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The Cabibbo-allowed two body nonleptonic decays of charmed baryons are studied. The
kinematics of the vector-meson final state is worked out and flavor-SU(3) and nonet selection
rules for all the amplitudes are given. A simple dynamical model is used to predict asymmetries
and branching ratios for the decay modes A} — Ap* and A} — pK °.

I. INTRODUCTION

Up to now the greater part of theoretical efforts to
understand charm decay has been devoted to charmed
mesons.! Here we begin a study of the decay of charmed
baryons in a systematic manner. It is our hope that more
and more data on baryon decays will become available in
the near future, and that this data will provide a new
arena in which to test the standard model. Besides the
aspect of flavor selection rules, which applies equally to
meson and baryon decays, there is the new aspect of par-
ity violation.

It is instructive to recall the history of the original
discovery of parity violation (a good account of which is
given in the 1968 review article of Pakvasa and Rosen?).
The first clue came from the so-called 7-6 puzzle in which
the same pseudoscalar meson, what we now call the K
meson, appeared to decay into both two-pion and three-
pion final states, which have to have opposite parities;
but the definitive evidence came from baryon decays in
which final states of the same total angular momentum
but opposite parities could coherently interfere with one
another.

The same holds true of charm particles. Two- and
three-pseudoscalar meson final states in the decays of
charmed mesons have (to very good approximation) def-
inite parities, and it is not until one examines four-
pseudoscalar meson final states that one has an oppor-
tunity to look for interference effects indicative of parity
violation. Such effects are however expected to be present
even in the two-body decays of charmed baryons; here we
shall limit ourselves to two-body decays consisting of a
baryon plus either a pseudoscalar meson (B P) or a vector
meson (BV).

In the case of B P decays, the phenomenology is exactly
the same as for hyperon decays.? Since the spin of the
parent is one-half, the final state can be an admixture of
S and P orbital angular momentum waves. Interference
between the waves leads to an “up-down” asymmetry for
the decay meson with respect to the spin direction of the
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parent baryon, and to a longitudinal polarization for the
daughter baryon. If time-reversal invariance also breaks
down, the daughter baryon will have a transverse com-
ponent of polarization in its production plane. Because
the charmed-baryon parent will often produce a hyperon
as its daughter, we can use the known parameters of hy-
peron decay to analyze the polarization of the daughter.

For BV decays the analysis is the same in principle,
but different in practice because of the unit spin of the
daughter meson. The orbital angular momentum of the
final state is now an admixture of S, P, and D waves;
and there are moreover two independent P-wave ampli-
tudes: one associated with the singlet combination of
parent and daughter baryon spins and the other with the
triplet. The basic effects of the interference between the
parity-violating S and D waves on the one hand with the
parity-conserving P-wave amplitude on the other give
rise to asymmetries for the daughter particles with re-
spect to the spin of the parent, and to longitudinal polar-
izations. We give the details of this analysis in a separate
section below.

The presence of two or more orbital angular momen-
tum waves in the final states of charmed-baryon decay
enriches the predictive power of flavor selection rules.
Where these rules lead to sum rules or proportionality re-
lations between the amplitudes for different decay modes,
the relations will hold separately for each angular mo-
mentum wave. This in turn will then lead to relations
not only between the decay rates for the modes involved,
but also to relations between the asymmetry and polar-
ization parameters of the modes.

An instructive example of this richness comes from the
well-known prediction of the AT = % rule for A-hyperon
decay:?

A(A — pr7) = —V2A(A — nn°) . (1)

This relation holds for both the S-wave and the P-wave
amplitudes and it implies that the rate for the p7~ mode
is twice that for the n7® mode, but that all the asym-
metry parameters for the two modes are equal to one
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another. In the case of the ¥ hyperon, there is a well-
known triangular relation which leads to similar types
of prediction as long as final-state interactions are ne-
glected.

Whereas the neglect of final-state interactions appears
to be a good approximation in hyperon decay, it may not
be so for charm decay. In the case of charmed mesons,
it is certainly necessary to include large final-state ef-
fects in order to satisfy the isospin selection rules of the
standard model; moreover, this can be understood as re-
sulting from the existence of strange-meson resonances in
the neighborhood of the charmed-meson mass range. To
the extent that there may be strange-baryon resonances
in the mass range of the stable charmed baryons, there
might be large final-state effects in the corresponding de-
cays, which are neglected here.

