
PHYSICAL REVIEW D VOLUME 42, NUMBER 2 15 JULY 1990

Dynamical evolution of boson stars: Perturbing the ground state

Edward Seidel
Department ofPhysics, Washington University, St. Louis, Missouri 63130

and Rational Center for Supercomputing Applications, University of Illinois, Champaign, Illinois 61820

Wai-Mo Suen
Department of Physics, Washington Uniuersity, St. Louis, Missouri 63130

(Received 8 January 1990)

This is the first paper in a series in which we study the dynamical evolution of self-gravitating
complex scalar field configurations (boson stars) in numerical relativity. Boson stars have equilibri-
urn configurations corresponding to different levels of excitation of the scalar fields (i.e., different
numbers of nodes). In this paper we report on the dynamical evolution of the perturbed ground-
state boson stars. The major results are the following. (i) Under finite perturbations (with possibly
finite changes in the total mass M and the particle number N), the ground-state configurations of a
boson star consist of a stable branch and an unstable branch. The transition point corresponds to a
critical mass of M =0.633(M pl k /m), where m is the mass of the scalar field, depending slightly on
the type of perturbation considered. This extends the previous result obtained by other authors that
there are two such branches under infinitesimal perturbations with fixed M and N. (ii) The
configurations on the stable branch, when perturbed, will oscillate, emit scalar field radiation with a
characteristic frequency, and settle down into a new configuration with less mass and a larger radius
than the initial perturbed configuration. The quasinormal frequency and the decay rate have been
studied. The decay rate is an increasing function of the oscillation amplitude. (iii) The
configurations on the unstable branch, when perturbed, either collapse to a black hole or migrate to
and eventually settle down on the stable branch, depending on the type of perturbation. This behav-
ior has been seen in initial configurations with both positive and negative binding energies. These
results have implications on the actual existence and the formation of boson stars in an astrophysi-
cal environment.

I. INTRODUCTiON

One of the most important implications of particle
physics on cosmology and astrophysics is that bosonic
particles might play a significant role in the evolution and
the structure of the Universe. Although detailed models
of these bosons have not been uniquely determined, there
are both theoretically appealing reasons (e.g. , for driving
infiation') and observational suggestions (e.g. , dark
matter ) for studying these bosons seriously. Many parti-
cle theories predict the existence of weakly interacting
bosons that are produced efticiently in the early Universe
and are abundant in the present epoch. Studies of galaxy
formation and primordial nucleosynthesis indicate that
the dark rnatter is likely to be more abundant than
baryonic matter, and there are suggestions that the dark
matter could be made up of bosonic particles. This bo-
sonic matter would condense through some sort of the
Jeans instability to form compact gravitating objects.
This is the reason for the recent surge of interest in astro-
physical bosonic objects —boson stars. In this series of
papers we study numerically the formation and dynami-
cal evolution of boson stars in an astrophysica1 environ-
ment.

The simplest kind of boson star is made up of a com-
plex scalar field. ' The equilibrium configurations are
given by the soliton solutions of the Klein-Gordon scalar

field equation and the Einstein equations. These solu-
tions are determined by the requirement that the metric
quantities be static, though the complex scalar field P
must have a time-dependent phase factor so that—1 o)ot
P(r, t) =Pz(r)e ". The lowest-energy solution (the
ground-state boson star) has no nodes in the scalar field.
It is a gravitationally bound state which is supported
against collapse purely by the Heisenberg uncertainty
principle. The excited state scalar field solutions have the
number of nodes in the radial direction equal to the order
of the excitation. A typical scalar field configuration for
the ground state and first excited state are shown in Fig.

The mass of a boson star ranges from 10" kg (Refs
5 —7) (for noninteracting bosons with mass of the order of
a GeV) to much greater than that of a neutron star (for
self-interacting bosons; the mass of the star depends on
the self-coupling ).

The similarity of a boson star in its ground state with a
neutron star is particularly noteworthy. [The energy-
density distributions of the excited state boson stars have
a she11-like structure; but those of the ground state do not
(see Fig. 2).] The mass profile of the ground-state star
against its value of the scalar field at the center P(0}has a
peak with M =0.633(Mpi,„,z/m)=1. 7X10" kg (for a
scalar field mass m of 1 GeV} at P(0), =0.271 [for P
defined as in Eq. (3.4)]. The mass profile is shown in Figs.
3(a) and 3(b). It has been shown by Gleiser and Wat-
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kins" and Lee and Pang' that the ground-state equilibri-
um configurations with P(0) & (t (0), are stable with

respect to infinitesimal perturbations with fixed total
mass M and the total scalar particle number X, whereas
for P(0) & $(0), the configurations are unstable. This sit-

uation is exactly analogous to that of a neutron star.
In this paper we study the behavior of these ground-

state equilibrium configurations under more general types
of perturbations. For boson stars in an astrophysical en-
vironment (and indeed, in order to answer the question of
whether or not they can exist in such an environment) we
must study finite perturbations which may change the to-
tal mass M and the total particle number N (e.g. , pertur-
bations which correspond to more scalar particles or or-
dinary matter accreting onto the star, and the annihila-
tion of the scalar particles through coupling to other
fields). In this paper we follow the dynamical evolution
of the boson stars under these perturbations, using the
3+1 formulation of general relativity. We restrict the
treatment to spherically symmetric configurations in this
paper.

The mathematical formulation of the problem and the
numerical methods are described in Secs. II and III. We
use a variant of the MacCormack scheme to evolve the
spacetime with polar-sliced spatial hypersurfaces. The al-
gorithrn and the variables we use, the initial conditions,
the boundary conditions, the comparison between codes
we developed, various tests of accuracy, numerical stabil-
ity, and results of convergence tests are described.

We find that the dynamical evolution of the perturbed
star can be described well either by the radius R of the
star or alternatively by the peak value of g„„. (We define
R by the radius containing 95% of the total mass, rnea-
sured at infinity, as read out from the asymptotic form of
the metric coeScient g„„.' ) Figure 3(b) for M versus R
shows explicitly the similarity between the boson stars
and neutron stars. The perturbations of the S branch,
i.e., the configurations with R )R, [$(0)&$(0),] are
discussed in Sec. IV B. In Fig. 6 we show the fundamen-
tal oscillation frequencies of boson stars versus their
masses. These frequencies are obtained by considering
very small perturbations. In the linear analysis, all modes
of oscillation of stars on this branch are stable. "' We
find that when the nonlinear interaction is considered,
that is when the effect on the perturbation by the gravita-
tional potential generated by the perturbation itself is
taken into account, the oscillations are damped. This
damping can be seen in Fig. 5. Furthermore, the non-
linear effect causes the oscillation frequencies to lie below
the fundamental oscillation frequencies. The change in
mass versus oscillation frequencies for nonlinear oscilla-
tions is shown in Fig. 6. This figure enables us to esti-
mate the end-point configurations resulting from various
kinds of perturbations, which are discussed in Secs. IV B
and IV C. The fact that the oscillations are damped, and
that the boson stars on this branch can return to an equi-
librium configuration with lower total mass and a larger
radius is nontrivial: since the system is spherically sym-
metric (no gravitational waves may be emitted) and the
scalar field satisfies the Klein-Gordon equation (which
contains no viscous terms), the only mechanism for the

system to return to an equilibrium state is through the ra-
diation of the scalar field. This mechanism is central to
the initial condensation and formation of a boson star.
We study this mechanism in terms of the Newtonian lim-

it of the relativistic system in Sec. IV B.
In Sec. IV C we study the perturbations of the boson-

star configurations in the U branch, i.e., configurations
with R &R, [i.e., P(0}& P(0), ]. We find that the generic
evolution is that when the star is perturbed to the left of
the equilibrium line in the M-R diagram [cf. Fig. 3(b)]
corresponding to the total mass M of the star being per-
turbed to a higher value due to additional matter falling

in, or alternatively due to a fluctuation to a smaller ra-
dius, a collapse is triggered. In this process the star will

fall through its horizon, generally with an insignificant
amount of scalar radiation to infinity. In the runs we per-
formed, the mass radiated is generally less than 0.1% of
the total mass of the boson star. When the star is per-
turbed to the other side of the equilibrium line in the M-

R diagram, corresponding to an annihilation of scalar
particles due to some coupling to other fields, or by a
fluctuation to a larger radius, the star initially expands in

radius. However, it will then fall back in size after it
crosses the S branch of the equilibrium line in the M-R
diagram [Fig. 3(b)], sending out a burst of scalar radia-
tion to infinity. The remaining boson star core will oscil-
late and settle down to a new equilibrium configuration
on the S branch with a smaller mass. This migration pro-
cess is independent of whether the initial configuration
has E =M Nm posit—ive or negative (where m is the
mass of the scalar particle, M is the boson star mass, and
N is the particle number}. That is, at least some
configurations with excess energy (i.e., negative binding
energy) manage to radiate enough scalar radiation to
form a stably bound ground-state star for the perturba-
tions we have considered. This migration process has im-
portant implications on the formation of boson stars
through a "Jeans instability. "

In Sec. IV D we study perturbations of configurations
near the transition point R =R, [P(0)=P(0),]. This is
an exact transition point under infinitesimal perturba-
tions with fixed mass M and particle number ¹"'The
primary conclusion of this subsection is that for general
perturbations, the notion of this transition point is no
longer exact, but the R„P(0), point remains as a useful
characterization of the transition from stable to unstable
boson stars. The results are summarized in Sec. V.

