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Perturbative QCD analysis of pion and kaon form factors and pair production
in photon-photon collisions using a frozen coupling constant
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Within the framework of leading-order perturbative QCD and using a frozen coupling constant,
we calculate the pion and kaon form factors and the cross section of pion and kaon pair production
in two-photon collisions. We use the same frozen coupling constant as taken in the nucleon Dirac-
form-factor analysis and find that the results for the m and K form factors, the reactions

yy~~ m. ,K+K, and the proton Dirac form factor are in fair agreement with the available ex-

perirnental data. The cutofF value of the frozen coupling constant used in our analysis is consistent
with the theoretical estimation presented by Cornwall.

I. INTRODUCTION

For form-factor calculation in strong interactions, it
has been shown' that the argument of the running cou-
pling constant should be taken as the square of the
momentum transfer of the exchanged gluon in order to
make the perturbation theory meaningful. This was ar-
gued from the convergence of the perturbation series and
can be justified in any exclusive process which does not
involve triple or quartic vertices in the lowest order. In a
recent leading-order perturbative QCD analysis of the
nucleon Dirac form factor, we have shown that it is pos-
sible to fit the data in the range of momentum transfer
squared, 10(Q (30 GeV, by evaluating the argument
of QCD running coupling constant a, (Q ) at the exact
gluon momentum transfer for each of the diagrams con-
tributing to the leading-order process. In this paper, we
extend the same considerations to the pion and kaon
form factors and their pair production. in two-photon col-
lisions, yy~vr+m, yy~K+K, and compare our re-
sults with experimental data. Our aim is to apply the
same method and QCD running coupling constant adopt-
ed in the previous nucleon-form-factor calculation to
these pion- avd kaon-induced processes and to investigate
whether the same method and cutoff value can give a
consistent agreement with the available experimental
data.

To illustrate our method and cutoff value, the simple
example of the pion-form-factor analysis is summarized
as follows. The factorized QCD expression for the pion
form factor (see Fig 1) is give. n by

F (Q )=f dx f dy $*(y,Qr)TH(x, y, g')

64~ 2 a, [( I —x)(1 —y)g ]

3Q~ 3 (1—x)(1—y)

a, (xyg )
+

3 xy
(2)

P+q Q»m

&) (g g(
w„(x, y; a')

While the next-to-leading-order TH has been calculated
in Ref. 4, we are interested in keeping only the leading-
order expression given by Eq. (2) to satisfy our aim men-

tioned above. In Eq. (2), the argument of a, is the
momentum transfer of the exchanged gluon as shown in

diagrams of Fig. 1. While the leading-order hard-
scattering amplitude in Eq. (2) exhibits divergence at both
end points of x and y, the bound-state quark distribution
amplitude suppresses the end-point singularities.

In this case, however, an immediate problem arises if
the calculation of Eq. (1) is attempted with the usual

one-loop formula for the running coupling constant

XP(x, g, ), Q„*{x,Q} 4&(z, ~)

where Q„=Min(x, 1 —x )Q, P(x, Q ) is the quark distri-
bution amplitude of the pion, and the hard-scattering am-
plitude TH, to the leading order in o.„is given by

FIG. 1. Valence Fock-state contribution to the large-
momentum-transfer meson from factor. TH computed for
zero-mass quarks q and q parallel to the pion momentum.
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4~
Pin(Q /A )

(3)

(P= 1 1 —', nf—and nf is the number of flavors), since the

integration in Eq. (1) allows a, to be evaluated near zero-
momentum transfer. The same problem arises in the pro-
ton Dirac-form-factor analysis. In Ref. 2, this problem
was avoided by introducing a cutoff in the formula for
a, (Q ) to prevent the coupling constant from becoming
infinite for vanishing gluon momenta. In particular, in

Ref. 2 the following modified relation for a„as proposed
in Ref. 6, was utilized:

a, (Q') =
Pln[(Q +4m )/A ]

(4)

where m is interpreted as an "effective dynamical gluon
mass" with a value of typically about 0.5 GeV and A is of
order 100 MeV. For Q ))m~, it coincides with the one-

loop formula Eq. (3), but a very-low-momentum transfer,
this formula "freezes" the coupling constant to some
finite but not necessarily small value.