The three stable charmed baryons of spin -;— form an
antitriplet 3* with respect to flavor SU(3), just as do the
charmed mesons. Corresponding to the DY, D%, D, are
the =¥, =2 A}, respectively, with masses of 2471, 2460,
and 2285 MeV.? These baryons are formed by replac-
ing a strange quark in the hyperons Z° =Z~,A® with a
charmed quark and antisymmetrizing the two remaining
light quarks in flavor space. One obvious mode for the
Cabibbo-allowed decay of the charmed baryons is into
the corresponding hyperon plus one or more nonstrange
mesons; other modes include nonstrange baryons plus
strange mesons.

In the SU(3)-flavor space generated by u, d, and s
quarks, the effective Hamiltonian for Cabibbo-allowed
charm-decay transforms as an admixture of the 6* and 15
representations. As we have done in the case of charmed
mesons,? so here we construct the effective Hamiltonian
by combining the final-state baryon and meson multiplets
into definite representations of SU(3), and then combin-
ing these representations with the charmed-baryon triplet
to form 6* and 15 tensors. The spin-% baryon octet com-
bines with the meson nonet to form the usual represen-
tations 1,8F,8p,10,10", and 27: the singlet cannot be
engendered by the Hamiltonian, the octets can arise from
both the 6* and 15, the 10 and 27 from the 15 alone,
and the 10* from the 6* alone. Nonet symmetry works
well for vector mesons, but not for pseudoscalar mesons,
and so in the pseudoscalar case we must add additional
terms to the Hamiltonian which are constructed solely
from the SU(3)-singlet part of the nonet. From this con-
struction we can extract sum rules amongst amplitudes
which will hold for all angular momentum waves. We
shall explore the implications of these sum rules in the
following sections, and we shall also discuss the implica-
tions of making various dynamical assumptions as well.
But before beginning this part of our work we turn to
the phenomenological description of parity violation in
the decay amplitudes themselves.

II. PARITY VIOLATION IN BP
AND BV DECAYS

The description of parity violation in BP decays is
well-known,? but it is useful to recall it here. Since the
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initial and final baryons have spin %, the pseudoscalar
meson is in a superposition of S- and P-wave angular mo-
mentum states. In the rest-frame of the parent charmed
baryon, the decay can be described by the transition ma-
trix

M =z=4(S+ Po-q)=: , (2

where S and P denote the amplitudes for the correspond-
ing waves and q is a unit vector in the direction of the
daughter baryon; the Z,, are the two-spinors for the ini-
tial and final baryons. The decay rate for parent and
daughter baryons with spins in directions N and n, re-
spectively, can then be written

dF:r

P l+aq-(N+n)+(N-q)(n-q)

+BN x q-n+7vq x (N x q) -n]dQ ,
(3)

__9 2 2

where M, is the mass of the charmed baryon and @ is
the momentum of the decay products in its rest frame.

In the expression for the rate, the various asymmetry
parameters are

o=2 ReS*P
=NSErPE

ImS*P
=2 4
P=srriPp )
S| PP

TTISEH PR

The parameter a measures both the “up-down” asym-
metry and the longitudinal polarization of the daughter
baryon, while the parameters § and vy measure transverse
components of the daughter polarization. When CP is
conserved and final-state interactions are negligible, 8
vanishes; when final-state interactions are not negligible,
the S and P amplitudes acquire the appropriate strong
interaction phase shifts by virtue of the Watson theo-
rem and B does not vanish. Therefore, since we expect
large final-state effects in charmed-baryon decay, we can-
not use the transverse polarization measured by § as an
indication of C'P violation, without a detailed knowledge
of the final-state effects.

If we write the effective Lagrangian density for BP
decay in the relativistically covariant form,

Leg = —i[tps (A + Bys)¥ilop , (5)

then we can relate the dimensionless constants A and B
to the parameters S and P of Eq. (2). We find that

S=1\/2M.(E+ M)A ,
P=.\/2M(E - M;)B,

(6)
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where M/ is the mass of the daughter baryon and E is
its total energy in the rest frame of the parent.

Let us turn to BV decay and analyze it in a similar
manner. Because the daughter meson now has spin 1,
it is in a superposition of S, P, and D waves. The P-
wave amplitudes have the additional complication that
they may be associated with both spin flip and spin non-
flip for the baryons and hence there are two independent
amplitudes of this type. The S and D waves have only
one independent amplitude apiece. In the rest frame of
the decaying charmed baryon, the transition matrix can
be written as

M= {E}[Sa’+ Pip+iPp x o+ D(o-p)p] €=},
(M

where € is the polarization three-vector of the vector bo-
son and p is a unit vector in the direction of its momen-
tum. To understand the physical meaning of the am-
plitudes (S, P1, P2, D), it is instructive to construct the
transverse and longitudinal forms of €.

