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Decay and evolution of the neutral kaon
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The time evolution of the neutral-kaon complex is investigated, making use of the constraints of
CPT invariance, a non-negative energy spectrum, and the corrections to the Lee-Oehme-Yang phe-

nomenological theory. Some numerical estimates are made which are compared with the work of
Khalfin, which stimulated the present work.

I. INTRODUCTION

The study of the decay of a metastable quantum system
began with Gamow's theory of the a decay' of atomic
nuclei and Dirac's theory of spontaneous emission of ra-
diation by excited atoms. A general treatment of decay-
ing systems was given by Weisskopf and Wigner, which
led to the familiar exponential' decay. That the decay
could not be strictly exponential for a quantum system
with an energy spectrum bounded from below was point-
ed out by Khalfin three decades ago. The exact solution
to a decaying system of the kind that Dirac considered
was investigated by Friedrichs and in an elegant form by
Lee, followed by Glaser and Kallen. (See also the pa-
pers by Hohler, Williams, and Fleming. )

The short-term behavior of decaying system and the
quantum Zeno effect were investigated by Misra and Su-
darshan and Chiu, Misra, and Sudarshan. ' (See also the
papers by Ghirardi et al. , Peres, Fleming, " and Valan-
ju. '

) The quantum Zeno eff'ect has been verified by
Itano, Heinzen, Bollinger, and Wineland' using metasta-
ble atoms "interrogated" by microwaves.

In view of these, it would be desirable to consider the
decay of a more complex system consisting of two (or
more) communicating metastable states, particularly in
view of the recent refinements in atomic physics tech-
niques including ion traps. We have carried out such an
investigation in great generality, which we will present
elsewhere.

In this paper we have reexamined the important spe-
cial case of the decay of the neutral-kaon system. Three
and half decades ago, Gell-Mann and Pais' pointed out
that K and E communicated via the decay channels
and therefore the decay contained two superpositions E,
and Ez, which were the orthonormal combinations of E
and E, which were, respectively, even and odd under
charge conjugation. With the discovery of parity viola-
tion and CP conservation, the terms K, and E2 were
redefined to correspond to, respectively, CP-even and
-odd superpositions. With the discovery of the small CP
violation, qualitatively new phenomena were obtained
with nonorthonormal short- and long-lived neutral kaons
Ez and Kl. Lee, Oehme, and Yang' formulated the
necessary generalization of the Weisskopf-Wigner for-
malism, which has been used in the discussion of the

&Kt IKs&=p'*p —q'*q&0. (1.2)

Let i denote K,K, and a denote Ks, KL. Equation (1.1)

can be rewritten as

la&= pit &&tIa&—:y t &R... (1.3)

where R = U . For a right eigenstate Ia), let the corre-
sponding left eigenstate be (aI. Then in terms of the ob-
lique bases,

Ii &= g Ia)(aIt &= g Ia&R.,
' .

Let the "time-evolution matrix " of K and K states be
defined by

(1.5)

empirical data. ' ' This phenomenological theory has
the same kind of shortcoming as the Weisskopf-Wigner
theory as discussed earlier.

Khalfin has pointed out' ' some of these theoretical
deficiencies and gave some estimates of the departure
from the Lee-Oehme-Yang (LOY) theory to be expected
in the neutral-kaon system as well as in the D D and
B 8 systems. He asserts that there are possibly measur-
able "new CP-violation effects. " We have reexamined
this question in detail, formulated a generic solvable
model, and studied the exact solution. While bearing out
the need to upgrade the LOY formalism to be in accor-
dance with the boundedness from below of the total
Hamiltonian, our estimates of the corrections are more
modest than Khalfin's. We review Khalfin's work to pose
the problem and establish notation.

