the expression for the effective action
(A5) by introducing auxiliary fields representing the
mesonic degrees of freedom:
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Z=JV' f dgdgdSdPdVdA

L =La(p)+/Up/

NTA+ Tr( V&+ A„),

Xexp i f L(g, S,P, V, A, V,A)
X

NTA
Tr(S +P )

gp

(A6)

where gp and g, are now treated as independent and
U = U't' is

U' =S'+iP'y 5+ V„'y"+ 3„'y"y (A7)

We shift the vector and axial-vector fields, V~V —V,
A ~A —A, and then integrate over the fermionic de-
grees of freedom:

S = iN —lndetD —f Tr(S +P )
— Tr[(V —V) +(A —A) ] d x,XTA XTA

2 2 4
eff T

go g&
(A8)

where D =i 8+ Uz contains only the collective fields S, P, V, and A. Note that the mixing of the weak gauge fields ap-
pears only in the mass terms.

The evaluation ' ' of ln detD involves both a normal-parity piece I and an anomalous piece I„.Using the
Schwinger proper-time regularization for the normal-parity piece,

I = i R—e(lndetD)

1 & d7
Tre

2 1/A

we can write,

2 2

I = NTI (
—l, r)f d x tr(M M —p )

(4m )

+ ' Nr f d x tr[(Z)„M) (XPM) (M M —p) ,'(—F„g(—+—F„"gg~')],
(4n )

(A9)

(A10)

where we have introduced a new scale, p, r=@ /A, and M =S+iP, 2)„=B„i[V„—, ]+i [ Az, ]. The trace is only
over flavor space now and I (m, r) is the incomplete gamma function. We have omitted all terms finite as A~ oo. Note
that chiral symmetry will be spontaneously broken and }M will be the vacuum value of M M provided go is greater than
the critical value: gp )g, =8m. .

We will work in the nonlinear limit M =p U =pe '~ to eliminate the heavy scalars from the theory, justified empiri-
cally in QCD. Our effective action becomes

S, =I „+I„„;„+f d x tr (2)„U)(2FU) — (F F"+F"F")+ (V + A ) (A 1 1)

where

F =6@ /g

2 &T
I (O, r),

g 3 (4m)

m = A
NTg

(A12)
NA mop m+

4gp
(A 13)

which together with (A12) yields

ratio from QCD. This can be done by including a bare
mass term for the quarks, ma=(m„+md )/2 in (A2), to
explicitly break the chiral symmetry and give a mass to
the pion. This gives a new constraint

Checking the consistency of the mass scales in the QCD
case, we find the quite satisfactory values
r =p /A =0 06, p=314 MeV, A=1 3 GeV, and
m z/A =6r =0.36. We note that the original parameters
of the Nambu- Jona-Lasinio model, in particular, the ra-
tio (g, /go), have disappeared in favor of the renormal-
ized parameters in (A12). One sees in Sec. IV, however,
that when one includes extended technicolor, (g i /go )

reappears. It is therefore useful to get an estimate of this

gp

g 2F2 m„'}/6(mi, /g F —1)

Alps v 4

mp
(A 14)

Since g] /gp is independent of NT, we can expect
g, /gp ——1 for a technicolor theory as well.
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