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We compute the P- and T-violating electromagnetic moments (electric dipole and magnetic quad-

rupole) generated at one loop for the W boson. We argue that only models in which the physical W
has both left- and right-handed fermion couplings at the tree level can generate these moments at
one loop. The resulting magnetic quadrupole moment is quite generally related to the electric di-

pole moment (EDM) by the following one-loop relation: 2d~+M~Q~=0. On fairly general
grounds SUL(2) XU&(1) invariance relates the nonvanishing CP- and P-odd WWZ form factor to
its electromagnetic counterpart: fz(0) = —f,, (0)sin'8 s. A reasonable estimate of the resulting W
EDM is 10 "—10 " e cm depending on values chosen for unknown parameters. Such a dipole
moment would induce an EDM for electrons and neutrons of order 10 ' -10 " ecm and

10 "-10 " e cm, respectively. For some corners of parameter space the fermion EDM's can be
observable in current searches. The eftects of CP violation from a heavy fourth generation can be

typically ten times as large.

I. INTRODUCTION AND DISCUSSION

Observation of a permanent electric dipole moment
(EDM) for an elementary particle would indicate the ex-
istence of interactions that are not invariant under both T
(or CP) and P transformations. Since neither P nor T is a
good symmetry of nature, it is probable that every parti-
cle has a permanent EDM at some level. It turns out,
however, that because of the appearance of small cou-
plings and mixing angles, the known CP- and P-odd in-
teractions of the standard model predict particle EDM's
that are many orders of magnitude smaller than the
present experimental upper bounds. Current searches for
these moments therefore probe any "new physics" that
may ultimately replace the standard model at higher-
energy scales than are presently directly accessible. '

Bounds on fermion EDM's, in particular those for the
neutron and electron, presently furnish the strongest
constraints on CP violation from new physics. Informa-
tion concerning EDM's for other fundamental particles is
also of interest, however, since it complements the neu-
tron and electron results by probing different combina-
tions of the underlying couplings. This will become par-
ticularly important, of course, should a nonzero EDM be
discovered for the neutron or electron. For the purposes
of disentangling the source of any CP violation, it is
therefore of some theoretical importance to explore the
comparative predictions of varying models. This is par-

ticularly pressing considering the remarkable improve-
ments in experimental accuracy to be expected soon in
EDM measurements.

By contrast with the situation for fermion EDM s, lit-
tle work ' has been done to date on boson EDM's. Of
the bosons of the standard model, all but the charged vec-
tor boson 8'+—are self-conjugate particles and so cannot
have electric dipole moments. The 8 —,on the other
hand, can a priori have three distinct types of electromag-
netic CP-odd couplings, of which one is CP odd and P
even, while two are both CP and P odd. %e focus in
what follows exclusively on the CP- and P-odd interac-
tions. These are given in terms of the matrix elements of
the electromagnetic current J by

( W ~J ~
W ) =— iee„'(p,—)1'" (p„pz)s„(pz),

f'y,"T'.dd= f,(q')e""q, —, g, (q')p'e"—""q.p, .
1

W

s (p, ) denotes the polarization vector of a W boson
whose four-momentum is p; . The second line of Eq. (l)
gives the expression for the P- and CP-odd part of the
matrix element in terms of the sum and difference,

p =p& +p2 and q =pl —p2, of the initial and final 8'mo-
menta.

The form factors f (q ) and g (q ) evaluated at zero
momentum are related in the following way to the elec-
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tric dipole (dw) and magnetic quadrupole (Qw) moment
(MQM) of the Wboson:

dw= [fy(0) —4g (0)],

e

M 8'

In the present article we investigate the contribution to
f and g arising at one loop in various theories. Apart
from their intrinsic interest, these moments are useful for
the purposes of understanding fermion EDM's. This is
because it is sometimes true that the dominant contribu-
tion to the EDM of a fermion (such as the electron) is the
one induced by the EDM of the W. In fact, the standard
model itself may be an example of one such model. ' For
these types of models an understanding of the graphs re-
sponsible for the W EDM is a prerequisite for a calcula-
tion of the fermion EDM.