II. MATHEMATICAL FOUNDATIONS

A self-gravitating complex scalar field system in gen-
eral relativity is described by the action

I= fd x&—gR
1

16~6

f d x[v'——g ( —,'g""a„a*a„~+,'m 4*@+—,'A, ~p~ )].
(2.1)

This leads to the scalar field equation
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g" P.„—m P —k(P'P)/=0,

and the Einstein field equations

R„——,'g„R =8m.GT„

where

2
v' —g Bg„„

(2.2)

(2.3)

(2.4)

ds = —(N —S )dt +2S dt dr+g dr +r 10 (2.5)

where g, the lapse function N, and the shift S are func-
tions of (t, r) and r is the circumferential radius. [We
reserve t, r for the dimensionless rescaled quantities given
in Eq. (3.4).] Within this coordinate choice we still have
freedom in choosing N and S. Most of the results report-
ed in this paper are obtained using the polar-slicing con-
dition, ' which requires Koo+K&&=0 where K is the ex-
trinsic curvature of a constant t slice in the metric Eq.
(2.5). In the present spherically symmetric case, this im-
plies the shift S(t,r)=0. In our study, the most impor-
tant consequence of the polar-slicing condition is that the

I

with the matter Lagrangian density I.M given by the
terms in the square brackets in Eq. (2.1). Equations
(2.2) —(2.4) completely determine the scalar field P(x, t)
and the metric up to certain coordinate choices to be dis-
cussed below, once appropriate initial conditions and
boundary conditions are specified. Unlike the case of an
ordinary star, there is no need to specify an equation of
state; all information about the interactions between par-
ticles is provided directly by the action in Eq. (2.1).

The metric for a spherically symmetric spacetime can
be written in the form N . NN', 1 „g', gg+g' g' g

+
2

—m 4=0,24'
rg

(2.6)

where '—=8/Br and =8/Bt. We have set A, =O in (2.6), as
in the rest of this paper. We will return to self-
interacting case A.WO in a future publication in the series.
Since the metric functions are real, both the real and
imaginary parts of 4=4&, (r, t)+i&2(r, t) satisfy this
equation.

In terms of 4, and 42, the rr component of the Ein-
stein equation is

lapse function N decreases rapidly when an apparent hor-
izon is approached (if there is one in the spacetime), so
that no crossing of an apparent horizon is possible. For a
review of the polar-slicing and other time-slicing condi-
tions, see Bardeen and Piran. '

We have developed numerical codes both with and
without a shift vector, and the two codes give results
agreeing to high accuracy for all the tests we have run.
In this paper we are interested mainly in the spacetime
region away from the horizon (when there is one), and we
used mainly the polar-slicing code. We believe that the
code with the shift vector shows promise in obtaining late
time behavior near the presence of a horizon. This shift
vector code will be further developed and reported else-
where. In the rest of this paper, we restrict ourselves to
the case S=O.

For the metric (2.5) with S=O, the scalar field Eq. (2.2),
is explicitly in terms of metric functions,

2 ] 2
N'= —N g +47TGr [(4') —g m 4 +(4') —g m 4 ]+ (4 +i )

2 1 I 2 2 N2 ] 2 (2.7)

This equation is an ordinary differential equation for the lapse function X, which can be solved on each time slice once
the other quantities are known there. The numerical scheme for solving this equation is discussed in Sec. III. There is
a similar ordinary differential equation for the radial metric function g, namely, the Hamiltonian constraint equation
Gu —SvrGTu =o.'

g'= —4mG g r +rg(4I) +rg(42) +rg m (4,+42) (2.8)

However, instead of solving (2.8) on each time slice for g,
which is time consuming computationally, we have
chosen to use this constraint equation as an independent
measure of the accuracy of our numerical solution. We
obtain the time development of g(t, r) using the t, r com-
ponent of Einstein equations:

g=4mGrg(4, @',+%2@&) . (2.9)

Equations (2.6), (2.7), and (2.9) form a complete set of
equations for the four unknown functions 4„N2, N, and
g. Before we go on to discuss the numerical technique for
solving these equations, we first derive the Newtonian
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(k2+ m 2)1/2

can be expanded as

co=m+ —,'k m+O(e ) .

Hence,

8„4=0(e)
and

(2.10)

(2.10a)

limit of these equations. The Newtonian limit is useful

for three reasons: (i) The Newtonian equations can be
solved numerically free from the problems associated
with choice of slicing and the violation of the Hamiltoni-
an constraint. It provides a useful check to the relativis-
tic code applied to weak gravity situations. (ii) The
Newtonian equations are much simpler. The scalar field
satisfies the familiar Schrodinger equation. This has
great advantage in providing an intuitive understanding
of the system (see Sec. IV B 2). (iii) The Newtonian
analysis is particularly useful for studying the initial for-
mation phase of the boson star where only weak gravity
is involved. The results of an investigation of the forma-
tion of boson stars will be reported in a future publication
in this series.

We obtain the Newtonian limit through the standard
post-Newtonian expansion. ' We let the mass m of the
scalar field be a quantity of order 1, whereas the wave
number k of the Fourier spectrum of the field is only of
order e. Then the corresponding frequency

i4=— (r4)+m V4,1 1

2m 1 ()g
(2.17)

(2.18)

Equation (2.17) is the Schrodinger equation with fi= 1, in

a Newtonian potential V(t, r) generated by the
Schrodinger field 4 itself through the Poisson equation
(2.18).

To see that the source term in (2.18) is exactly what we

expected, we note that due to the global U(1) symmetry
4~e' 4 of the action (2.1), there is a conserved current

J"=—g"'(4&*,4—4 „4')l
(2.19)

and an associated conserved charge, namely, the number
of scalar particles on a constant t slice:

X~ = Jd x & gJ—' . (2.20)

It is a conserved quantity if the spatial integration is
over all space. In the Newtonian limit, (2.20) reduces to,
in terms of the Schrodinger field 4,

N =m f 4m.r dr(44 ') . (2.21)

Hence the source of the Newtonian potential V in (2.18)
is simply 4mGmn, with n being the number density of
Schrodinger particles.

B,4=m@+0(e ) . (2.11) III. NUMERICAL TECHNIQUES

The energy associated with the scalar field is moving with
a velocity

v- =O(e) .
CO

k
(2.12)

—-v =O(e } .2 (2.13)

We let

N (t, r)=1+E 2V(t, r)+O(e ),
g (t, r)=1+&'2U(t, r)+O(e ) .