We construct a mutually perpendicular triad of unit
vectors by taking p, and s, a unit vector perpendicular
to p, and the vector product px s, which we denote by
r. The corresponding polarization three-vectors are then
given by

€P:I)v
€ =s, (8)
€ =PpXS.

They can be arranged as eigenvectors of the helicity op-
erator J - p with eigenvalues (+1, —1, 0), respectively:

(e +ie) = (3 p=+1),

1 N
Tle—ie)=@-p=-1), ©)
GP:(J-p_—.O).
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Using these expressions in the general transition matrix
of Eq. (7), we can write down the transition matrices for
specific helicity states of the vector meson:

M) = 222G s i)
M(-1) = PZ\/;S{E}[a (s —in)Ei} (10)

M(0) = {E}[(S + D)o - p + PiJ=:} .

Thus we find that (P2+£S) are the amplitudes for a trans-
versely polarized vector meson in the final state, and that
(S + D) is the amplitude for longitudinal polarization as-
sociated with baryonic spin flip, while P; is associated
with spin nonflip.

When we calculate the square modulus of the tran-
sition matrix and sum over the helicities of the vector
meson, we obtain

E2
| M P=| M(+1) > + | M(-1) |* +—5 [ M(0) [*,

(11)

The factor E2/m2, where E, and m, are the energy and
mass of the vector meson, respectively, is a relativistic
correction coming from the completeness of the polariza-
tion four-vector for vector mesons. As in the case of BP
decays, so here we can sum this expression over the spins
of the baryons. For the parent charmed baryon and the
daughter baryon with spins pointing in the directions n,
and ng, respectively, we find that

| M = {[| S 1> + | P2 )[1 - (04 - p)(ne - p)] — 2Re(S" P2)p - (na — o))}

+

2

EZ
n:z{l S+ D? [l —ng-n.+2(ng -p)(n, -p)]

+|Pi>?(14+n4-n.)+2Re(S+ D)*Pip- (na +n.)—2Im(S + D)*P,p X ng -n.} . (12)
The differential and total decay rates are then given by
_ Es+ My 2
dr— Mc(47l')2 IPUHMI de
(13)
1 Eg+ My 2 2 E3 2 2
=—— —£ P.
D=2 P, | (54D P+IAPIZE +21S T +1 P )

where My and Ej4 are the mass and energy of the daugh-
ter baryon in the charmed-baryon rest frame, P, is the
momentum of the vector meson, and M, and Q are the
parent mass and the decay solid angle.

f

From the expressions in Egs. (11) and (12) we can now
calculate various asymmetries in the distribution of the
decay products. The “up-down” asymmetry of the vector
meson with respect to the charmed baryon spin is
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A(up-down) = (1 + ap -n.) ,
(14)
o 2Re(S + D)*PE2 + 4ReS* Pom?
C(S+DPE+|PP)EZ+2S P+ Py [P)ymE”
and the longitudinal-polarization distribution of the de-
cay baryon for unpolarized parent is given by

A(long) = (1 + o'p -n4) ,
(15)
' 2R£(S+D)*P1E3—4RGS‘P27TLE
C(S+DP+[PPEZ+2(1S 2+ | P [)mE
More generally the distribution with respect to the po-
larization vector of the decay baryon can be written as

«

(16)
N = @ +7'P -n)p +6p X0 +7p X (P X ne)
1+ ap - n.

I

where the coefficients are
5= 2Im(S + D)* P, E?
T (IS+DP+|PP)EZ+2IS P+ P [2)mE

_ (IS+D[2—| P [)E?
TEUS+DRE+ [P P)EZ+2(S P+ P, P)m2

an

,_US+DP+ P P)E —2(1S P+ | P [))m
T (S+DPE+PP)E+2S P+ P [P)md

The transition matrix in Eq. (7) can be thought of
either as the nonrelativistic limit of a relativistically co-
variant expression, or as the reduction of the covariant
expression to the rest-frame of the decaying charmed
baryon. In either case it is important to establish the co-
variant transition matrix and the relationship between its
independent constants and those in Eq. (7). On grounds
of covariance alone, we can use scalar, vector, and ten-
sor couplings between the baryons in the effective decay
Lagrangian. Since parity is not conserved, this yields six
constants; but only four of them are independent because
we can use the Dirac equation to reduce one type of cou-
pling to a linear combination of the other two. For the
sake of completeness, however, we shall write down all of
the terms and give the connections with the constants in
the transition matrix of Eq. (7).