The physical meaning of frozen coupling constant '

may be found in the confinement mechanism suggested
by (1+1)-dimensional QED. If one tries to elongate a
positronium (e+e ), it is energetically more favorable
for the vacuum to create fermion and antifermion pairs
so that the effective coupling between the original two
charges e+ and e is frozen because of screening by vac-
uum condensates. In fact, the color confinement does not
necessarily mean the divergence of a, (Q ) at small
momentum transfer. The idea of frozen coupling con-
stant may be more natural to understand the color
confinement problem. As an evidence of vacuum conden-
sates in QCD, quark and gluon condensation order pa-
rameters are obtained by a QCD sum rule from PCAC
(partial conservation of axial-vector current) and instan-
ton solutions:

but also the QCD running coupling constant at the
small-momentum-transfer region. Furthermore, since
the value of m given by Ref. 6 freezes a, (Q ) [Eq. (4)] to
a value less than 1 even at Q =0, the perturbation series
may be expanded in terms of the frozen coupling con-
stant.

In this paper, we present the leading-order perturba-
tive analysis of the pion and kaon form factors and the
cross section of y y ~m. +m and y y ~K+K using a
frozen coupling constant given by Eq. (4). We follow the
same method of calculations employed in Ref. 2 and use
the same numerical values for m and A as introduced
there. In Sec. II, we present the extended cross-section
formula for yy~m. +m, K+K, considering the argu-
ment of the QCD running coupling constant as the gluon
momentum transfer in the leading-order diagrams. In
Sec. III, we present the quark distribution amplitudes for
~ and K, including its QCD evolution, which are used in

this analysis. Numerical results and comparisons with

experimental data are presented in Sec. IV, and con-
clusions are followed in Sec. V.

II. PSEUDOSCALAR-NIESON PAIR PRODUCTION
IN PHOTON-PHOTON COLLISIONS

The perturbative QCD predictions for this process'
including the next-to-leading-order calculation" are al-
ready presented. However, our purpose is to apply the
same method and the frozen coupling constant used in
our previous nucleon-form-factor calculations to m.- and
K-induced processes, including y y ~~+ m and
yy~K K . Thus, in this section, we summarize the
extended leading-order formula to calculate the cross sec-
tion of yy ~M M (M =m, K ) including the argument
of the running coupling constant o., taken as the square
of the momentum transfer of the exchanged gluon.

The spin-averaged cross section is given by

( vac~:uu:
~
vac ) = ( vac ~:dd:

~
vac )

= —250 MeV (sa)

do s do. 1 1

dz 2 dt 32~s 4 &&,

(6)

and

a,
( vac ~: G„,, G"':

~

vac ) =0.012 GeV (Sb)

where z is the cosine of the meson pair production angle
in the yy center-of-mass frame (i.e., z =cosO, ) and s is
the square of the c.m. energy W (i.e., s = W2) of the yy
system. The invariant amplitude A, for the initial heli-
cities k and A,

' of two photons is given by

Using a special set of Schwinger-Dyson equations, the
formation of dimensionful parameters, for example, given
by Eq. (5), has been studied. The numerical solution of
the Schwinger-Dyson equation was consistent with the
idea of frozen coupling constant given by Eq. (4) with
m =500+200 MeV. In this way, m is related to A,
which is order of 100 MeV, and the whole analysis still
has only one QCD parameter.

Therefore, it is concluded that the QCD vacuum con-
densate affects not only the quark distribution amplitude,

= I dx J dy P,z(x, Q„)P~(y, Q )TH (x,y, Q ),

where Q, =Min(x, 1 —x)&s
~
sinO, ~, similarly for Q,

and P~ is the quark distribution amplitude of the meson
(see Sec. III for details). The leading-order hard-
scattering amplitude TH' including the argument of a, is
given by
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T++
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where

a

b
'=(1—x)(1 —y)+xy,

and e(, e~ are the quark charges [i.e., the mesons have
charges +(e, —ez)]. One can easily show that if one
neglects the difference in the argument of a„Eq. (8) is re-
duced to the previous results obtained by Brodsky and
Lepage' and Nizic. "

I

Once the distribution amplitude is given at a certain
value of Q (Q =

@=500 MeV, for example), then P(x, Q )

at other values of Q can be obtained by solving a Bethe-
Salpeter-type evolution equation. The result for
valence-quark distribution amplitude of the meson is ex-
panded in terms of Gegenbauer polynominals
C„(2x—1) and is given by

PM(x, Q) =x(1—x) g a„' )C„~ (2x —1)

III. QUARK DISTRIBUTION AMPLITUDES
AND THEIR EVOLUTIONS where

Useful constraints on the lowest moments of the distri-
bution amplitude (t((x, Q) can be obtained using the QCD
sum-rule approach. ' Although the numerical accuracy
of this method is not known, the general agreement be-
tween its predictions and overall consistency with other
hadron phenomenology' lends credence to its validity.