Before describing them in detail, we briefly outline our
main results. Our first conclusion is that relatively few
models can generate a P- and CP-odd WWy vertex at the
one-loop level. More specifically, we find that a one-loop
EDM only arises in theories for which the W mass eigen-
state acquires, at the tree level, a right-handed com-
ponent in its coupling to fermions. Given such couplings,
the form factor fr (0) receives a one-loop contribution
provided that either the fermion —gauge-boson couplings
or the gauge-boson mixing matrix violate CP.

Remarkably the second CP-violating form factor g~(0)
vanishes for any model at one loop. A generic conclusion
to be drawn, therefore, is that if the W electric dipole and
magnetic quadrupole moments are generated at one loop,
then both are determined by fz(0) and so are related by

EDM*s can be much larger. With these choices, assum-
ing the presence of a large CP-violating phase, we have
Im (a,b b,& ) =2 X 10, and so a loop containing the t and
b quarks gives dw=10 e cm (see below). This t b-
quark loop contribution includes a suppression factor of
mb/I, &0.05.

This estimate can be much larger for a heavy fourth
generation. Even for equal-strength couplings, the in-
duced fermion EDM can easily be 10 times larger than
for a t-b loop simply because its effects are not suppressed
by the small ratio mb lm, . Furthermore, such a fermion
can have large right-handed couplings to the W and so
Im(a "b) need not be small. In either case the resulting
fermion EDM could be observable within current
searches.

A W EDM of this size would most likely first be ob-
servable through the EDM's it would induce for the elec-
tron and neutron. We estimate the size of these induced
EDM's with the result that a W EDM as large as 10
e cm gould generate a neutron EDM of 10 —10
e cm (depending on unknown matrix elements). The cor-
responding electron EDM would be 10 ' —10 e cm.
Since the electron EDM induced in this way is not pro-
portional to neutrino mass-matrix elements, for many
models it can dominate the one-loop result. ' Our results
agree well with the estimates of Ref. 7 made using a
cutoff theory.

Fermion EDM's of this size are probably too small to
be seen in present-generation EDM searches. Being 10
times larger, the EDM induced by a heavy-fermion gen-
eration could potentially be observable, however. Unfor-
tunately, such a small EDM is not likely to have observ-
able consequences in accelerator experiments. '

We now turn to a derivation of these results.

2dw+ ~wQw=0 . (4)
II. CALCULATION OF d &

Another general conclusion can be drawn if the fer-
mion whose couplings are responsible for CP violation is
heavy compared to the W-boson mass. In this case, in-
tegrating out this heavy fermion induces dimension-6 CP-
and P-odd effective gauge-boson self-interactions in the
low-energy effective Lagrangian at the W scale. There
are two types of effective operators that arise in this way,
and the heavy fermion's contribution to fr(0) and gr(0)
is completely determined by their coeScients. It turns
out, however, that SUI (2) XU&(1) invariance implies
that these same two operators also completely determine
the corresponding form factors fz(0) and gz(0) that
govern the WWZ vertex. This then implies the following
one-loop prediction for the WWZ form factors in these
theories: gz(0)=0 and fz(0)= —fz(0)sin Ow.

The size of the 8' EDM that arises at one loop can be
fairly close to the present bounds without extreme as-
sumptions. To illustrate this point we consider for
definiteness a left-right-symmetric model"' in which we
assume similar sizes for left- and right-handed
Kobayashi-Maskawa matrix elements and coupling con-
stants, and we take a WL-W~ mixing angle' /=10
These are fairly conservative assumptions, and for some
parts of the parameter space of these models the induced

We first justify the necessary conditions listed earlier
that are required to generate a W EDM at one loop. We
start with the observation that both form factors in Eq.
(1) are proportional to the Levi-Civita tensor e"" t'. The
only way to generate this tensor from a one-loop graph
constructed from renormalizable scalar, spin- —,', or gauge
couplings is through the fermion loop of Fig. 1. For such
a loop the Levi-Civita tensor arises from the trace over
the Dirac matrices.