In terms of Dirac spinors, the transition matrix is

Lest = [Ya(z + y75)¢e](pe + pa) - €
—i[favucu(a+ bys)ve]
+i[aou (eupy — €vpu)(f + 975)¥c] (18)
The (p¢, pd, p) are the four-vectors representing the four-

momenta of the parent baryon, the daughter baryon, and
the vector meson, respectively, and ¢ is the four-vector
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polarization of the vector meson. Our notation p - ¢ de-
notes the four-scalar product of the two four-vectors. The
connections with the parameters in Eq. (7) can now be
determined:

S=b+2(m; —ma),

p [a(me+mg) —2fm?
P = 0 '—2 c y
'k ( Ea+ ma o

(19)

Py = —————-Edimd [——a +2f(mc +md)] ,
pZ
= [b—-2 c+m 2ym.] .
Eu(Ed'i'md)( 9(me +ma) + 2yme]

Here p denotes the magnitude of the three-momentum
of the vector meson in the parent baryon rest-frame and
E,,E; denote the energies of the meson and daughter
baryon in the same frame.

III. FLAVOR-SU(3) SELECTION RULES

In the standard model,! the effective interaction for
Cabibbo-allowed charm-decay transforms as an admix-
ture of the 6 and 15 representations of flavor SU(3). We
construct it by first combining the spin—% baryon octet
with the meson multiplet to form specific representations
of SU(3), and then combining these representations with
the conjugate of the charmed baryon antitriplet to form
the overall 6* and 15 tensors.

For the meson multiplets we make use of nonet
symmetry,® but with specific limitations. Nonet symme-
try is an additional assumption about vector and pseu-
doscalar mesons, inspired by the almost ideal mixing of
the ¢ and w mesons. It has the effect of relating the cou-
pling constants associated with SU(3)-singlet mesons to
those associated with the corresponding octets. Thus it
leads to fewer independent amplitudes than are encoun-
tered in the most general SU(3) description of charm de-
cay.

In this picture, the product of two nonets yields the
same set of representations as the product of two octets,
namely one singlet, two octets, one 10, one 10*, and one
27. Where the nonet symmetry breaks down, we pick
up three additional representations, a singlet from the
product of the singlet components of the nonets and two
octets from the product of the singlet in one nonet times
the octet component of the other. As far as is known at
this time, nonet symmetry works well for vector mesons
but not for pseudoscalar ones. We shall therefore write
the effective Hamiltonians in nonet symmetry form, but
include an explicit breaking term for BP decays.

The specific forms of the relevant final-state tensor
products of the baryon octet times meson nonet can
be readily adapted from our earlier papers on charmed-
meson decays. The effective Hamiltonian in the nonet
symmetry case is
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TABLE I. Nonet-symmetry amplitudes for B — BP.
Mode Sye(L) As(L) Ts(L) Sy1s(L) Ass(L) Tis(L) Tis(L)
= - =0t 0 0 -2 0 0 2 0
s E=xt 1 1 -2/3 1 1 4/5 -2/3
£2 — Z0x° ~1/V2 ~1/v2 ~(VB)/3  -1/VE ~1/v2 (3V2)/5 (V2)/3
= - ZtK° 0 0 2 0 0 2 0
20 oK™ 1 -1 2/3 1 -1 4/5 2/3
=9 — £K° ~1/v3 1/v2 (V8)/3 ~1/V2 1/v2 (3v2)/5 ~(V2)/3
A} - =0kt -1 +1 -2/3 1 -1 4/5 2/3
A} — pK° -1 -1 2/3 1 1 4/5 -2/3
AY = S*ng P) 0 —V@P3) @/3) 0 —2(VB)/5 =)
A =Tty —2//3 0 0 2//3 0 0 0
A — axt —V2/\/3 0 V2/V3 V2/V3 0 —(2V8)/5 V2/V3
E¢ — s -1/V6 V(3/2) 0 -1//6 Vv (3/2) (V6)/5 V(2/3)
20— =0 2/\/3 0 0 2/V3 0 0 0
E2 — AK® -1/V6 -V3/V2 0 -1/6 -V3/V2 (V6)/5 —V2/V3
A - =tx° 0 V2 (V2)/3 0 -2 0 -(V2)/3
AF = Z0xtp° 0 -2 -(V2)/3 0 V2 0 (V2)/3
Hnonet = Sys(L)[6*;85y] + AG(L)[6*,8A] + Ts(L)[ﬁ‘, 10*] + Syls(L)[l5; 859]
+A15(L)[15;84] + T5(L)[15; 10] + T15(L)[15;27] (20)
[