The distribution amplitudes of the pion and kaon at
Q =p, =500 MeV are given by'

30
Q (x, (u) = —x(1—x)(2x —1)

2&3

30f~
()) x (x,(u) = —x(1—x)

2&3

X [0.6(2x —1) +0.25(2x —1) +0.08),
where )M=500 MeV, f„=93 MeV, and fr=112 MeV.
The normalization of (()(~(x,p) (M =sr, K) is given by the
condition

and

(~) fM 15(2n+3)
2v'3 (2+ n )(1+n)

(12)

3

Vn 11——'n
T f

n+) 21+4
k (n +1)(n +2)

We found that I,'"'=0 for n ~ 3 and I„' '=0 for n ~4,
and I„' ' and I„' ' for other values of n are given by

r(n) 4
15~

r(K) 4
0

r ( m') 0

r(K) 48
2

r(K) —4
3

IV. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

At the boundary of Q =(M, Eq. (11) reduces to Eq. (9), and
in the limit Q~ oo, Eq. (11) reduces to the asymptotic
form in Ref. 3, as expected. '

f dx (t((x, (M) =
o 2v'3

Using the quark distribution amplitude of Eq. (11) and
the frozen coupling constant of Eq. (4), we evaluated the
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integrals given by Eq. (1) to calculate the pion (and simi-
larly kaon) form factor. As we did in Ref. 2 for the nu-
cleon Dirac-form-factor analysis, we included only the
leading-order hard-scattering amplitude as shown in Eq.
(2). We emphasize again that our aim is to make predic-
tions for meson form factors and meson pair production
in y y annihilations using the same type of quark distribu-
tion amplitude determined by the QCD sum rule and the
same mg and A values in Eq. (4), and compare to experi-
ment. In Ref. 2, it was shown that it is possible to fit the
data for proton Dirac form factor I'~ in the range of
10& Q & 30 GeV when one uses the distribution ampli-
tudes proposed by the QCD sum-rule calculations' '
and a frozen coupling constant [Eq. (4)] with m between
0.1 and 0.5 GeV. 2

The result for the pion form factor is shown in Fig. 2.
Since the pion form factor F (Q ) is multiplied by Q' in

Fig. 2(a}, the numerical results seem to be sensitive to
different values of m even at high Q . However, the
pion form factor F (Q ) itself is much less sensitive to
variation of m [see Fig. 2(b)]. To investigate the sensi-

tivity of the result by choosing another model wave func-
tion, we also calculate the pion form factor using the
quark distribution amplitude obtained by Dziembowski
and Mankiewicz

Pl
P (x)=N exp

Sx(1—x)P

(xM +I )[(1—x )M +m ]
4 2

Here N is determined by the normalization condition
given by Eq. (10), M is the spin-averaged meson mass
(M =612.4 MeV for the pion), m is the constituent quark
mass (m =330 MeV for u and d quarks}, and the Gauss-
ian parameter P is chosen as P=460 MeV to reproduce
the "double-hump" shape of the quark distribution am-
plitude similar to that provided by the QCD sum-rule
method. To compare these two different quark distribu-
tion amplitudes, we summarize the first six moments' of
the quark distribution amplitude in Table I; the nth mo-
ment is defined by

where (=2x —1 and the normalization of P (g) is fixed

by the zeroth moment (g ) —= l.
The pion-form-factor result for these two different

choices of quark distribution amplitude is presented in
Fig. 3. While the difference in the moments (see Table I)
is not negligible, the difference in the pion form factor

D Cfh, PRD. 8, 92 {1973)
~ Cornell, PRD. 9, 1229 {1974)
o Cornell PRD 13 25 {1976)
0 Cornell. PRD. 17, 1693 {1978)
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FIG. 2. Pion-form-factor calculation with the distribution
amplitude of Chernyak and Zhitnitsky [Eq. (11)] and with the
argument of a, (Q') evaluated at gluon momentum in Eq. (2).
(a) Q F (Q') and (b) F„(Q').

seems to be almost negligible for the two different recent
quark distribution amplitudes available for the pion.
Thus, in the pion-form-factor analysis, we have the same
consistency with the available experimental data which
was obtained in the proton Dirac-form-factor analysis
even though further comparison with future experimental
data is necessary at a higher-Q region. In Fig. 4, we pre-
dict the kaon form factor at a high-Q' region using the
quark distribution amplitude presented in Sec. III. The
future experiment on the kaon-form-factor measurement
at Q ) 1 GeV is requested to compare with our predic-
tion.