Derivatives of the geometric quantities are of order

BN 0 v-e V=O(e ), —
Bt Bt r

BN Bg 21 4e —V=O(E -) .
Bt Bt r

(2.14)

(2.15)

To separate out the positive-energy component of the
Klein-Gordon field 4 [Eq. (2.2) with A. =O], we let

The gravitational potentials (N —1) and (g —1) are of
order

A. Numerical algorithm

The basic equations for the relativistic system are Eq.
(2.6) for the scalar field variables 4, and 4z, Eq. (2.9) for

g, and Eq. (2.7) for N. Equation (2.7) is a first-order ordi-
nary differential equation to be integrated on each time
slice for the lapse function N. Equations (2.6) and (2.9)
are nonlinear partial differential evolution equations.
They are solved using a modified Mac Cormack
predictor-corrector scheme. ' We illustrate this scheme
with Eq. (2.9) for g. In a predictor loop, a future value
for g, denoted g, is "predicted" using data on the present
nth slice

g~"+''=g "'+dt[4~Grg'"'(4, 4', +4,4z)'"~] . (3.1)

Likewise the "predicted" values 4&,4 „42,4z are ob-
tained. Then the "predicted" value of N is obtained by
integrating Eq. (2.7) inward from the outer edge of the
spatia1 grid to the origin, using the other "predicted"
values. Next the corrected value of g on the n + 1 slice is
obtained using

(n + 1) l ~ (n + ])+ (n)

4=e ™4(x,t} . (2.16) +dt[4mGrg'"+"(4 4& +4~4~)'"+"]j

It is then straightforward to obtain from (2.6)—(2.9), to
the leading nontrivia1 order in e, the equations

(3.2)

Likewise the corrected values N, , @&,4z, +2 on the n + 1



388 EDWARD SEIDEL AND WAI-MO SUEN 42

slice are obtained. We integrate Eq. (2.7) inward once
again using the corrected values to obtain N. The spatial
integration for the lapse function N is performed on each
time slice using a fourth-order Runge-Kutta method.
This method requires that we provide data at the mid-
point between grid points. These data are obtained using
cubic spline interpolation.

The spatial derivative scheme we use in our code is
different from what is normally used in the MacCormack
method, '

namely, forward/backward differencing. We
find that centered differencing works better in our prob-
lem. We have also tried spatial derivative schemes with
various orders of accuracy. Lower-order derivative
schemes are more stable but less accurate, requiring finer
grids to keep the Hamiltonian constraint sufficiently
satisfied. In the actual runs we use fourth- and sixth-
order schemes, and we have checked extensively that the
two codes with different schemes produce results which
agree with each other to high accuracy. One example of
this comparison is shown in Fig. 10(b).

We evolve the system of equations using equally spaced
time steps dt. The proper time advance at each point is
determined by the requirement of polar slicing. For
higher accuracy and stability, we use a time step much
smaller than the grid size. We find that when a small
time step is used, the MacCormack code we use is
significantly more accurate than staggered leapfrog and
extrapolated leapfrog. An improvement of our code so
that a larger time step can be used will be discussed else-
where.

B. Eigenvalue problem for equilibrium models

In this subsection, for setting up the notation and for
completeness, we briefly outline the construction of equi-
librium configurations to which we apply perturbations.
Equilibrium configurations have been obtained by other
authors. By equilibrium configurations, we mean
those configurations in which the metric is time indepen-
dent. There is no solution in which the scalar field 4 is
time independent. Instead, 4 must oscillate with a fixed
frequency coo:

2
A'= — —+ r—g Po A—

r r
1 —1 Jog

(3.5)

g'= ————+borg 1+ +rgA
2 r r

C. Evolution equations

Equations (2.6), (2.7), and (2.9) above are not in optimal
form for numerical solution. As is often the case, analyti-
cally equivalent set of equations may be more or less suit-
ed to accurate numerical evolution. In the present case,
after some experimentation, we have chosen the follow-
ing set of variables for the numerical evolution. We
define

1 =rpl, $2=K/2, %1= ~, K2a Bt cr Bt

where

(3.6)

l. At Ng Pg $0——+ + (1 N—)+ rNA
2 r r N

where $0=40&—4n G. As in the rest of this paper, here a
prime denotes d/dr and an overdot denotes d/dt Re.gu-
larity at r=O requires that g (r =0)= 1 and that all other
quantities are finite at r=0. For the solution to represent
an isolated star, we require P(r = m& ) =0. For each
choice of P(r=O), the set of Eqs. (3.5) has a solution only
when N(r=0) takes on certain values. Different eigen-
values correspond to different numbers of nodes in the
solution of P(r). In Fig. 2 in the next section, a typical
solution with no nodes (ground state) and a solution with
one node (first excited state) are shown. In this paper we
concentrate on the nodeless ground-state solution.

These equations are integrated numerically using either
a fourth-order Runge-Kutta method or the DrvpRK. rou-
tine from the International Mathematical and Scientific
Library (IMSL10), with identical results. Operationally,
we choose a central value of the scalar field, and integrate
out to large radii for different values of N(r =0) until the
boundary conditions are satisfied.

4(t, r) =40(r)e (3.3)
In terms of these variables [and those in (3.4)], Eqs. (2.6),
(2.7), and (2.9) become

However, the energy-momentum tensor of the field given
by (3.3) is time independent. We express the set of equa-
tions for the equilibrium configurations in terms of the
following dimensionless rescaled quantities

g =N(vr, gI+n2$~),
2

+& [(K)'+(A')' —g'(bi+02)]
r

(3.7)

r=—mr, t = ot, /=V'4mG @, N:—N . (34)
COO

1 27T-'+F2
(3.8)

These rescaled quantities are the primary variables we
use for discussion throughout the paper. The Einstein
equations in the equilibrium case in terms of these vari-
ables are

P()=A,
g, =am. ;, i =1,2,

and (2.8) can be written

A
~; =a'p, '+a1(,"—g, gN+, i =1,2,

r
(3.9)

(3.10)
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Pg Pg

ir)+ m.
2 pI +$2

( $2 +P2 )
—0

p 2g 2
g

2

(3.11)

Equations (3.4)—(3.10) are the actual set of equations
evolved in our numerical code. In the following two sec-
tions we discuss the initial conditions and boundary con-
ditions for the equations.

D. Perturbing initial data

E. Boundary conditions

We have to supply boundary conditions at both r=O
and at the end of the grid at large r for the Eqs.
(3.4) —(3.11). The basic condition at r=O is that space-
time is nonsingular there. This is a consequence of the
fact that we use polar slicing. Indeed, the lapse function
with this choice of slicing decreases to zero when an ap-
parent horizon is approached (should there be one in the
spacetime). This implies (since singularities are avoided)
that at the origin, we always have g(r =0)=1, and
g, N, P, , $2 all have vanishing first spatial derivatives at

We study the dynamics of the boson stars by perturb-
ing the equilibrium configurations constructed in Sec.
IIIB. There are two broad types of perturbations we
considered. The first type changes the field distribution
(P, and g2) from its equilibrium structure. The eff'ect of
the accretion of scalar particles by the equilibrium star
can be simulated by increasing the field distributions in
the outer region of the star, while the effect of the annihi-
lation of the scalar particles through coupling to other
fields can be simulated by decreasing the field distribu-
tions in the denser region of the star. The perturbations
are prescribed by, e.g., adding to 1(, an adjustable
Gaussian-like distribution 5$& in the designated region of
the star. The height, width, and region of perturbation
can be chosen arbitrarily. Once this choice has been
made we recompute the metric functions g and N on the
initial slice so that the initial constraint is satisfied and
that the initial slice is a polar slice. This is done by in-
tegrating (3.8) and (3.11) on the initial slice.

The accretion of more scalar particles can change not
only the rest energy density of the star but also the kinet-
ic energy density distribution. In the second type of per-
turbation we simulate the change of the kinetic energy
density distribution by changing the P~ and Pz of the
equilibrium configuration. Since the scalar field equa-
tions are second order, the initial values of g, and $2 can
be changed independent of the changes made in g& and

$2. The changes in the metric functions g and N on the
initial slice are again determined by the initial constraint
and the polar-slicing condition.

It is clear that perturbations prescribed this way are
not necessarily small, nor do they have to keep the total
mass or total number of scalar particles the same, al-
though we can arrange for such particular cases. In this
paper we do not consider the effect of accretion of ordi-
nary matter into a boson star.

r=O. Indeed if we extend the range of r to include nega-
tive values, g, N, P„and Pz are symmetric about r=0 and
their parities are conserved by the Eqs. (3.4)—(3.11). By
their definitions, the quantities $, , $2, ir, and vr2 are an-

tisymmetric about r=O. They are zero at the origin and
the antisymmetry allows us to determine P, and $2 at the
origin as first derivatives of g& and gz at r=O. The value

of the lapse function is not prescribed at the origin but is
determined by integrating the first-order equation (3.5)
inward from the outer boundary.