where numbers are used to denote representations and  the relation for the BP decay modes,
the subscripts Sy and A refer to the symmetric and A(L)AF — E+7r0) = —A(L)(AY — 207‘_+) (22)

antisymmetric octet products of the baryon and me-
son multiplets, respectively, and the notation [X;Y] de-
notes the overall representation X constructed from the
charmed-baryon triplet and the representation Y of the
final state. The (S, A,T,T")¢,15(L) are the invariant am-
plitudes (coupling constants) for the relevant terms in
the effective Hamiltonian with orbital wave (L). The
nonet-symmetry-breaking terms, which we assume to ap-
ply only to pseudoscalar-meson final states, are written
as

Hyreaking = Bs(L)[6"; 1p,8B] + B1s(L)[15;1p,88] ,
(21)

where the notation indicates that the terms are con-
structed from the pseudoscalar singlet (1p). The ampli-
tudes for B, — BP derived from this analysis are given
in Tables I and II.

Numerous sum rules relating the amplitudes for dif-
ferent decay modes can be extracted from these tables.
Some of these rules follow from the isospin selection rule
AT=1, others from the U-spin rule AU=1, and others
require the full power of SU(3). One simple example is

TABLE II. Nonet-symmetry breaking amplitudes for
B. — BP. The amplitudes for B. — BV satisfy nonet sym-
metry and are given in Table III.

Mode BG(L) B15(L)
A+ — 0’ M -1 1
:3 — =0 m 1 1

and a similar relation for the corresponding BV modes
(using Table III). This happens to be a statement that
the final state of the A} decay must be a pure isovector
and it will hold for all orbital waves L. It implies that
the partial rates for the two decay modes and all the
asymmetry parameters must be equal to one another.
More complicated relations hold for the BP decays of
the =, doublet and the BV counterparts: for example,

A(D)(E — E-t) + VIA(L)(ED — =°n°)
= A(L)(E} — =°7%) . (23)

In this case the final state is an admixture of isospins
5 and 2 £, and hence we can extract only one relation
amongst the three amplitudes for each L wave. Because
of final-state interactions we must treat each A(L) as a
complex number, and hence Eq. (23) represents a triangle
in a multidimensional space. The implications of this will
depend on the orientation of the triangle. Many of these
sum rules were written down some time ago.b

IV. MODEL FOR B¢ — BP AND B¢: — BV

We attempt to predict the decay rates and asymme-
try parameters of charmed-baryon decays with a con-
crete model for A} decays to exclusive two-body chan-
nels where some data are now available. We concen-
trate particularly on the baryon-pseudoscalar channels

—0
A¥ — Axt pK and the baryon-vector meson channels
Af — Apt pK°
In general the nonleptonic hyperon decay amplitudes
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TABLE III. Nonet-symmetry amplitudes for B, — BV.
Mode Sye(L) Ag(L) Te(L) Sy15(L) Ass(L) Tis(L) Tis(L)
= o otR* 0 0 —2 0 0 2 0
20 - oK 1 1 —2/3 1 1 4/5 —2/3
E? — T°K* -1/V2 -1/V2 (V8)/3 -1/V2 -1/V2 (3v2)/5 (V2)/3
=t - =0t 0 0 2 0 0 2 0
2L Ept 1 -1 2/3 1 -1 4/5 2/3
Ee—2%"° -1/V2 1/V2 (V8)/3 -1/V2 1/V2 (3v2)/5 -(V2)/3
Ad — pK*® -1 +1 —2/3 1 -1 4/5 2/3
A — =Kt -1 -1 2/3 1 1 4/5 -2/3
A¥ — Apt -/(2/3) 0 -/(2/3) V(2/3) 0 -2(v/6)/5 -V/(2/3)
A - Tt9 0 0 -2/3 0 0 4/5 -2/3
AY - Thw V2 0 (V2)/3 V2 0 -(2v2)/5 (vV2)/3
E¢ — AK™ -1/v/6 V(3/2) 0 -1/ V(3/2) (V6)/5 V/(2/3)
E¢ — Ew 1/V2 -1/V2 0 1/vV2 -1/v2 (V2)/5 -(v2)/3
=0 =% 1 1 0 1 1 -2/5 2/3
AF = 20%* 0 V2 (V2)/3 0 -2 0 —(/2)/3
AY = THp° 0 -2 -(v2)/3 0 V2 0 (v2)/3