TABLE I. First six moments of the two different model P„(s=2x —1) used in Fig. 3. The bottom
line is the new lower and upper bounds for the first six moments presented recently by Narison (Ref.
18).

Model

CZ (Ref. 12)
Dziembowski (Ref. 17)
Narison (Ref. 18)

0.43
0.53

0.38-0.60

0.24
0.31

0.22-0. 35

0.15
0.20

0. 17-0.22
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FIG. 3. Pion-form-factor calculations with two different dis-

tribution amplitudes of Chernyak and Zhitnitsky [Eq. (11)]and

of Dziembowski and Mankiewicz (Ref. 17).

Next, we calculate the cross section given by Eqs.
(6)—(8) for yy ~rr rr and yy ~E+E processes using
the same method and quark distribution amplitude con-
sidered in the calculation of F (Q ) and Fz(Q ). The re-

sults for the pair production of m. and E are presented in

Figs. 5 and 6, respectively. The angular ranges for the m.

and K pair production cross section are restricted to
~cos9„.

~

~0.3 and ~cos8, l
~0.6, respectively, to com-

pare with available experimental data. ' We also com-
pared with other QCD calculations' ' in which they ex-
pressed JM [Eqs. (7) and (8)] in terms of the meson form
factor. The results given by Benayoun and Chernyak 20

are obtained when the frozen coupling constant is taken
as a fixed average value c7, =0.36. While the normaliza-
tion of their results is comparable to ours at m =0. 1

GeV (from this, one can find the corresponding average

W {Gev)

FIG. 5. Cross section for the pion pair production in two-

photon collision. The angular range is restricted to
Icose, I

~0.3.

momentum transfer of the virtual gluon, which is about
300 MeV), the slope (or energy dependence) of their
curves is less steep than that obtained by using the
gluon-momentum-dependent frozen coupling constant.
The result for yy ~K K is obtained by taking the ra-
tio (f~lf ) =2.37 as discussed in Ref. 20. For the

yy ~m m process, we also investigated the sensitivity
of the results depending on the choice of different model

P (x), choosing again the model' wave function of
Dziembowski and Mankiewicz. However, the deviation
is even smaller than the pion-form-factor calculation (see
Fig. 3) and cannot be observed in Fig. 5. It was argued
by Niiic" that the poorer agreement between QCD cal-
culations and data on pion pair production (Fig. 5) com-
pared to kaon pair production (Fig. 6) can possibly be as-
cribed to the interference of the continuum with the

f (1270) and other resonances, completely or incomplete-
ly reconstructed as m+m final states.
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FIG. 4. Kaon-form-factor prediction [Q F~(Q')] with the

same method used for the pion form factor.

FIG. 6. Cross section for the kaon pair production in two-

photon collision. The angular range is restricted to
icosO, i

~0.6.
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V. CONCLUSIONS

In this paper we have analyzed the pion and kaon form
factors and the pion and kaon pair production in yy an-
nihilations within the framework of perturbative QCD
using a frozen coupling constant. Our aim was to investi-
gate whether the same type of agreement between experi-
mental data and theoretical predictions achieved in the
proton Dirac-form-factor analysis can also be obtained
in these meson-induced reaction analyses when the same
types of wave functions and frozen-coupling-constant pa-
rameters are used. To make a fair comparison, we strict-
ly restrict our calculations of hard-scattering amplitudes
to the leading order in a, . While similar results should
be obtained using any form of cutoff which prevents
a, (Q ) from becoming infinitely large at small momen-
tum transfers, we chose to use the formula of Eq. (4) be-
cause of its simple analytical form and its prior use in the
nucleon form-factor analysis. Using the quark distribu-
tion amplitude of Eq. (9) constrained by the QCD sum
rule, ' we obtained numerical results shown in Figs. 2-6,
including the sensitivity check by choosing other model

wave functions. ' From the present investigation, we
may conclude that our QCD predictions for the pion
form factor and the cross sections of the pion and kaon
pair production in yy annihilation are in fair agreement
with available experimental data. It is also interesting to
note that the numerical values of nz used in this analysis
are consistent with those of an "effective gluon mass" in
the condensed vacuum obtained by QCD lattice calcula-
tions' and a recent discussion of dynamical mass genera-
tion in QCD. ' Whether the same method would work
for other baryon-induced reactions, such as S-6 transi-
tion form factors ' and yy~pp, is an interesting ques-
tion which necessitates the application of this technique
to other processes.
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