At the outer boundary, we choose the lapse to be fixed
at its initial value. We are free to choose the value of N
at one point on each slice. The value of g at the outer
boundary is not to be chosen but is determined by the
evolution. It can be obtained either from Eq. (3.7) or
from the Hamiltonian constraint equation (3.11). We
choose to determine it using the latter equation, while we
evolve g at any interior point using the former equation.
The value of g at the boundary is related to an important
parameter characterizing the system: the total gravita-
tional mass (as measured at infinity) is

r

1 1I=—r 1—
2 g~(oo)

(3.12)

The masses reported in this paper are obtained with this
formula. As for the boundary conditions for the scalar
fields, we place the outer boundary far enough out in the
asymptotic region that we expect scalar waves to be only
outgoing there. In the massless case the propagation
speed is independent of the wavelength so the outgoing
wave condition is simply given by (1/N)(dg/dt)
=( —I/g)(BQ/Br). However, this condition is not usable
for a massive field. We generalize this condition to in-
clude the effect of the mass on the dispersion relation to
first order in I /cu. The dispersion relation for a massive
Klein-Gordon field in the asymptotically flat region of
the spacetime &s given by (z k =e) —N ~, where
a=N/g (the first spatial derivatives of the metric func-
tions are of higher order in 1/r) The co.ndition which
gives rise to this dispersion relation, when expanded to
first order in m /co, is

N
il = —a4' —'

2
(3.13)

In our present code this condition is implemented as our
outer boundary condition for the scalar fields. However,
since it is only for a first-order correction to the massless
condition, it does not completely allow outgoing waves to
escape the grid. We have observed partial reflection of
waves in our calculations. In most cases the small
amount of reflection has practically no effect on the accu-
racy of the calculations. However, in one particular case,
namely, the migration of boson stars with lower masses
from the unstable branch to the stable branch (to be dis-
cussed in Sec. IV C), the reflection is the major factor in
limiting us from following the evolution for a longer time.
We are currently working to improve this boundary con-
dition for the scalar field.
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F. Code tests

We have tested the modified MacCormack method de-
scribed against the forward/backward Mac Cormack
method, the Brailovskaya predictor corrector method,
and the standard and extrapolated leapfrog method on
wave equations in both Cartesian and spherical coordi-
nates, and on a nonlinear partial differentia1 equation
which has many of the features of the Einstein equations
we are solving, but with a known solution. We have
found the modified MacCormack method outlined above
superior to the others in maintaining accuracy, especially
at late times in the evolution. The details of these com-
parisons will not be discussed in this paper.

Another important test is provided by evolving the
equilibrium data, since in this case, we know what the re-
sult should be, namely, that the metric functions g and N
should stay constant in time. This is not a trivial test
since both Pt and (()z are evolving in time; only the correct
nonlinear combination of their effects on the geometry is
zero. Moreover, as we shall demonstrate in Sec. IV
below, some of these equilibrium configurations are in-
trinsically unstable. We evolve these configurations
without putting perturbations in; i.e., we let the equilibri-
um data be perturbed only by the inherent discretation
error present in any numerical code. For a typical equi-
librium star, e.g. , one with (()(0)=0.40 or M=0.609, we
find that after a time greater than t=100, the maximum
deviations of N and g from their equilibrium values are

less than 0. 1%%uo throughout the star. This is to be com-
pared to the scalar fields' intrinsic oscillation period of
2m. . The same star collapses with a dynamical time scale
of t-N/N —20, when perturbed slightly (with a change
in mass by less than l%%uo) by choosing 5P, as described in
Sec. III D. At t=48 the peak value of g =10 (compare
to the peak value of g=1.7 at t=0) and the lapse at the
center is N =10 " (compare to %=0.75 at t =0), indi-
cating that a black hole has been formed. This evolution
is shown in Figs. 9(a) and 9(b).

An important indicator of the accuracy and stability of
the code is the deviation of the Hamiltonian constraint
[Eq. (3.11)] from zero, which we closely monitor in all
runs. In Fig. 1 a typical deviation of the constraint mul-
tiplied by r is plotted against r for each instant of time
for the dynamical evolution of a perturbed boson star (the
evolution of this star is discussed in Sec. IV 8). The fac-
tor r is included so that it reflects the volume of space in
which the error of the Hamiltonian constraint appears.
The region where the error is largest is the region where
most of the activity is going on. The spike at the bound-
ary of the grid results from the use of a second-order
derivative scheme near the boundary. Had we not multi-
plied the result by r, the spike at large r at all times is
less than 10, and the error is the largest at the inner
boundary r=0, where it is at most of order 10 at all
times throughout the evolution. The data shown
represent evolution up to t=1500. This is to be com-
pared to the intrinsic oscillation period of 2m. We have

xlp

0.5-

Evo)ution of perturbed (t)(0) = 0.10 star

p .p-
g

2
p 5

-1.0-

I

10
I

20
I

30

FIG. 1. The Hamiltonian constraint G« —gvrGT„=O [Eq. (3.11}jtimes r is plotted against r at various times during the evolution
of an oscillating boson star. (The evolution is studied in Sec. IV B.) The factor of r reflects the volume of space in which the error in
the Hamiltonian constraint appears. The spike at the outer edge of the grid appears because of a second-order boundary condition
used there; without the r factor this spike is only of order 10 . Without the r' factor, the error is largest at the origin, but does not
exceed the 10 level there throughout the entire run, which lasts for t=1500, a time orders of magnitude longer than the intrinsic
oscillation time scale (2~) of the scalar field.
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terminated the calculation at this point only because of
the computation time involved. Most of the results we
report in the paper involve deviations of the Hamiltonian
constraint by itself and multiplied by r both less than
10-'.

Another class of tests we have done is to compare the
code to other codes we developed. We have mentioned
the shift vector code which slices spacetime in a different
manner. The two codes in all tests give physical quanti-
ties which agree with each other to high accuracy. We
have further applied the code to weakly gravitating boson
stars and compared the result to that of the Newtonian
code based on Eqs. (2.17) and (2.18). The Newtonian sys-
tem is much simpler mathematically, does not involve
slicing and constraint problems, and some of the results
can be obtained analytically. The relativistic code pro-
duces results agreeing with the Newtonian code for all
cases studied. An example of the comparison is given in
Fig. 6.

We have also performed tests to make sure that the re-
sults we obtained are not affected by parameters used in
the numerical code (e.g. , grid size, spatial extent of the
grid, the order of derivative schemes, etc.). One such
comparison between fourth- and sixth-order spatial
derivative schemes with different size grids (i.e., the spa-
tial extent of the grid) is shown in Fig. 10(b). We see that
the results are independent of the parameters chosen.

We have performed single-time-step convergence tests
which measure how well our spatial difference scheme is
converging on a solution. If one assumes that the com-
puted value of a particular quantity H differs from its
true value H0 by

H —Ho=k(b, r) (3.14)

where k is some constant and b r is the grid spacing, then
e may be computed easily from

0 = I + t)(lnH') /t)(Inner), (3.15)

where H'=r)H/d(br). In practice, we have measured cJ

by computing the spatial integral of the Hamiltonian con-
straint over the star:

H = f (G„—8nGT„.)dr . (3.16)

This quantity is computed using a fourth-order numerical
integration scheme. In a typical case, we perturbed a
P(0) =040 star by deceasing its central density by 10%.
We then recompute the initial data as described in Sec.
III D and evolve for one time step. Using four different
grid spacings of Ar =0.1, Ar =0.075, Ar =0.05, and
Dr=0.025, and choosing equal time steps for each grid
spacing, we can compute several independent values of 0.,
which all lie in the range 3.1(a &3.2 for our fourth-
order code. As one expects, the actual computed value of
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FIG. 2. The radial metric functions N = —g«and g„„=g,and the energy density p= —T,' of the two lowest-energy equilibrium
configurations are shown for the boson star with a central field value of /=0. 10. The left vertical axis gives the value of the metric
functions N and g, while the right vertical axis gives the value of the energy density p. The lapse N is not one at r = ~, but is relat-
ed to the equilibrium oscillation frequency coo of the scalar field as measured by an observer at spatial infinity [coo= m /X( 0O ), where
m is the mass of the scalar field]. The solid lines denote the ground state and the dashed lines denote the first excited state. The first

excited state shows the shell-like structure which is a result of the node in the radial wave function P. The points marked Ro and R,
denote the radii containing 95%%uo of the mass of the ground-state and first-excited-state boson stars, respectively. Note that although
the second peak of the first excited star is lower, there is much more mass in the "shell" due to the r factor.
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o is found to be somewhat below the order of the spatial
derivatives utilized in the scheme.

IV. EVOLUTION OF PERTURBED BOSON STARS

A. Equilibrium configurations

The equilibrium configurations of boson stars have
been studied by many authors. ' In this subsection we
give a brief description of these configurations to set the
stage for the perturbation analyses.