will involve contributions from the factorization approxi-
mation, current-algebra (soft-meson) term,” and the pole
contribution. However in charmed-meson nonleptonic
decays, factorization approximation alone gives a good
account of exclusive 2-body decay modes.? We therefore
exploit the same technique for charmed baryon decays,
except that the equal-time-commutator (ETC) term is
included in addition for the parity violating (PV) piece.

The effective AC = 1,AS = 1 Hamiltonian including
short-distance QCD corrections is®

|

Gpcos? b
(BM | Hy | B) = f (—F-——C—

G _ _
H, = ——\/% cos? 0c [fasyu(1 +vs5)c wyu(l+ v5)d

+fp wvu(1+75)e 57u(1+ 75)d] ,

(24)

where fa and f, are dimensionless constants in the range
1.1 to 1.4 and 0.4 to 0.7, respectively.

The factorization approximation for B. — BM (i.e.,

charmed-baryon decay to baryon B and meson M) is just
the statement that

2 )<B|JV|BC><M|MO>. (25)

Together with the use of the ETC term for the PV piece, we have the following amplitudes for A7 — Ax* and

AF ——>p7x70:
+ + Gr cos? Oc _ + 1 xt PV +
MY = Ar?) = fafa (FE =2 ) Tom(Ut s)e | A ) = (A 11Q7 HEVT 1 A) (26)
and
+ =0 GFcos?fc _ + 1 K° PV A+
M(Ac - pl{ ) = fPfK _—\/5_—_) (P | u7u(1 +75)C | Ac )q# - ';'(P I [Q er ] l Ac ) (27)

where q, is the meson four-momentum. However

[@™F, HEV] = 0 and by SU(3) rotation
—0 1
(p1QF  HLV]IAF) = ~—\/—§(E+ | HyC | AT) . (28)

In the limit of SU(4) symmetry, right-hand side (RHS)
of (28) becomes

_ (-\}—57};) cot 90%1%(17 | HEC | 5+) (29)

where R~1, and fg=1.28 f,, fr =0.130 GeV. The ma-

[
trix element (p | HEC | %) has been estimated in a
number of ways, e.g., by model calculations,'? by fitting
S-wave hyperon decay and by fitting P-wave hyperon
decay. For numerical illustration, we shall take the value

(p| HEC | =) = —1.2 x 107* MeV (30)

obtained from P-wave hyperon decay which is in fair
agreement with the model estimate.!°

For the baryonic matrix element of the weak current
(B | Ju | Be), we use the fit to semileptonic decays
A} — Aetv given recently by Avila-Aoki et al. and



3752 S. PAKVASA, S. F. TUAN, AND S. P. ROSEN 42

Perez-Marcial et all! With the parametrization

(A 57u(1 +75)c | AT)

_ . . +
= up (-Wu(fl +9175) + wwqufzm_!iz%
+
+Q;«w)wc , (31)
my

where m; = M,+. The best fit to the experimental
semileptonic bran::hing ratio is obtained when the ma-
trix element is evaluated with the bag model and dipole
form factors. To wit

fi(0)
(1—¢2/m*2)2°

9:i(0)
(1-¢?/m})?
(32)
with m*=2.112 GeV, m4=2.5 GeV for A} 5 A (and
m*=2.01 GeV, my=2.4 GeV for A} — p) For £;(0) and

fild®) = 9i(d®) =

Gp cos? b¢

MQAF = Ar¥) =i fofe < v

9i(0) in the bag model with n=2 (dipole) form factor, we
have

f1(0)  f(0)  f(0) 41(0)
046 019 0 0.5

92(0)  ¢3(0)
—-0.05 —0.44

(33)

The baryonic matrix element (p | J, | A}) has form

factors f{ and g; (i=1,2,3) defined analogously to Eq.
(31). They are related to f;, and g; by an SU(3) factor,

viz.,
710 = 2£0), 60) = /20:(0) (34)

and f!(¢%), g:(¢?) are related to f/(0), gi(0) via relations
analogous to (32) with m*=2.01 GeV and m4=2.4 GeV.