Imagine evaluating this graph using a basis of mass

FIG. 1. Feynman graph responsible for generating P- and T-
odd 8'electromagnetic moments at one loop.
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eigenstates. In this basis, CP violation enters by way of
the phases associated with the fermion —gauge-boson ver-
tices. None of these phases arise from the fermion-
photon vertex, however, since the invariance of the fer-
mion mass matrix under electromagnetic gauge transfor-
mations precludes the generation of a Kobayashi-
Maskawa-type matrix at the photon vertex. All CP-
violating phases therefore appear in the 8' vertices. Tak-
ing the general form

iW—„u,y"(a;,PL+b;, P~ )d, +c.c. ,

for the W-fermion interaction, in which PL and Pz are
the projection matrices onto left- and right-handed helici-

ty, it is easy to show that the only phases which do not
cancel between the two 8'-fermion vertices are those for
which the left-handed coupling of one of the W's appears
with the right-handed coupling of the other O'. This is
obviously only possible if the physical 8'boson has both
left- and right-handed fermion couplings at the tree level.
This kind of coupling arises naturally within left-right
models in which the charged-gauge-boson mass eigen-
states are linear combinations of the left- and right-
handed weak-interaction eigenstates O'z and O'R.

These same arguments also explain the absence of the
form factor g (0) from the results at one loop. A cursory
inspection of Eq. (1) shows that the term involving g~(q )

contains a Levi-Civita tensor with two indices contracted
into external momenta. The main point to be now made
is that only terms in which precisely one momentum is
contracted with the Levi-Civita tensor can arise from
Fig. 1. This follows from the observation of the previous
paragraph that all CP-violating phases cancel unless the
left-handed coupling of one 8' vertex appears with the
right-handed coupling of the other 8' vertex. But this
combination of left- and right-handed projections can
only survive the trace over the Dirac matrices if there are
an odd number of y matrices appearing between the two
helicity projectors. It follows that the only Dirac trace
capable of producing the Levi-Civita tensor involves a y5
together with exactly four (as opposed to six) other Dirac
matrices. The important point is that three of these
Dirac matrices come from the vertices of the graph, rath-
er than from the propagators, and so must involve uncon-
tracted Lorentz indices. This implies that at most one
factor of external momenta can ever appear contracted
into e"' ~ ruling out any contribution to g (q ).

We now turn to the evaluation of the graph of Fig. 1

using the form of Eq. (5) for the fermion-8' couplings.
Within the left-right model the coe%cients a, and b, ap-
pearing in this equation are given explicitly in terms of
the model parameters by

gL cosg
lJ Q IJ2

g„e'"sin(
&J / IJ2

gL and g~ are the left- and right-handed gauge couplings,
U,- and V,-- are the corresponding left- and right-handed
Kobayashi-Maskawa matrices, the angle g parametrizes

f (0)=-
y

1 Pled Pl~
g N, Im(a„'db„d )

X[qdF(xd, x„)+q„F(x„,xd)] . (8)

In these equations u and d label the fermions (which
can be leptons) circulating around the loop according to
whether they are in the upper or lower component of a
weak isodoublet. a„d and b„d denote the gauge couplings
given in Eqs. (5) and (6). md, m„, qd, and q„similarly
represent the masses and electric charges of these fer-
mions. x; represents the mass ratio m, /M~, and N, is a
color factor equal to 1 if the internal fermions are leptons
and equal to 3 for internal quarks.

The function F(x,y) appearing in these formulas is
defined by

1+y —x 1 —(x +y) —S (x,y) xF x,y ln +ln
S(x,y) 1 —(x +y)+S(x,y) y

S(x,y)=[1—2(x+y)+(x —y) ]'

We are interested in the behavior of F(x,y) in the fol-

lowing three limits: (a) x,y «1 (light generations), (b)
x « 1 =y and y « 1 =x [a light and a heavy (e.g. , t)
quark], and (c) x =y)) 1 (heavy generation). In these
limits, F(x,y) is well approximated by the asymptotic
forms

F(x,y) =2 ln(x) for x,y ((1, (loa)

the mixing between O L and O ~, and g is the complex
phase associated with the vacuum expectation value
(VEV) that is responsible for the Wt —W„mixing.