A boson star is said to be in its nth excited state when
the scalar field has n nodes in the radial direction. For a
given total mass of the star, the one with no nodes has the
lowest energy. In Fig. 2 the scalar field energy density is
plotted against the radius r for a typical ground state
(solid line) and a first excited state (dashed line). As in all
other figures in this section, the quantities plotted are the
rescaled dimensionless quantities given in Eq. (3.4). The
scalar field i'(r) of the first excited state has a node at the
circumferential radius r -7.8. Also plotted are the struc-
tures of the gravitational field of the two configurations
(solid lines for ground state, dashed line for first excited
state) are shown. The left vertical scale is for the lapse
and the radial metric coefBcient g . The fact that g= 1 at
r=0 is required by the regularity of spacetime near the
origin (elementary fiatness). That g~l at large r is re-

quired by asymptotic Aatness. The value of g at large r
is determined by the total mass of the star through Eq.
(3.12). The lapse N is free for us to choose at one spatial
point on each time slice. The natural choice is N=1 at
r = ao. But with our choice of t rescaled by Eq. (3.4), the
lapse N is not one at r = ac, rather, the value of N( ac )

gives the equilibrium oscillation frequency coo of the sca-
lar field as measured by an observer at spatial infinity

[coo=m jN( ~ ), where m is the mass of the scalar field].
In Fig. 2, Rc (R, ) is the radius of the ground-state (first-

excited-state) boson star, which is defined to be the radius
containing 95% of the total mass M of the star, as read
out from the form of g (see Ref. 13).

Note that the Newtonian potential Vis given by
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figures have been obtained by many authors. Figure
3(b) gives M vs R, the radius containing 95% of mass of
the star. The inset, with a different ratio of horizontal to
vertical scale, is the enlargement of the snail-like struc-
ture at small radius. We see that there is a minimum ra-
dius for equilibrium configurations, R=2.79 (remember
R is the 95% mass radius). From Figs. 3(a) and 3(b), we

1 N'(r)V= — —1
2 N~(oo )

(4.1)

and the radii R o and R, give roughly the size of the grav-
itational potential well in Newtonian language. Figure 2
also shows the energy density p= T-,

' distributions of the
two configurations as measured by observers at fixed cir-
cumferential radius r. We see that while the ground-state
distribution (solid line) is qualitatively the same as an or-
dinary star, the distribution of that of the first excited
state (dashed line) has a shell-like structure. In the next
paper in this series, we shall show that this shell-like
structure is unstable. Upon perturbation, it will collapse
to a ground-state configuration. We focus on the behav-
ior of the ground-state boson star in this paper.

The similarity of the ground-state boson star to a neu-
tron star is evident in Figs. 3(a) and 3(b). Figure 3(a)
gives the total mass M [determined by Eq. (3.12)] of the
star versus the value of the scalar field P at r=O. Similar

FIG. 3. {aj The total mass M (in units Mp~, „,k/m) of the
ground-state boson stars is plotted as a function of the central
value of the complex magnitude of the scalar field i((0). The
maximum mass M, . occurs at P(0)=0.271. The point on the
curve marked by a plus sign denotes the transition between
configurations with positive binding energy to those with nega-
tive binding energy, which occurs at P(0)=0.54. Configurations
on the S branch, to the left of the maximum, are stable with

respect to infinitesimal perturbations, while those on the U
branch are unstable. There are additional peaks at the large
/{0) end of the U branch. (b) The total mass M of the ground-
state equilibrium configurations is graphed against the radius
containing 95% of the mass, showing the similarity of boson
stars to neutron stars. The inset in the upper right section of
the figure shows an expanded view of the snail-like feature at
the bottom of the U branch, or unstable branch. The S branch,
or stable branch, is to the right of the peak of the curve. The
transition point from positive to negative binding energy is
marked by an X on the U branch. The critical 95% radius,

R, =6.03, is also marked.
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see that there is also a maximum mass:
M, =0.633=1.7X10" g (for a scalar field mass m of 1

GeV). We call the branch to the right of the peak in Fig.
3(b) the S branch [corresponding to the branch to the left
of the peak in Fig. 3(a)] and the branch to the left of the
peak the U branch [the branch to the right of the peak in

Fig. 3(a)]. From Fig. 3(b) we see that the mass of the U-

branch stars has a lower bound of M=0.34. The U
branch includes the configurations in the snail-like struc-
ture (shown in detail in the inset). We shall see that these
configurations, when perturbed, evolve in qualitatively
the same manner as other configurations in the branch.
We shall also see that the configurations in the U branch
with mass M &Nm [points aboue the M =Nm point in
Figs. 3(a) and 3(b)], although having positive binding en-

ergy such as those configurations on the S branch, have
the same qualitative behavior under perturbation as the
M )Nm configurations (which we have studied) in the
rest of the U branch. This result, that the qualitative evo-
lution of boson stars is independent of whether the
configurations have positive or negative binding energy,
might be a priori unexpected.

We note that in Fig. 3(b), although the choice of
parametrizing a configuration with a radius containing
95% of the mass might seem arbitrary, it is a useful pa-
rametrization because (i) the qualitative behavior of both
the equilibrium lines and the behavior of evolution after
perturbation will be the same if we use other definitions
of the radius, ' and (ii) that during dynamical evolution,
the value of P at r=o [the parameter used in Fig. 3(a)] is
no longer a good characterization of the structure of the

whole star. On the other hand, the radius of the star is
still useful in intuitive understanding of the evolution.

The S-branch and the U-branch equilibrium
configurations are separated by the configuration with
dM/dg(0) =0, which has been shown"' to be the tran-
sition point between stability and instability under
infinitesimal perturbations which hold fixed the total
mass and total number of particles. We shall study how
the transition point is affected when more general kinds
of perturbations are considered.

B. Perturbations of the S-branch stars

1. Relativistic analyses

The evolution of boson stars on the S branch after per-
turbations follows one single pattern, essentially indepen-
dent of the location on the branch and types of perturba-
tion considered. There are two broad types of perturba-
tions as discussed in Sec. III D. Perturbations with both
positive and negative values of 5$,„/~P, „~ ranging from
less than 1% to greater than 1 have been studied (where
the subscripts "max" denote maximum value in the cor-
responding spatial distributions). For small perturba-
tions, the perturbed star always oscillates with a dom-
inant frequency, radiates some of the scalar field away to
spatial infinity, and gradually settles down to another S-
branch configuration with a total mass less than the per-
turbed value. (It is, of course, possible to, for example,
increase the density in a region of the star so much that
the star collapses; see, for example, a case studied in Sec.
IV D. We exclude perturbation of this sort in this sec-
tion. ) In Fig. 4, a typical, but strong, initial perturbation

Strong Perturbation of Stable Configuration

0.10—
— 1.12

0.08- - 1 ~ 10

0.06—

— 1.08

0.04—

0.02— — 1.02

I

10 ~

I

20
I

30
I

40

FIG. 4. A strongly perturbed S-branch boson star with M=0.533 [/{0)=0.10] is contrasted with the unperturbed configuration.
The solid lines show the perturbed configuration, while the dashed lines show the unperturbed star. The left vertical axis shows the
scalar field P at t= 0 (which is chosen to be real), while the right vertical axis shows the radial metric function g„„=g'. This perturba-
tion mimics the effect of accretion of additional scalar field particles, as can be seen by the bump in P between r= 10 and r= 20.
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that the first few outward oscillations produce bursts of
scalar radiation, and the points labeled A and C corre-
spond to the similarly labeled peaks in Figs. 5(a) and 5(b).
This effect continues throughout the evolution, although
as the oscillations die down, less and less matter is emit-
ted through successive oscillations. This radiation damp-
ing mechanism is a generic feature of the oscillating bo-
son star, and will be discussed further in later sections of
this paper. The oscillation frequency in terms of proper
time at infinity can be easily read out from Fig. 5(b) to be

f = 1/[228K ( ao ) ]=4. 17 X 10, which is constant in
time to high accuracy. The decay rate I is an increasing
function of the oscillation amplitude. For the amplitude
of the case shown in Figs. 5, I =2.8X10 [amplitude
damped to half in the time 1/I (proper time at infinity) if
the same rate is kept]. For comparison, the same initial
star perturbed with a much smaller amplitude showed a
damping rate I of order 10

In Fig. 6 we plot the oscillation frequency versus mass
of the case just discussed together with those of the other
slightly perturbed S-branch star (so that the masses of the

perturbed configurations are within 0.1% of the unper-
turbed equilibrium configurations, i.e., 5M/M 10 ).
These frequencies are shown as squares lying on the solid
line. They are the fundamental oscillation frequencies of
the S-branch stars.