With the procedure outlined above [(28)-(34)], the am-
plitude for M(A} — Ant) given by (26) with vanishing
ETC and 0,,¢9, terms as well as negligible contributions
from the f3, g3 term in (31), yields

) uA[—0.538 GeV + (1.7 GeV)7ys]ua, - (35)

The amplitude M(A} — p_I?O) needs to take into account both the factorization term and the ETC term” given by

Egs. (27)—(30). Using Egs. (32)-(34), we find

i 2
M(AE = 7Ry = i fi (SEEE

Recasting the principal features of Egs. (2)—(6) in covari-
ant form, we have (in the rest frame of B.)

M =iug(A+ Bys)up, ,

S=A, P=B|ps|/(Ep+ms),
(37)
r=A28L g, s ma) s+ PR,
4m M+
2Re(A*B) |ps | /(EB + mB)
|A12+|B|?[ps/(Ep +mB)]*
Equations (35) and (36) have of course ignored final-state
interaction and CP violation; hence, the appropriate A
and B are real. The ratio of A} — Ar and A} — pfo
decay rate from (37) is
[(Af — Axt) 0.746 f2
(A} —»pK°) (Hp+102+ 27
For f, ~ 0.5,fa ~ 1.1, the ratio is 0.36 and thus
consistent with experimental data which hover around

0.34 + 0.13'2 and 0.33 £ 0.19.12 The predicted asymme-
try parameters are, from Eq. (37),

o=

(38)

_-_—\7_;_.) aa[—(fp + 1.0)0.76 GeV + f,(1.97 GeVys)]ua, . (36)

ApAx+ N —1, O/P?o ~ —0.61. (39)

The calculations of absolute rate from (37) is however
less satisfactory. We have (A} — Axt) ~ 8.3 x
101%f2 sec™! = 10 x 10'° sec™! compared with Texpe(AF
— Ant) ~ 2.8 x 1019 sec™!. Likewise (A} — pK')
= 2.78 x 10° sec™! compared with Texpi(AF — pK")
~ 0.83 x 10° sec™!. Given the simplicity of our model,
we feel that discrepancies of a factor of 3 or so in abso-
lute rates are to be tolerated. The asymmetry predic-
tions for a given by Eq. (39) are expected to be more
reliable and the deviation of a(pK ) from —1 is a test of
the ETC contributions. In asymmetry predictions, (un-
certain) absolute normalization is not involved. Since
final-state phases are neglected a’s can be smaller than
our predictions in Eq. (39) by cos(6, — 6,) factor.

The calculation of B, — BV for A} — Ap‘*‘,p??o then
proceeds in a straightforward manner taking into account
the subsidiary condition for vector mesons g,¢€,(¢)=0 and
evaluating f;(¢%),9:(¢?), f{(¢%),9!(¢®) at ¢* = m? (for
A} — Ap*) and ¢% = m%.o (for A} — p_]?*o) from Egs.
(32)—(34). Equal-time-commutator contributions play no
role here. The relevant matrix elements are
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MAF = ApT) = fuf, (% cos? ac) UA[3(0.948 — 0.5875)7, + (0.22 GeV ™! — 0.053 GeV ™ ly5) Py, Jun. €, (40)
M(A}F = pK™°) = f, fx+ (G—\/g cos? ac) Uy [(1.386 — 0.86775)7, + (0.32 GeV™! —0.070 GeV ™ y5) Prplua. €u

(41)

where f, = fx. = 0.11 GeV% ¢, is the polarization
of the appropriate vector meson, and P, is the four-
momentum of A},

The calculations of decay rate and o asymmetry pa-
rameter then follow from Egs. (13) and (14) of Sec. II.
The results are

F(A-c'. — A0P+) = f,%(l.37) x 10! sec! ,

(42)
T(A} — pR ") = f2(2.68) x 10" sec™! .
Taking f, ~ 0.5, fo ~ 1.1, we have
(A} — A%%) =1.66 x 10 sec™! |
(43)

T(A} — pK %) =0.67 x 10" sec™" .

Using the experimental lifetime of A}, 7(A}) = 1.8 x
10713 sec, we have the predicted branching ratios

B(A} — A%*t)=3x 1072 =3%),
(44)
B(A¥ —pR)=12x1072=1.2% .