Of the many sources of CP violation within these mod-
els, the ones potentially contributing to the O'EDM are
the phase g appearing through the gauge-boson mixing
and the phases in the fermion Yukawa couplings. These
latter phases show up in the Kobayashi-Maskawa (KM)
matrices U,, and V;, that are generated once the left- and
right-handed charged currents are expressed in terms of
fermion mass eigenstates. In general, the left-handed
mixing matrix U, need not be related to the right-handed
matrix V; .

As usual, not all of the parameters of these
Kobayashi-Maskawa matrices are physically significant
since some may be absorbed by redefining the fields. For
N families of quarks, all but —,'(N —1)(N —2) of the

phases in the left-handed KM matrix U;, can be eliminat-
ed in this way. Once this has been done, however, no
freedom remains to eliminate any of the ,'N(N+—1)
phases in the right-handed matrix V,", and so these latter
phases are all physically significant. The lepton
Kobayashi-Maskawa matrix can potentially contain even
more physical phases than appear for the quarks, depend-
ing on whether Majorana masses arise in the model in
question.

Evaluating the graph of Fig. 1 gives the following re-
sults for the electromagnetic form factors of Eq. (1):

g,, (0)=0,
and
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1F(x,y)= — for x =y &&I,
X

( lob)

F(x,y) =In
(x —1)

for y «1, (x —1) (10c)

y +1 (y —1) XF(x,y}= ln +ln
y —1 xy y

for x «1,(y —1) (lod)

m, =100 GeV,
(11)

Im(a, bb, b )
A ~=f,, (0)=+7.1 X 10

2.2X10 4

m, =200 GeV .

The result varies smoothly for m, between 100 and 200
GeV. The contribution of a heavy-fermion pair from a
potential fourth generation contributes about 10 times
this effect due to the loss of the suppression factor
mb /m, .

III. INDUCED FERMION EDM'S

The best chance for observing a 8'EDM of this size is
through its implications for fermion EDM's. We now
compute the size of this induced EDM. It is convenient
to treat the calculation differently, depending on whether
or not the fermions traversing the loop in Fig. 1 are both
heavy relative to the 8'scale.

From these expressions it is clear that the contribution of
a light pair of fermions to the 8' EDM is suppressed by
the factor (m„md /M~) & 10 . For a loop involving one
light (b, say) and one heavy (t) quark, the result varies as
mb/m, for large m, . If both quarks are heavy, the
asymptotic behavior becomes (M~/m UmD ). One should
also bear in mind that although we take V,, —U,, in mak-
ing our estimates, in general the off-diagonal elements of
the right-handed mixing matrix V, need not be small.

It is conventional to normalize the 8' EDM by the 8'
mass according to d~=eA, ~/2M~, so that d~
=A, ~(1.2X10 '

) e cm. With this convention, choosing
(=10, ~U, ~=~ V,, ~, gL =gR, and assuming a nonzero
phase for the t and b quark gives an estimate of the size
of a typical contribution:

Im(a, bb, b )k~=f (0)=+1.9X10
2.2X10-4

3

A e,b, W",,
4W ', W"„+Bg.2g, (p r, p) W'„,f3"' .abc (12)

denote, as usual, the Pauli matrices, and e,b,
represents the completely antisymmetric symbol in the
SUL(2) gauge indices a, b, c. g;, i =1,2, are the gauge
coupling constants for U„(1) and SUL (2), respectively,
while 8'„„and B„,, are the corresponding field strengths
with duals: W„„=—,'e„„z W ~. P represents the usual

Higgs doublet whose VEV is (1/&2)(, ).
The constants 3 and B have dimensions of inverse

mass squared and are given in terms of the fermion quan-
tum numbers by evaluating the graph of Fig. 1. The re-
sult may be read off by comparing the tree-level contribu-
tion of these operators to the form factors fr(0) and

g, , (0),

f,, (0)=g2( ,'BU AM~),——
g (0)= —

—,'g 2M~ A,

(13)

(14)

with the result of Eqs. (8) and (7). Clearly, the vanishing
of g~(0) implies through this comparison that A =0.

The estimate for the fermion EDM induced by this
operator is now obtained by evaluating Fig. 2 using the

how the effective operator was produced. The connection
between the 8'and fermion EDM's thus established may
therefore be expected to hold in a much wider context
than for just the present model.