Note that the oscillation frequency marked by the solid
line steadily increases as one moves from very dilute, low
mass stars (softer stars) to more compact and massive
stars (stiffer stars) in the regime below the critical mass
M, =0.633. There is a turnaround near M, ; the oscilla-
tion frequency has a sharp decline, signaling the onset of
the instability of the fundamental mode with co ap-
proaching zero. Beyond M„ the oscillation frequency co

has a positive imaginary part. We will return to this
point in Sec. IV C, where we discuss the unstable branch.

If an S-branch star is perturbed significantly, it oscil-
lates with a frequency below the solid line in Fig. 6, in-
dependent of whether the perturbation is one that in-
creases or decreases the mass. These perturbed
configurations radiate the scalar field to infinity, lose
mass, move horizontally in Fig. 6, and slowly return to

x10
Frequency vs Effective Mass

A

4

0.3 0.4
Mass

0.5 0.6

FIG. 6. The oscillation frequencies of various boson stars are plotted against their mass. The squares, connected by the solid
curve, are obtained by slightly perturbing stable (S-branch) boson stars. The curve reaches a peak value near M=0.587 and then the
right branch of this curve approaches zero as the critical mass is approached. The asterisks are obtained by strongly perturbing S-
branch stars. These stars start out oscillating with a frequency below the solid line. As they evolve and radiate mass away, they
move horizontally towards the solid line. The open circles are obtained by perturbing low mass, Newtonian boson stars and evolving
them with the Poisson-Schrodinger equations. The X s are obtained by perturbing boson stars on the U branch. Six U-branch stars
labeled A —, F, are shown migrating to the S branch, as indicated by the arrows. These stars have initial, unperturbed masses of 0.632,
0.620, 0.609, 0.598, 0.579, and 0.548, respectively. In this figure, they move to the left, toward stars with masses of 0.58, 0.56, 0.54,
0.51, 0.45, and 0.3, respectively. The crosses marked along each track represent equal time intervals, and are labeled numerically in
increasing order of time. The track labeled A has three unlabeled crosses, barely resoivable on this scale. The track labeled F here
has a mass 0.548, which is below the M =Km point. Hence although it is a configuration with excess energy initially, it manages to
radiate away the excess mass and migrates to the Sbranch, with a much lower mass. Finally, the dashed line is obtained from the an-
alytic formula Eq. (4.3). The excellent agreement of both the relativistic and Newtonian calculations to the analytic formula is evi-
dent. For a full discussion of these points, see the text in Sec. IV.
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FIG. 7. An expanded view of Fig. 6 is given, showing only
the strongly perturbed S-branch stars, labeled A, B, C, and D,
and the fundamental oscillation frequencies of the S brancl
(solid line). The tracks marked A, B, C, and D are obtained by
perturbing S-branch stars with initial masses of Mp=0. 533,
Mp =0.60 1 Mp =0.6 12, and Mp =0.632, so that stars from both
sides of the S-branch frequency curve are represented. The as-
terisks along each track representing equal time intervals are la-
beled in increasing order of time evolution, indicating the de-
creases in the mass of the stars due to scalar radiation to
infinity. The decay rate is clearly decreasing with the asterisks
corresponding to later time clustering up. For details of the
specific perturbations used, see the text in Sec. IV B l.

the solid line. This process is a very generic feature of
perturbed boson stars. Some examples of this behavior
that we have studied in our simulations are shown in Fig.
6 marked with an asterisk.

An expanded diagram showing the evolution of these
strongly perturbed stars is given in Fig. 7. The 3 marked
with an asterisk is obtained by subtracting scalar parti-
cles from an M=0.533 star [corresponding to hatt(0)=0. 1]
on the S branch. The perturbed initial mass is M=0.519.
It oscillates with the frequency 3.2 X 10,whereas the B
marked with an asterisk is obtained by adding scalar par-
ticles to the same star, so that the perturbed initial mass
is M=0.601. In fact, this is the star shown in Figs. 4 and
5. The oscillation frequency is 4. 17 X 10

The star at point C is again the result of perturbing a
P(0) =0.1 star, but this time it has been perturbed by add-
ing kinetic energy through a perturbation in P, (cf. Sec.
III D). In this case, the perturbed initial mass is
M=0.612, and as it radiates away some of its mass it
moves to the left in the frequency versus mass diagram.
Finally, the star at point D is the result of perturbing a
boson star with an initial mass of M=0.632. Note that
this initial star lies on the right-hand slope of the frequen-
cy versus mass curve. We have perturbed this star by de-
creasing its central field by 25%, corresponding to a per-
turbed mass of M=0.604. As in the other cases, this bo-
son star heads toward the left-hand slope of the frequency
versus mass curve as it radiates scalar field particles to
infinity.

The frequency versus mass diagram is particularly use-
ful in that it enables us to determine the final point of

evolution of a perturbed S branch star. (We shall see that
it also enables us to determine the final point of evolution
of U-branch star resulting from a certain type of pertur-
bation in Sec. IVC.) From Fig. 7 we see that the initial
configuration A will end up with a mass about
M~ =0.505, while configurations B, C, and D will end up
with masses of Mz =0.565, M& =0.575, and MD =0.580,
respectively. The time scales involved for the evolution
shown on the diagram are typically on the center of
t=500 to 2500. Since the decay time is so long, the stars
will not settle down at their new equilibrium positions for
at least another order of magnitude in time or more. The
data points marked with an asterisk (labeled by 1,2,3,4)
represent equal intervals of time evolution. Some aster-
isks representing later times are barely resolvable, show-
ing clearly that the rate of scalar field emission is decreas-
ing rapidly as the oscillation damp out; i.e., the decay
rate I decreases as oscillation amplitude decreases. We
provide an understanding of this phenomenon in the next
subsection.

This damping of oscillations through radiating scalar
field to infinity is crucial in many ways to the understand-
ing of the evolution and formation of the boson star. In
the following subsection we will analyze these oscillations
and damping in the Newtonian limit. The Newtonian
analysis has the advantage that it is free of complications
coming from the choice of slicing and violation of the
constraint equation.

2. Newtonian analysis

In Sec. III we have shown that the relativistic system
reduces to a Schrodinger equation with A= 1 coupled to a
Newtonian gravitational potential. The Schrodinger field

P is bounded by the Newtonian potential well generated
by the star itself. The equilibrium configurations
(Newtonian boson stars) are obtained by substituting

P=Po(r)e ', and V(r, t)=V(r) into (2.17) and (2.18).
These then become an eigenvalue problem with eigenval-
ue coo. A typical Newtonian boson star with total mass
M=0.206 is shown in Fig. 8. The left vertical scale is the
magnitude of the Schrodinger field Po(r) rescaled by
v'4nG. The right vertical scale is the Newtonian poten-
tial V(r). We perturb the Newtonian boson stars by

changing the distribution to P(r, t)=$0(r)e '+5/(r, t)
(Only perturbations of the second type (cf. Sec. III D) are
possible in the Newtonian case since the Schrodinger
equation [Eq. (2.17)], is first order in the time deriva-
tives. ) The subsequent evolution for perturbed Newtoni-
an boson stars is the same as for the low mass relativistic
boson stars on the S branch. [For example, for M-0. 3,
the radius R =35.1=50(2M). Hence the Newtonian ap-
proximation is accurate for M smaller than that. ] The os-
cillation frequencies of the perturbed configurations
versus mass of the Newtonian stars are shown in Fig. 6 as
circles. These were computed by evolving numerically
the Newton-Schrodinger system [Eqs. (2.17) and (2.18)].
With the simple Newton-Schrodinger system, these oscil-
lations of the Newtonian star can easily be understood.
The perturbation 5$ is approximately evolving in the po-
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FIG. 8. A typical Newtonian boson star with a mass M=0.206 is shown, along with the Newtonian potential generated by the
star. The magnitude of the central scalar field of this star is P(0) =0.01. The left vertical scale shows the value of the Schrodinger
field and the right vertical scale shows the value of the Newtonian potential V. The point labeled Ro gives the radius containing 95%
of the total mass of the star, and is taken as the size of the Newtonian potential well created by the star.

tential well generated by the unperturbed configuration
Po(r). The fundamental oscillation of 5$ has a wave-

length

2R0, (4.2)

where Ro is the radius of the potential well (the radius of
the equilibrium star). The angular frequency of the oscil-
lation of 5$ is

1
CO

2m

2
2m 1 m GM

(4.3)

where the potential well is approximated by a step poten-
tial. (The potential of the Schrodinger equation in fact
also contains in the gravitational potential due to 5$ cou-
pled with Po. This term is linear in 5$. It gives rise to a
modulation of the oscillations of 5$.) The frequency
(co/2') given by Eq. (4.3) is plotted against mass in Fig. 6
as the dashed line. Note the excellent agreement with the
numerical data of the Newtonian stars and the lower-
mass relativistic stars.