In the LOY formalism, the short- and long-lived parti-
cles are linear combinations of E and I(

IKs & IK'& p —
q

U (1.1)

with Ipl + Iql =1 and Ip'I +Iq'I =1. The parameters
p, q,p', q' are complex; their phases may be altered by
redefining the phases of IKs) and IKt ). Generally, the
states are not orthogonal, but linearly independent:
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with A,"(t)= &i~e
'

'~j &, and the corresponding matrix
in the Kz and KL bases by

variable. To be precise, it is the difference between the
relevant energy and the threshold value. So A, =O is the
lower bound of the spectrum. Equation (1.13) implies
that

(1.6)
C, -(k) =C-*,-(A, ) . (1.14)

with B &(r)=&~~e ' '~p&. The matrices A and B can be
related in the following way:

Assume there exists some constant r, such that, for t ~ 0,

A,)= g &~l~&&~le '"'IP&&Plj&
a, P

=(RBR '}, (1.7)

D(r)= A»(r) —A»(r)

= f dA, e '"'[C,z(A, )
—rC2, (A)]

0

=0. (1.15)

S(t} 0
0 L (r) (1.8)

As in the LOY theory, for the time being, if we were to
assume that EL and Ez do not regenerate into each oth-
er,

Positivity of A, within the range of integration implies
that D(t) is an analytic function of t in the lower half t
plane. So D(t} vanishes in the entire lower half t plane.
By the Paley-Wiener theorem, it implies the vanishing of
D (t) along its boundary, or

Then

A (t) =RB(r)R

D(t)=0 for —oo &t & ce .

Inverse Fourier transform of D (t) implies

(1.16)

pq'S +qp'L —pp'(S L)—
pq'+p'q —qq'(S L) qp'S—+pq'L (1.9)

OI'

C, 2(A, ) rC„(A—, ) =C, 2 (A, ) —rC', 2 (A, )=0, (1.17a)

C, (~)= g &ilkn &&conjl& . (1.13)

The summation is over different channels. A, is the energy

At this point let us invoke CPT invariance, which implies
A „=A&2 or pq'(S L)=qp'(S— L). Sinc—e KL and Ks
are states with distinct masses and lifetimes, S —LAO.
In turn, p/q =p'/q'. The states ~Ks& and ~KL & are
defined only to within phases of our choice; we may
therefore set p'=p and q'=q. At this point we shall re-
lax the normalization condition on p and q and write
~p~ + ~q~ =g . The transformation matrix and its inverse
are now given by

R=—,R
p p, g q p

(1.10}
2pq q P

We shall adhere to this convention in the rest of this pa-
per. Equation (1.9) also implies that the ratio of the off-
diagonal elements, that is, the ratio of the transition am-
plitude of K to K to that of I(: to K, is given by

A, 2(t)r(t)= =const .
A~, (t) q2

To sum up, the assumptions that (i) Ks and KL are super-
positions of K and K states, (ii) there is no regeneration
between Ks and KL, and (iii) CPT invariance holds, im-

ply the constancy of r (t). Khalfin's theorem states that if
the ratio r (t) of (1.11) is constant, then the magnitude of
this ratio must be unity. His proof goes as follows.

The matrix elements A, (t) are given by the Fourier
transform of the corresponding energy spectra, i.e.,

A,, (t) = J dl. e '"C;,(k), (1.12)
0

Irl =1. (1.17b)

This conclusion contradicts the expectation of the LOY
theory. In particular, when there is CP violation, it is ex-
pected that

~r~
= ~ =const&1 . (1.18)

We have investigated the situation in the framework of
the Friedrichs-Lee model in the lowest section with the
particle V, and its antiparticle Vz. They are coupled to
an arbitrary number of continuum NO channels. We ex-
press the time-evolution matrix in terms of pole contribu-
tions plus a background contribution. We show that be-
cause of the form-factor effect, both the correction to the
pole contribution and the background contribution give
rise to a tiny regeneration between I( L and Kz. This in-
validates one of the original assumptions needed to con-
clude the constancy of the ratio r(t). Therefore, in the
generic Friedrichs-Lee model, the constancy of this ratio
does not obtain.

Khalfin' ' also predicted an appreciable "new CP-
nonconservation efFect" in the ratio r(r). Our investiga-
tion does not confirm his prediction. For instance, for the
neutral-I( system our result gives an effect which is 12 or-
ders of magnitude smaller than that predicted by Khalfin.
On the other hand, our investigation implies that for the
type of quantum system we are studying, there is a cer-
tain parameter region, for which the background contri-
bution, including a new CP-nonconserving effect, can be
appreciable.

The outline of the discussions below is as follows. Sec-
tion II sets up the dynamical system and derives the ex-
pression of the time-evolution matrix. Section III evalu-
ates the pole and background contributions to the time-
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evolution matrix. In Sec. IV we investigate the implica-
tions of our solution.