The branching ratio B(A} — pfﬁo) is somewhat higher
than the preliminary experimental number of ~ 0.56%
but is in the right ballpark. The asymmetry parameters
are predicted to be

CYAﬂ+ = 055 y Clp-R:-o = 051 . (45)

Again we stress that the asymmetry predictions are more
reliable since they do not depend on the uncertainties in
our estimate f, and f, and the prediction from (42) that

+ ., Apt 2
-f-}—(ﬁ\—c——A—_”—*o)—g(Ll) laotos (46)
B(AY — pK™) /) 2

is a clean test of the model. Neglected final-state phases
can only decrease the values in Eq. (45).

The methods developed here are clearly applicable also
to ZF decays to two-body baryon-meson channels, and
we shall take up this matter in a subsequent paper.

V. CONCLUSIONS

Our aim in this paper has been to emphasize parity
violation in charm decay as a new arena in which to test
the standard electroweak model. The consequences of
parity violation are most likely to be detected in the de-
cays of charmed baryons because the final state will, in

f

general, be admixture of waves of opposite parity, and
because the sequential decay of daughter hyperons will
provide a measure of the polarization of the daughter.

We have concentrated on the two-body decays of the
lowest-lying spin-% charmed baryons into the baryon
octet of spin % plus either a pseudoscalar meson or a
vector meson. The kinematical analysis of final-state po-
larizations and angular distributions is well known in the
pseudoscalar-meson case, but not in the vector-meson
case, and we have worked it out here for the first time,
to the best of our knowledge.

Flavor-SU(3) selection rules have been used to express
the amplitudes for individual decay modes in terms of a
set of invariant amplitudes. These expressions lead to re-
lations between the amplitudes for different decay modes
and these relations manifest themselves in relationships
between the branching ratios and polarization parame-
ters for these modes. Care is required in the handling of
final-state interactions, which are likely to be much more
important than in the case of hyperon decays.

Finally we have considered a simple model for the de-
cay modes of the A} based upon current algebra and the
factorization approximation. We are able to make predic-
tions for branching ratios and asymmetry parameters; in
view of our approximations the predictions for asymme-
try parameters are likely to be more reliable than those
for branching ratios.

We believe that there is much elegant and interesting
physics to be found in charmed-baryon decays and we
look forward to the time when many new data become
available.

Note added.

butions from -;-

In the text we have neglected contri-
and %_ baryons in s and u channels.

We have now taken these into account. We find that
the largest contributions come from the ground-state %+
baryon octet to the parity conserving amplitudes.

For the decay mode A} — Ax*, the contributions from
the s-channel £+ pole and u-channel £2 pole tend to can-
cel, yielding [in the SU(4) limit, when gs+p,+ = IAatsoxt
and (% | Hy | AY) = (A | Ho | ) = (p | Hu | ZF)]
for the additional PC pole term

1 1 .
go+Ax+ (A;"—E"'—Eg—-l\)(p'HwIE )

With the value of gg+ar+ ~9 (for D/F ~1.8) and (p |
Hy, | Z1) ~ 1.2 x 1077 GeV as in the text, we find for
this a value of 2x 10~7 which is about 10% of the nonpole
part of the PC amplitude. Hence the neglect of the pole

term is justified. For the decay A} — pfo, the s-channel

+

(47)
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£+ pole gives

1

S + —
+—E+(p|Hw IZ >gE+pK07

= (48)

which for Is+,R° ~ 3 gives 3 x 10~7, which is about 22%
of the nonpole PC amplitude. Although slightly larger
than Art case it is still small enough to justify its neglect.

For the vector meson decay modes things are rather
different. For the AY — Ap* case the pole terms are zero
because the Z*Apt and A} X%t couplings vanish in the
approximation that p generates isospin. Since p couplings
are pure F type and so Is4pR™° = ~Ipnp+ = —5.6, hence

the pole contribution to PC amplitude for A} — p?‘o,
which is given by
1

Ao (4

(p| Hu | E+).’72+pf'°
becomes —8.64 x 10~7 to be compared to 6.31 x 10~7
from the nonpole piece in Eq. (41) corresponding to
fofr+(Gr/V2) cos? 0c(1.386) for the v, coupling. The
net overall amplitude now becomes —2.33 x 10~7 and
the rate and asymmetry are altered drastically. We find
a new rate for A} — pK"°:
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I(A} — pK"°%) = 0.265 x 10" sec™! (50)

corresponding to a branching ratio
B(pK"°) = 0.48% (51)

in much better agreement with the experimental value of
0.56%. The asymmetry parameter is now found to be

a(pK™%) = 0.14 . (52)
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