The second bonus of working within the effective-
Lagrangian approach is that we may take advantage of
SUL(2) XUr(1) invariance to relate the WWy and WWZ
couplings in a model-independent way, thereby extending
our results to a prediction for the W'8'Z vertex which
will be extensively probed at CERN LEP 200. We dis-
cuss each of these points in turn.

The way that the heavy-fermion loop shows up in this
effective theory is via nonrenormalizable P- and T-odd
effective WR'y interactions. The dominant contributions
to light-fermion EDM's come from those operators hav-
ing the lowest dimensions in powers of mass. The
lowest-dimension contribution consists of operators with
dimension 6. These operators must involve only the stan-
dard model fields (in models in which there are several
light Higgs particles, more operators involving these oth-
er scalars can also appear) and must be SUL(2) XUr(1)
invariant. All operators of this type which can contrib-
ute to the 8'8'y vertex may be written as a linear com-
bination of the following two:

A. Heavy fermions

If the fermion responsible for the 8' EDM is very
heavy on the scale of the 8'mass, then it is useful to com-
pute this bound within the framework of a low-energy
effective theory involving just the light particles, obtained
by integrating out the heavy particles. Phrasing the
heavy-fermion loop in terms of such an effective Lagrang-
ian pays two immediate dividends. First, the size of the
fermion EDM obtained can be directly estimated within
the effective theory without reference to the details of

FIG. 2. Feynman graph that induces a fermion EDM from a
8' EDM. The solid circle represents the vertex with Feynman
rule given by Eq. (1}.
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operators of Eq. (12). The loop integral diverges and
must be cut off at a scale A, corresponding to the max-
imum momentum above which the effective operator
description does not apply. In the present example, A is
the smallest of the right-handed W mass or the masses

mU and m~ of the fermions in the loop. The result is

dj. GFmj=+ f (0) ln +O(1)
gn'&2 M~

(15}

The sign here is positive for the upper component of a
weak doublet and negative for the lower component. The
O(1) term is finite as A tends to infinity. This equation
may be used to place the numerical bounds discussed
above, where we approximate the contents of the square
brackets by one. The accuracy of this expression can be
estimated by comparison with the more detailed calcula-
tion presented below. It is noteworthy that this expres-
sion is proportional to the mass of the fermion f, whose
EDM is being computed, rather than to the mass of the
internal fermion. Although this can be a bad thing when
computing a light-quark EDM, it is potentially an advan-
tage when considering the electron EDM since in this
case it need not be suppressed if the neutrino mass-matrix
elements are small.

The implications for the general WWZ couplings are
immediate. The most general P- and CP-odd form fac-
tors that can arise in the WWZ vertex have the form

with the CP and P-odd -part of Pz' (pi, pz) given as in

Eq. (1).
Now comes the main point. The only dimension-6

operators within the effective Lagrangian that can con-
tribute at the tree level to the form factors fz(0) and

gz(0) are precisely those of Eq. (12) that contribute to the
W EDM and MQM. It follows that the one-loop predic-
tion for the WWZ CP- and P-odd form-factors are

fz(0) =g', (
—

—,'BU sin'Hw —AMwcos'Hw),

gz(0) — —g,~wA cos &w .

(17)

The one-loop prediction for these form factors is then

( w-lz,'l w-) = .
" .„*(p,)r~"'(p„p, ). (p, ),

sin0~cos0~

(16)

FIG. 3. Feynman graph responsible for the induced fermion
EDNI in the full theory.

found by taking the result obtained above, A =0, and 8
as given by Eqs. (13) and (8). The result A =0 implies
the particularly simple relations

fz(0}=—f,, (0)sin Ow,

gz(0) =0 .
(19)

Unfortunately, such small WWZ couplings would be
unobservable at LEP 200.

B. Light ferrnions

(20)

in the theory at very low energies compared to the 8'
mass. If the fermion f should be a quark, this low-energy
scale cannot be taken to be lower than several GeV. The
difficult part of the problem is then the evaluation of the
matrix element of this operator within a nucleon state.