II. TWO-LEVEL MULTICHANNEL SYSTEM
AND TIME-EVOLUTION MATRIX

A. Eigenvalue problem

~ ~ ~

[bz(co)] „=5(A.—co)5 „. (2.8)

Such a solution is given by

We choose the boundary condition such that, in the un-
coupled limit, b& is given by

H= gm;iV; Vj+ g ic„N„N„+f dcocoP'(co)ct&(co)

+ f dco g g;„(co)V; N„P'(co)

+ des g,'„co V; N„co
l& ff

(2.1)

In the generalized Friedrichs-Lee model, ' the Hamil-
tonian is given by

g (co)a„
bg(co) =5(A, co)—I+

CO+ l &

Substituting (2.9) into (2.6) leads to

(A.I —m }a&=g (A.)+, . az,g(co')g (co')

CO +l6'

or

(2.9)

(2.10)

(2.11)

Q, = Q V, V, + g N„N„,
I n

Q2 = g N„N„—f dco P'(co)ct&(co) .
(2.2)

Here the bare particles are V, , V2, N„(1 ~ n ~ N), and 8
particles. The following number operators commute with
the Hamiltonian:

where

K =A,I —m —G (A. )
r

A,
—m —G11 11

~ 21 G21

with

—m —G12 12

A,
—m —622 22

(2.12)

Denote the corresponding eigenvalues by q1 and q2. The
Hilbert space of the Hamiltonian is divided into sectors,
each with a different assignment of q, and qz values. We
will only consider the eigenstates of the lowest nontrivial
sector, where q, =1 and q2=0. Here the bare states are
labeled by l V, ), l V2), and ln, co), with n =1,2, . . . , N.
Since there are N independent continuum states, for each
eigenvalue A, , there are N independent eigenstates which
can be written as

lX, n)= + lV, )[a,];„+f drag lm, co)[bz(co)] „,
I m

(2.3)

G~&+. ~
(g(~)g (ml

CO+ l 6'

g(co)g (co)
~

~

0 A, CO+ l 6'

B. Time-evolution matrix

It follows from (2.13), that, for A, real,

CO CO[G(X+ie)]'=f "d~g( 'g '"
0 "A.—N-le

=G(A. —ie} .

(2.13)

(2.14)

where

[a~],„=(V, lk, n ), [b& (co)] „=(m,colh, n ) . , (2.4)

m;J g;l(co } [a~], [aA, ]
g~. (co) cog(co co')g, [b—

& (co'))t„[bg(co)] „
(2.5}

In (2.3) the integration variable of the lm, co) state, co, be-
gins from 0. So it now stands for the difference between
the energy of the state and the threshold energy.

Using the Einstein product convention, the corre-
sponding eigenvalue equation is given by

This in turn implies the identity that, for real k,

The time-evolution matrix is easily evaluated:

&;,(r) =
& ~le

-'"'Ij &

= f "dXe '"g &i-lan)&znlj &

0

= f di, e ' '[a(A. )at(A, )],,
From (2.11) and (2.15),

(2.16)

G(A+i e) G, (A+—ie) = . 2nig (A, )—g (A, )

=K (A+i e} K(A, +ie)—. (.2.15)

(AI —m)aq = (g (co')bq(co') ),
(A. —co)b„(co)=g "(co)aq,

where

(2.6)

(2.7)

For brevity, hereafter we will suppress the matrix indices.
Equation (2.5) leads to K —Eaa =K 'gg (K ') =K ' (K ')

27Tl

' [K-' —(K-')'].
2m.

Substituting (2.17) into (2.16), we get

(2.17)
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But

A;-(r) = f dl, e ' '[K '(A+, i e)2' 0

—[K '(A. +ie)] ) . (2.18)

[K '(A+.ie)] = [[A,—m —G(A, +ie)]tj

or

N,~(A. }
A;, (0)= — f d A. =5.. . (2.24)

(2.25)

=[K(Ai.e—)] (2.19)

,q, N; (A. )
(2.20)

where

Based on (2.19), (2.18) can be written in a contour in-
tegral representation (see Fig. 1):

A;;(t)= f dk, e ' '[K '(A, )],

which is the completeness relation.