As discussed in the previous section, the oscillations
are slowly damped as scalar radiation is emitted. The
damping of the oscillations in the Newtonian case can be
understood easily.

The perturbation 5$ is approximately evolving in a
fixed potential Vo generated by the equilibrium Po. If Vo
were exactly the potential the field evolves in, the state
with co given by Eq. (4.3) is a negative-energy state and no
radiation to infinity is possible. There is, however, in ad-
dition to Vo, a time-dependent part of the potential
which is generated by 5P itself. The potential is time

dependent since the field is no longer a solution to the ei-
genvalue equation with 5$ nonzero. This time-dependent
perturbation to the potential is driving a transition of the
field into positive-energy states, and in turn, leads to sca-
lar radiation to infinity. The damping mechanism is
highly nonlinear and the damping rate is of high power in
5$, leading to a small damping rate in all cases studied.

The Newtonian analysis developed in Sec. III and used
in this subsection is particularly useful in studying the in-
itial stage of the formation of a boson star. A detailed
study of this process will be reported in a future publica-
tion.

C. Perturbations of the U-branch stars

In this subsection we show (i) that the U-branch stars
are unstable to arbitrary kinds of perturbations and (ii)
what evolutionary paths these various perturbations of
the U-branch stars lead to. Point (i) is a confirmation of
previous result"' (now obtained under generic perturba-
tion). Point (ii) turns out to have important implications
on the formation of a boson star, as we shall see immedi-
ately.

In general, if the density of a star on the U branch is
increased, a gravitational collapse will be initiated and
the evolution will lead to a black hole, with a mass essen-
tially the same as the initial perturbed configuration.
Only a minimal amount of scalar radiation is emitted to
infinity in the process. For typical cases we find that the
mass of the radiated scalar field is well under 0.1% of the
mass of the perturbed U-branch star. This result is essen-
tially independent of whether we increase the density of
the star by a first- or second-type perturbation (cf. Sec.
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III D)&, although exceptions can easily be arranged: We
can put in scalar field in the form of outgoing radiati
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total mass M=0.615. The time development of g (r) is
shown in Fig. 9(a). The difFerence between the unper-
turbed radial metric function go(r) and the initial per-
turbed g (r), labeled as t=0, is very small and is not
shown here. The corresponding lapse functions are
shown in Fig. 9(b). We see that at late time the lapse has
collapsed dramatically. [Remember that we use polar
slicing, which decreases the lapse when the apparent hor-
izon is approached (cf. Sec. III A).] In fact, by t=48, N
in the inner part of the star has dropped to about 10
The radial function g (r) at late time develops a sharp
peak as the spatial slice dips back to the "past" ("past" in
the sense of an ingoing Finkelstein coordinate). A black
hole is formed. In fact, one may note from the position
of the large gradient in N or the coincident peak in g that
the radius of the black hole is r=1.22, or since the initial
mass of the star is M=0.615, nearly all the matter has
ended up inside the hole radius at thi(time.

In the mass versus radius diagram [Fig. 3(b)] this evo-
lution is a horizontal line to the left of the U-branch line
of equilibrium, plunging into the line R =2M. Stars
throughout the U branch show the same behavior, in-
dependent of whether the star is on the snail-like struc-
ture [the inset in Fig. 3(b)], or above or below the
M =Nm point. We might expect that the star with ex-
cess energy (M )Nm) might radiate more scalar field to
infinity. However, this turns out not to be the case.

If the density of a star in the U branch is decreased, no
matter whether the decrease is in the central part of the
star (so that gravitational attraction to the outer part is
decreased) or it is in the outer part of the star (so that the
pressure to the core of the star is decreased), the star ex-
plodes in radius, and moves to the right in the M-R dia-
gram [Fig. 3(b)]. After it crosses the line of equilibrium
S-branch configurations, part of the star falls back, while
part of the outer region of the star escapes to infinity.
The recontracted core of the star oscillates about an S-
branch equilibrium configuration. The U-branch star has
migrated to the S branch. The scalar radiation obtained
is significantly more than in the collapse case. For the
cases we have studied, we see that ranging from less than
l%%uo to more than 20% of the mass of the original
configuration is radiated in the initial burst, while subse-
quent oscillation sends out less radiation. In Fig. 10(a)
the radial metric function g (r) is shown at various times
for a migrating, U-branch boson star with an unper-
turbed central density of P(0)=0.40. The initial
configuration has its peak at r =3.7 with a peak value
g =1.45. As the star expands, the peak slides down as
the position of peak moves out. (The profile of g at
t= 1 1 and t=21 are shown. ) At t= 120, denoted t in the
figure, the expansion of the core halts and it begins to
recontract. The peak of g is located at r=8.9 and is sub-
stantially lower. The migrating star then settles down
through a long period of slowly damped oscillations. The
profiles of g at some selected moments in this oscillation
phase are shown. In particular, t& is the time when the
oscillating core reaches its first rninirnum radius. It then
bounces back out until t, then recontracts until t&. For
comparison, the g of an M=0.54 S-branch star, which
the migrating star oscillates about is also shown. Note

that the asymptotic value of g, which is tied to the total
mass by Eq. (3.12), is not oscillating but is monotonically
decreasing as scalar field is being radiated. In Fig. 10(b),
these oscillations are shown for a long time. The left
vertical scale is for the peak value of g at different times,
and the right vertical is the circumferential radius of
these peaks. (This radius is somewhat less than the 95%%uo

radius in Sec. III, but is more convenient for this plot. )

The point marked a,P, y, 5 corresponds to t, t&, tr, t& in

Fig. 10(b). These oscillations are of the same nature as
those shown in Fig. 5(b) except that in the present case
the oscillations have larger amplitudes initially. Hence
when plotted in Fig. 6 (frequency versus mass) they fall
below the dashed line (represented by crosses), as in the
cases of strongly perturbed S-branch stars Fig. 7 dis-
cussed in Sec. IV B 1.

The six crosses shown in Fig. 6 correspond originally
to U-branch stars with masses 0.632, 0.620, 0.609, 0.598,
0.579, 0.548 before the migration. In Fig. 6 we show a
detail of these points labeled A through F, respectively.
The data points labeled by 1 —3 represent equal intervals
of time evolution. As the oscillations decrease in ampli-
tude due to the emission of scalar radiation, as discussed
in the previous section, the decay rates decrease. In cases
A, B, and C, the change in decay rate is not obvious.
This is due to the fact that the boundary of the grid we

have used is far out at large r. With the total mass of the
configuration being read out at the boundary, it takes
some time for the outgoing radiation to reach the bound-
ary and for the mass contained within the boundary to
decrease. In Fig. 6 we can obtain the mass they end up to
have as S-branch stars. They move horizontally and hit
the solid line at 0.58, 0.56, 0.54, 0.51, 0.45, and 0.3, re-
spectively. These values are consistent with the masses
determined by comparing oscillations of the star to an
equilibrium configuration, as in Fig. 10(a).