The result of this two-loop computation of d& is

In the event that the fermions whose CP-violating cou-
plings are responsible for the W EDM are light, such as
the ordinary quarks and leptons, this effective-field-
theory analysis is not as useful. In this case we are in
principle obliged to perform the full two-loop calculation
of Fig. 3 in order to infer the size of the induced fermion
EDM's. The calculation applies equally well, of course,
to the case of heavy fermions and so furnishes an explicit
physical example of how the heavy physics gets cut off in
a specific model.

Evaluating the graph in Fig. 3 gives the contribution of
the W EDM to the fermion EDM, defined as the
coefficient df of the operator

=+ QN, Im(a db„d) (qd[(laj l +lbj l )mj[G(xd, x„,x )+x H(xd, x„,x )]
~4W

+Re(aj'jbjj)m [G(xd, x„,x )+IC(x„,x„,x )])+q„[( xdx„)]),

2= + g N, Im(a„*db„d )
(4~)

m„mdmf
lafjl [qdG(xd, x„,x, )+(u d)].

M~
(21)

Here, as before, x, =m, /Mw and the W-fermion couplings a, and b, are as defined in Eqs. (5) and (6). The sign is
—(+) according to whether f is the upper (lower) component of a weak isodoublet. The approximation used in the
second line of Eq. (21) involves the neglect of terms proportional to either x or sin-g. Neglect of x is justified by the
small size of the flavor-changing left-handed Kobayashi-Maskawa matrix elements that suppress the contribution of
heavy quarks q in the light-quark EDM's.
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The functions G(a, b, c), H(a, b, c), and K(a, b, c) are known integrals expressed in terms of the function
z (x, a, b ) = b /x +a /( 1 —x ) by

1 & dx c c 1 1G(a, b, c)= ln — + ln
(1—c) o 1 —x z —c z 1 —z z

(22)

1 & dx (c+1)z —2 1
ln

(1—c) o 1 x (1—c)(1—z)

(c+1)z —2c c 1 1
ln

(1—c)(z —c)~ z z —c 1 —z
(23)

K(a, b, c)= ln(z)+ ln(c)+
dx z c 1

(1 —z) (c —z) (1—c) (z —c) (1—z)(c —1)
(24)

Since the functions H(a, b, c) and E(a, b, c) do not con-
tribute in the limit of small x and sin g, we do not
present analytic expressions for their limiting forms here.
Some interesting limiting cases for the function G (a, b, c)
are

G(xd, x„,x, )=—,'ln (x„)

for x «x„=xd « 1, (25a)

1
G(xd, x„,x, ) = ln(x„)tt J

df gL m& mf
2

Im(a, &b, t, ) ln
e (4'�) m, M~

m

proximation made in deriving Eq. (15) need not strictly
apply when one of the fermions is light. The reason for
this remarkable accuracy lies in the infrared mass singu-
larities that arise as m&~0. For large m, /M~ the
asymptotic form for both the effective-Lagrangian result
[Eq. (15)] and the two-loop calculation [Eq. (21)] is

m

Mw

for x «1 «x„=xd, (25b)

X ln
2

mb

—2 (26)

1
G(xd, x„,x, ) = ln(xd )

xd

for x, «x„«1«xd, (25c)

1 xu
G(xd, x„,x, ) = ln(x„)ln

x~ xd

This approaches its asymptotic form more quickly than
with two heavy quarks because of the appearance of the
extra large logarithm.

A graph of typical induced fermion EDM's, computed
using the full two-loop result of Eq. (21), as functions of
the masses of the internal particles is presented in Fig. 5.

for x ((xd ((1((x„. (25d)

Unlike the effective-Lagrangian result Eq. (15), the full
expression, given by Eq. (21), applies equally well for
both heavy and light fermions u and d. For heavy fer-
mions, however, Eqs. (15) and (21) should both be accu-
rate and must agree with one another. In this regime,
Eq. (21) illustrates how underlying physics furnishes a
physical cutoff for the effective theory. As is easily
verified using the asymptotic forms presented in Eqs.
(10b) and (25b), Eq. (21) agrees in the heavy-fermion limit
with Eq. (15), provided that the cutoff A is evaluated at
A=m„=md.