III. POLES AND BACKGROUND INTEGRAL OF A )q( t)

So far our treatment has been general. Now we want
to specialize in the neutral-E system. We identity E and
K as V, and its antiparticle V2, respectively, and
proceed to evaluate the time-evolution matrix specified
by (2.20) and (2.21). The 12 element of this matrix is
given by

and

6=detE,

A.
—m —G22 22

N(A, )=CofK =
m21+621

m 12+G12

k —m —611 11

(2.2 la)

(2.21b)

N12= ' f dXe-'", ", ,

where N]2=m»+6, 2. For k real and A, &0,

G,2( A+i e). —G*,2(k+ ie)
2l

(3.1)

Since G(A, ) is defined through the dispersion integral
(2.13), the A, dependence of G, in turn, the integrand of
(2.20) may be extended to the entire cut plane of A, .

[g (A, )g.t(A, )],2

ng &K—')I~A, n &&A,n~a)K'& . (3.2)

C. Completeness relation

At t =0, from (2.16) and (2.20),

A; (0)=f "dA, g &i~An &&conj~&
n

N; (A, )
dk,

2m c b(A)

From (2.21) the asymptotic behaviors are

N;J(A, )~A, for i =j,
N; (X)~A, , for i'
b.(A, ) ~A,

(2.22)

(2.23)

In the Weisskopf-Wigner approximation,

G,2(A, ) = —il, &=const .

In general, there is k dependence in G. With CP viola-
tion, there are also complex phases in the off-diagonal ele-
ments of [g(A, )g (I,)]. We assume that these phases are
global phases; i.e., they are independent of A. . We may
write

[g(A, )g (A, )], =I; f; (I,), (3.3)

where f; (A. ) =f,'(A, ), I; is independent of A, , and it con-
tains global phases. By construction f; is real. Intro-
duce the form-factor matrix F such that

Deform the contour as depicted in Fig. 1. Using (2.23),
we arrive at

G, (k)= —il;, F~(A, ),
~here

f;~(z)
F, (k)=if ' dz .

k —z +if

(3.4)

CPT invariance and Hermiticity of the Hamiltonian im-
ply, respectively,

and

F11

r„=r,*„F»=F„.

(3.5a)

(3.5b)

FIG. 1. Tke contours C and C' in the complex A. plane.
To arrive at the last two equalities, the following con-
sideration was made. From (3.3},
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or

[g (A)g (A) ]„=[g (A)g ( A) ]*„, Substituting (2.21), (3.6), (3.11), and (3.12) into (3.1), we

get

l m, 2
—i I,2F (A. )

AI2(t)= f dAe
2'Tl' C

This leads to the identities

P2, =I *, 2 and f2, =f,2 .
x

A.
—A.s(A, )

1

A,
—AL(A)

(3.13)

The last equality together with the definition of F in (3.4)
implies F» =F,2. It turns out that our conclusions below
are not sensitive to the details of the form factors as-
sumed. For simplicity, hereafter we will work with one
common form factor and rewrite

The contour C of (3.13) is illustrated in Fig. l. It is to be
deformed according to Fig. 2, such that the integral of
(3.13) can be written as the sum of pole contributions and
the background contribution.

%e shall work in the approximation

6; = —il; F(A.), (3.6)

with F (m I, ) = 1. Note that the normalization point of F
is chosen to be at A, =m„.

From (3.6) we obtain the subtracted dispersion relation

F(A, ) =1 i (A —m—„)

I&z
and

m ]] m ]]

m)2 «1,
m))

A. Pole contribution

keeping terms only up to first order in these ratios.

(3.14)

dzf (z)
p (A, z +le)(In ii 2 +le)

(3.7)
In the integrand of (3.13), the poles occur on the

second sheet. They are at

For the weight function, we choose the simple form

V'zf (z) =const X
Z+p

s = m» i I I
—&F(As )+d (As ) ~

AL =m „—iI „F(AL )
—d (AL ) .

Their contributions lead to(3.8)

(3.15)

F(A, )=n
A+ I +cop

+C

which has the expected square-root threshold behavior'
and provides enough convergence in the dispersion in-
tegral. Substituting (3.8) into (3.7) after some algebra we
get

1~ i2( ) ~poles 2

s'(m I2 i I,2Fs—)e
ds(1 —As)

—ikL t
(m, 2 i 1',2Ft )e—

dL(1 —
AL )

(3.16)

+C1

A+ I Qcpp
(3.9)

where the normalization factor and the subtraction term
are, respectively,

where Fs=F(As), ds=d(As), and As=As(As), and
similarly for quantities with subscript L.