We note that the U-branch star with M=0.548 is
below the M=Nm point in Fig. 3(b). Hence it is a
configuration with excess energy (negative binding ener-

gy). The determination of the frequency of this star is
less accurate, as its oscillation period is quite long, and
we have evolved it only through one complete cycle. The
long oscillation period of the lower-mass migrating stars,
coupled with the spatial size of the S-branch stars to
which they are migrating, makes these calculations very
expensive in terms of computer time. We have per-
formed calculations on the U-branch stars with masses
down to 0.530, and in all cases, after significant expansion
and initial mass loss, the inner core oscillates back in-

ward; the stars manage to radiate the excess energy away
as scalar radiation and settle down as S-branch stars,
which always have positive binding energy. We note also
that we have taken stars on the S branch and perturbed
them in such a way as to increase their mass so that
M )Nm, and these stars oscillate just as their positive
binding energy counterparts. However, excess energy U-

branch stars migrate to dilute S-branch stars, and we do
not preclude the possibility that some will disperse entire-
ly. These points have important implications on the for-
mation of a boson star. This theme will be explored fur-
ther in a future paper.
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FIG. 11. A detail of Fig. 3(b) near the peak of the mass curve

is shown as long dashes with evolutionary tracks overlaid. The
U branch (left of peak) and the S branch (right of peak) are
separated by a dotted-dashed line at 8=6.03. The open box
marked U is a U branch (unstable) boson star with M=0.632,
R =6.1, P(0) =0.28, while the open box marked S is a stable bo-

son star with M=0.63298, R=5.9, P(0) =0.268. The tracks la-

beled U1, U2, and U3 are the results of three different types of
perturbations (see text for details of perturbations used), all of
which increase the mass by very slight amount (all less than

0.1%). These stars collapse rapidly to black holes. The tracks
labeled U4 and U5 are obtained by decreasing the density of the

star in the center and in the outer part, respectively, by a very

small amount. In these cases, the stars migrate to and oscillate
about the S branch. Finally, the track labeled S1 is obtained by
increasing slightly the density of the initial star marked S. In
this case we have perturbed the star enough so that it collapses
to a black hole. Taken together, these cases show that under

finite perturbations and perturbations that change M and N,
there is no exact notion of a transition point, but the peak of the
mass curve remains as a useful characterization of the transition
from the stable to the unstable branch.

We have shown that a U-branch star will collapse or
migrate to the S branch, depending on whether the per-
turbation increases or decreases the energy density of the
star, but independent of whether the density is changed in

the core or in the outer region of the star. However, the
more generic perturbation would consist of a combina-
tion of the various perturbations considered above. For
example, one might ask how an instable boson star would
evolve if the perturbation increases the density in part of
the star while decreasing it in other parts. We have stud-
ies various perturbations of this sort. The outcome de-

pends on the perturbation parameters chosen. We will

not discuss each case in detail, but instead give the fol-

lowing generic results.
(i) The evolution always brings the star away from the

U-branch configuration. The U-branch star is unstable
under any kind of perturbation.

(ii) Increased density in the core with decreased density
in our region can lead to either migration or collapse de-

pending on the parameters chosen. The same behavior is
seen if the perturbation decreases the density in the core
and increases it in the outer region.

(iii) Once the core starts collapsing, if the central
values of the scalar fields are rapidly increasing, the star

Evolution Near Transition Point

will not bounce back. (However, we have seen in a mixed
perturbation that a mild initial inward oscillation may be
followed by an expansion and migration. ) Under rapid
collapse, the runs we have done show that the core region
monotonically approaches a black hole, whereas if the
core is exploding initially, depending on the perturbation
put on the shell, a later collapse is possible. Both expan-
sion and collapse of the outer region are reversible.

One result we want to stress before we end this subsec-
tion is that, although exceptional cases can be arranged,
the generic outcome of a perturbed U-branch boson star
that initially expands is the oscillation about and the gra-
dual settling down to a S-branch star, and this migration
to the S branch is seen under very general types of per-
turbation s.

D. Detailed study of the S-U transition point

It has been shown in Refs. 11 and 12, that for
infinitesimal perturbations with fixed M and N, the tran-
sition between stability and instability occurs at the point
of aMZay(0) =0=8M/BR, i.e., the peak of the curve in
Fig. 3(b). It corresponds to a configuration with
M =M, =0.633, P(0)=P, (0)=0.271, and R =R, =6.03.
In this subsection, we study this transition point by fol-
lowing the dynamical evolution of the configurations ly-

ing close to it. The point we want to bring out in particu-
lar is that, while for perturbations with finite magnitudes,
or perturbations which allow M and N to change, as we
want to consider in general, there is no longer a notion of
an exact transition point (indeed, for configurations close
to the peak, one configuration can be regarded as a per-
turbation of another), nevertheless, the peak of the mass
curve remains a good characterization of the transition
from stability to instability. We show that for a
configuration with a mass O. l%%uo away from
M =M, =0.633, if it is to the left of the peak in Fig. 3(b),
it has the properties of a U-branch star under perturba-
tions, whereas if it is to the right of the peak, it has the
properties of an S-branch star, provided small enough
perturbations are considered (in particular, the change in
mass has to be less than 0.1% in the cases studied). We
first consider a configuration with M=0.632, R=5.9
[P(0)=0.28]. It is in the left of the peak in Fig. 3(b) on
the U branch. Five kinds of perturbations of this
configuration have been studied. They are (1) increase P
near the center, (2) increase P in the outer region of the
star, or (3) change P (first-type perturbation in Sec. IV D).
All these lead to an increase of the density of the star and
result in a collapse. (4) Decreasing P near the center or
(5) decreasing P in the outer region will result in a migra-
tion to the right of the peak in Fig. 3(b). These are the
properties of a U-branch star. The evolution for each of
the five types of perturbations considered is shown in Fig.
11. The five evolutionary tracks (solid lines) shown are
the result of perturbing the initial configuration marked
U in the diagram, which is denoted by a box lying on the
dashed line representing the locus of equilibria. The
tracks labeled U1, U2, and U3 correspond to the first
three types of perturbations discussed above. In these
tracks the evolution proceeds to the left until a black hole
is formed. The tracks labeled U4 and U5 correspond to
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the last two types of perturbations discussed above. The
stars migrate to and oscillate about the S branch.

We next consider a configuration with M=0. 63298,
R =6.1, and P(0) =0.268 which is to the right of the peak,
on the S branch. The same five kinds of perturbations
are studied. With no exception they all lead to oscilla-
tion, provided that the perturbation is small. (Any star
on the S branch can be made to collapse if enough mass is
added to it. ) The frequency of the oscillation is
f=0.0014, independent of the type of perturbation. In
fact, this analysis is what produces the lower right most
data points in Fig. 6. This configuration clearly belongs
to the S branch.

Before we end this subsection, we reiterate that there is
no exact notion of a transition point when finite perturba-
tions are considered. The configuration obtained by per-
turbing the S branch, M=0.63298, R =6.1 star discussed
above, can easily be made to collapse if given a slightly
stronger perturbation. The initial, unperturbed
configuration is shown as the box marked S in Fig. 11,
and its evolution, after its central density was increased
by just 2', is shown as the dashed arrow at the top of
the diagram. As in the case of the first three U tracks,
this star quickly collapses to a black hole.

V. CONCLUSION

We have developed a numerical code for evolving
spherically symmetric self-gravitating scalar field sys-
tems. The code is stable and is accurate for a time many
orders of magnitude longer than the intrinsic oscillation
time scales of the scalar field, and is capable of keeping
the Hamiltonian constraint satisfied up to the 10 level
everywhere in the star throughout this time.

In this paper, we reported the results obtained using
this code, on the dynamical evolution of a perturbed
ground-state boson star. The kinds of perturbations con-
sidered include redistribution of scalar particles in the
star, and also accretion and annihilation of the scalar par-
ticles so that the total mass M and the total number of
particles N are not necessarily fixed. We have seen that
all equilibrium configurations on the U branch which we
have studied exhibit the same behavior when perturbed,

including several configurations with negative binding en-

ergy. A U-branch star will either collapse to form a
black hole, with practically no scalar radiation out to
infinity, or migrate to the S branch, depending on the
type of perturbation. When an S-branch star is slightly
perturbed, it oscillates with its fundamental frequency.
The oscillation is damped through scalar radiation to
infinity. This damping mechanism is capable of causing
the star to settle down into a new S-branch configuration
with lower mass. The damping mechanism is also crucial
in making possible the migration of a U-branch star to a
S-branch star. This effect could not be seen in a linear
analysis. The transition point between the U branch and
the S branch has also been studied in detail.

We reiterate the major physical implications of our
study on boson star in the astrophysical environment. (i)
Existence of boson stars: The S-branch ground-state bo-
son star is stable under generic perturbations. (ii) Signa-
ture of a boson star: When perturbed, a boson star oscil-
lates with a frequency characteristic of the final S-branch
configuration that it migrates to. (iii) Formation of a bo-
son star: That the scalar radiation by itself is sufficient to
drive a scalar field configuration to an S-branch equilibri-
um configuration, and that both M )Nm and M &Nm
configurations in the U branch manage to migrate to the
S branch suggest that it might be possible to form a
stable boson star under quite general initial conditions.

In future publications in this series, we shall report on
the evolution of the excited states of boson stars, boson
stars with self-interacting fields, gravitational radiation
from nonspherical perturbations, ' and the formation
processes of boson stars.
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