It is noteworthy that the effective-Lagrangian expres-
sion, evaluated using A=m„also agrees unusually well
with the full result for the case where the loop fermions
are b and t quarks. This is so even though the b quark is
quite light compared to the 8' mass. In fact, as is illus-
trated in Fig. 4, the numerical agreement between the
effective-Lagrangian and two-loop expressions [Eqs. (15)
and (21)] is even better for a t bloop than it is fo-r a loop
for which both fermions are heavy, thus being an excel-
lent approximation already for m, =100 GeV. This is, at
first sight, surprising since the effective-Lagrangian ap-

1.0 b, t

0
~ &

C5

0.8,'

0.6

0.4

0.3

0.0
10

Mass (GeV)
10

FIG. 4. Ratio of the down-quark EDM induced by the W
EDM as calculated using the effective-Lagrangian approxima-
tion divided by that found from the full two-loop calculation.
The dot-dashed line shows this ratio for an EDM induced by a
loop of degenerate heavy quarks as a function of their mass.
The dashed curve gives the same result for a b-t quark loop as a
function of m, .
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FIG. 5. Induced fermion EDM as functions of internal fer-
mion masses. The solid curve gives an electron EDM induced
by a heavy-quark loop b', t' as a function of m& =m, . The
dashed curve indicates the same result for light-quark EDM's.
The mass dependence for a heavy generation of degenerate lep-
tons is identical. The dotted curve gives the light-quark EDM
induced by the ordinary b and t quarks as a function of the t-

quark mass and the dot-dashed curve is the same result for the
electron EDM. All other numerical values are as in the text.

IV. SUMMARY

Our main results concern the perturbative determina-
tion of the CP- and P-odd electromagnetic moments of
the 8'boson. We have argued that the only models that
can produce these moments at the one-loop level are
those (i) in which CP violation can be expressed through
CP-violating phases in the Kobayashi-Maskawa matrix
for the couplings of fermions to the W, and (ii) that pre-
dict right-handed couplings for the 8'mass eigenstate at
the tree level. Perhaps the most natural such theories are
left-right-symmetric models.

We compute, in these theories, the W electric dipole
and magnetic quadrupole moments and find that they are
always related at one loop by the simple relation

w+Qw w
If the fermions responsible for the CP-violating

Kobayashi-Maskawa phases are very heavy compared to
the W, then we show that SUt (2) XU&(1) invariance re-
lates the CP- and P-odd 8'8'Z form factors to the CP-
and P-odd electromagnetic ones. The relationship is
fz(0) = —f (0)sin 8~, and gz(0) =g (0)=0.

Assuming, for definiteness, that the W EDM is gen-

crated by a loop of t and b quarks whose CP-violating
left- and right-handed couplings to the 8 are
Im(a, &b, b)=2X10, we find a predicted one-loop W
EDM of around 10 e cm. The numbers used are
motivated by a left-right model in which the left- and
right-handed Kobayashi-Maskawa matrices have the
same absolute size (but not equal phases) and the left-
right mixing angle is (=10 . This would imply unob-
servable electromagnetic CP violation from this source in
accelerator experiments. If the relation between Z and
photon form factors holds, then the CP-odd 8'WZ cou-
plings are orders of magnitude too small to be seen at
LEP 200. We compute that a 8' EDM of this size in-
duces an electron dipole moment of order 10 e cm and
a neutron EDM of 10 —10 e cm, depending on
matrix-element uncertainties. Since the electron EDM
induced by a W EDM is proportional to m, (rather than
m, as would be the one-loop result in left-right models,
say), it can be the dominant contribution.

These estimates can be made larger in several ways.
First, within left-right-symmetric models, less conserva-
tive corners of parameter space imply induced EDM's
that can be much larger. Alternatively, if the fermions
circulating the loop are members of a heavy generation,
then their contribution, for equal couplings, is larger than
the t-b loop since it is not suppressed by the small mass
ratio mblm, . It may also be larger because for a heavy
generation right-handed currents may be large and so
Im(a*b) need not be small. In either case the induced
fermion EDM's would be large enough to be observable
in current searches.

Although EDM's this small are likely to be undetect-
able for the near future, the EDM's induced by a hy-
pothetical fourth heavy generation of fermions are typi-
cally 10 times larger than the estimates just quoted. In-
duced EDM's from this source might therefore be observ-
able in the not too distant future.
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