Order of magnit-ude -estimates: In order to simplify
(3.16), we first estimate the order of magnitude of A, ', at
A. =A,s and A.L. From (3.12),

m )] +cop
and C =

Qm„
I +Mp

m )) +cop
(3.10)

(A) = —iI „F'(A)+d'(k) .

From (3.9) and (3.10), at A. —m», A.s, A,L,

From (2.12), (2.21), and (3.6), the denominator in the in-
tegrand of (3.1),

6=detK

A,
—m]] lI, ]F
m )2

—E'I )2F

m &2 1 I &2F

m )]

—= [A.—As(A, )][A,—A~(A, )], (3.1 1)

where

As 2 (A. ) =I„—i I „F(A)+d (A, ),
d (A, ) = —,

' [A,s(A, ) —A.L(A, )]
= j[m, 2

—i1,2F(A)][m *, 2 il *,2F(A)]]'—

(3.12)
FIG. 2. Illustration of the deformation of contours Cl and

C& into the pole contributions plus the background contribu-
tion.
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F'=n — +C1

+A, + t +cop

m ] ] +Et)p 1

2+m ) ) Qm ( ) ( Qm ) ) + /+co())

=O(1/m„) . (3.17)

2

1 f rdre " 'F(A)

(r tmyg )

m )] +Q)p

m»
The analytic form of I2 is given by (A3) and (A4) in Ap-

pendix A. Thus the background contribution is readily
evaluated.

To arrive at the last step, we make use of the fact that

IF'I'= 1

4m»2
(3.18)

While the estimate in Eq. (3.17) depends on the specific
form of the form factor assumed, the conclusion that the
order of magnitude of the slope of F is characterized by
the inverse of a hadronic scale is presumably general.
This leads to

F', Fs, FL -0(1/m „),

C. A»( t) in the small- and large-t regions

No

m )] +coo

No
A, (t)l„k=iI, F'—

m»

1 o+i —+
2 m»+o

(3.25)

The background contribution near t =0 can be read off
from (B7) in Appendix B. From (3.23) this leads to

' 1/2

and

d', ds, dL = 0 (I,2/m ) t, m ~2/m» ),

B. Background integral

As, XL, (As —A'L)=O(I „/m„, l,~/m„) .

In (3.16) the denominator of the A, = A, L pole term

dL(1 —XL ) =[ds+d'(AL —ks)][1—(As —2d')]

=ds(1 —
A,s) .

Substituting (3.19) into (3.16),
1

2ds(1 —
A,s )

sX [(m, z
—i I,~Fs )e

—iALt—(m„iA, „FL)e —' ] .

(3.19)

(3.20)

For small t, substituting the relation at poles,

1 COp i coom ~&1+m»F'= —+ +
m»+o m»+o

into Eq. (3.26), together with (3.25), we arrive at

a»(t) —a &2(t) Ibk+ a»(t) l,.~„
1/2

(3.27)

Expanding the pole contribution of (3.16) gives

1
[(m &~

—il »Fs)(1 —i& t)
2ds(1 —As )

(m, q i—I »FL—)(1—i AL t)]

[i1,2F—'+im&2t+(1+m, &F')1, t] .

(3.26)

In Fig. 2 the contribution of contours C"
, and Cz' van-

ishes, and so the background integral is along the contour
C', and C2. Introduce the new variable r, such that

along C': A, =e ' r &X=e ' r
(3.21}

along C': A, =e' ' 'r &X.= —e ' "r .2'

The r integrations along Cz and C', are, respectively,

from —00 to 0 and from 0 to 00. In terms of the r in-

tegration, the background integral of (3.13) is given by

oo 2 m» —ir/2F(k)
~ )2(t)lbk= f 2r dr e

27T

Q)p
(3.28)

(3.29)

A (t)lb'=
cop I

1+ 3/2mll ~p (m~~t)
(3.30)

i m»+r» t .
m»

The large-t behavior of the background contribution can
be evaluated using the identity (A9), i.e., for at, bt ))1:

I2(a, b, t) = 1 1

2&~a'b t'"
So for m»t, capt ))1, substituting (3.24) and (3.29) into
(3.23), we get

1

r i l.s(A.)—1

r i AL (k)— IV. IMPLICATIONS OF PRESENT SOLUTION

A. Ratio r(t)

(3.22}

where A. =e ' r .
In (3.22) we have dropped terms of order of

(I »/m»), (I,2/m»), and (m, z/m» )'. Furthermore,
since the r range is symmetric about r =0, only even r
terms contribute to the integral and Eq. (3.22) becomes

Poles only: Consider the pole contribution in Eq.
(3.20). First, ignore the form-factor effect, which
amounts to setting

Fs FL 1 ~s AL =0, d=Pq (4.1)

where @2=m» —iI,2, q =m*,
2
—iI *, z. In turn, (3.16)

becomes

w „(t)l,„=tr„J(t),
where

(3.23) (4.2)
2q

This is the same expression as that in LOY theory. It
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leads to the ratio

(4.3)

1/2
~12 q

1/2
r12
I 12

(4.9)

where there is CP violation, lp /q l&1. The departure
of the ratio r(t) from the value of p /q comes about
when the form-factor effect is taken into account. This
occurs both through the correction to pole contribution
of (4.2) and also through the background integral contri-
bution.

First, consider the correction to the pole contribution.
Go back to (3.20). We expand the form factor about the
normalization point X=m». Here

FL =1—F'ds Fs 1+F'ds . (4.4)
Thus

312(t)lp„„= [(1—5)e ' —(1+5)e ' ],
q

where

(4.5)

5=t I,2F' '=O(1 12/m1, ) .
p

(4.6)

212(t)
r(t)l „„=

21 poles
A t

s —iA, t —i)L, tL+e
—i A.~l' IA, L t

e —e

p

q

where

(4.7)

Departure from the constancy of the ratio comes about
because of the presence of the 6 term. Since 6 is a first-
order small quantity, we can expand the ratio in 5 and
obtain

In the absence of CP violation, m1z and I,z are real,
p2=q2. So 55=0. In turn, from (4.7), lr(t)lp, 1„=1,
which serves as a consistency check.

Back to the CP-violation ease. The departure of the
ratio r(t) from p /q also occurs in the background con-
tribution. From (3.23) and (3.24) it implies that, for the
background contribution alone,

A, 2(t)
l. (t) l,„= iI,2J(t)

iI *, 2J(t)
(4.10)

The crucial point here is that J(t) enters in an identical
manner for A, z as for Az, . Since the background in-
tegral has a time dependence which differs from that of
the pole contribution, the ratio r(t) of the full contribu-
tions cannot be constant. Thus Khalfin's theorem, which
assumes the constancy of l r (t)l, is not applicable to the
present solution.

B. Regeneration eKect

Next, we demonstrate that there is a regeneration effect
in the present solution, which invalidates one of the as-
sumptions stated in Sec. I, leading to the conclusion of
the constancy of the magnitude of the ratio r. The pres-
ence of the regeneration effect is inferred by the presence
of the nondiagonal element in the time-evolution matrix
B of (1.6). Based on (1.9) and (2.20),

B(t)=R ='A(t)R

a5=u (r„r;,)'"F'-uO(r„/~ „),
with

(4.g)

with

—i~t R NR
2~

(4.11)

2pqN1, —(N, 2q +N2, p )

R 'NR =
2pq

—N12q +N21p2 2pqN„+(N, 2q +N2, p )
(4. 12)

We focus our attention on the element 8,2, which leads
to the regeneration of Es from Kz. i.e.,

B12( ) B12( )lpoles+B12( )lbk ~

with

(4. 15)

=(m, 2
—i1,2F)q —(m *, 2

—iI *, 2F)p

= —i (F—1)(I, q
—I,zp ) . (4.13)

In the last step we have used the relations p =m12 l I &2

and q =m1z —il 1z. So

I

2
(4.16)

B»(t) 1„.1„= [(F&—1)e ' —(F, —1)e ' ]

i;g, F(A, )
—1

dk, e
27T C

(4.14)
In a manner similar to going from (3.1) to (3.23), from
(4.14),

where v =21m(r, 2m12). So the regeneration correction
occurs only when v&0, i.e., when there is CP violation.
Deforming the contour, we get In the small-t region,

(4.17)
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B,2(t}l „„= [2—i(As+AL}t]poles

=vF'( 1 —im „t)

1 coo l m 11cop=UF' —iUt ——+ +
2 m11+~o m11+~o

In the last step, Eq. (3.27) was used. In this region, using
(B7), (4.17) becomes

' 1/2

Khalfin assumes that
' 1/2

W p=g
n

' 1/2
nP

C,q(A, ) = ( Wss —
WsL + WLs —Wt t ),

4p 'q
2

C~, (A)= (Wss+ Wst —WLs
—WtL ) .

4pq
*

(4.21)

(4.22)

Biz( t}l bk= —v F' COp

m]1

COp

m „+~o where k &=m &
—i I &. The corresponding A. integral

is to be evaluated with the approximation

B&z(t)=21m(r, zm &2 }
coo

m11
+i t. (4.18)

Analogous to (3.30), in the large-t region, we find,
T

too Im( I,zm *, 2 )
1+e

—[~/4]i

mp+i —+
2 m +cop

Substituting back into (4.15), in the small-t region the full
regeneration amplitude for KL to K& is given by

1/2

(4.23)

where I and I &
are the total widths of K and K&.

This, together with the Weisskopf-Wigner approxima-
tion, leads to

f dA, e ' 'W,p(t)
0

m11 coo

x
(m, )t) ~

(4.19)

'Ke

for a=P,
—i k.~ I

L p QS (4.24)

C. Critique on Khalfin's "new CP-violation effect"

We recapitulate Khalfin's argument: The time-
evolution matrix of K and K has the spectral represen-
tation [see (1.12) and (1.13)]

A; (t)= f dA, e ' 'C; (A, ),

where

—I A. L Ia'e ' fo« =Es P=KL

—2i+I sI L

ks AL
(4.25)

where
From (1.12) and (4.21}—(4.25) we arrive at Khalfin's re-
sults:

C)(A) = g (i l An ) ( Anlj & .

In terms of the spectrum in the KL and Kz bases,

C,, = g & ilAn & & Anlj &

= g (nli &'&Anlj &

g [(Anla)(ali )]'(Anlp)(plj )

and

A, 2(t) = — [(1+a)exp( —i Ast)
4p 'q

—( I+a')exp( i At t)], —

Az, (t)= [(1—~)exp( inst)— ,

4pq
*

—( 1 —a' )exp( i AL t) ] . — (4.26)

where

n, a,P

=[(R '} ], W p[R ']pj, (4.20)
Numerical estimates: We first present Khalfin's numer-

ical estimates of Refs. 18 and 19. For the neutral-K sys-
tem, the experimental values of the mean life of Kz and
KL and their mass differences are

W p= y &Anla)'&AnlP&
Tz =0.9X 10 ' sec, TL =5.2X 10 sec,

= g C„'d C„p . Lm =mL —mz =0.5 X 10' sec

Carrying out the matrix multiplications The mean-life values imply the half-widths
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'Vs
S

1 -0.5 X 10' sec
2Ts

(4.27)

nitude below Khalfin's prediction.
Now we come to the D and B neutral systems; the ex-

perimental mean-life values are
I" = —10 secL 2T T o=4X10 " sec, T O=14X10 ' sec .

This leads to

i n. /4
2I L

rs
-0.06Xe' /

2i+r, r,x=+ am+i(r, +r, )

1/2

(4.28)

So

I" &= —1.3 X 10 sec12 —
1

2T o

I o= 3.6X 10" sec
1

2T 0

For the D D and BdB d systems, theoretical estimates
give 1 9 2 1

We assume m» )220 MeV=3.6X10 sec ', and I
d

is of the same order of magnitude as I o. Then

hm(D)
10 3 10

r(D)
r5-

m»
3 6X10" =1 2X10 ' &10 ", (436)

3 X1023

So

EI (D)= I s(D) —I I (D) «hm (D),
bm(Bd)" -10-'-10-',
I(Bd)

b, r(Bd)=Is(Bd) —I t. (Bd) «b, m(Bd) .

I L
—Is, Am &&I L, Is .

This, together with (4.28), implies that

2t'I Ia.— . —1+0(bm/I L ) .
m +2tI

(4.29)

(4.30)

Substituting this ~ value into (4.26), Khalfin found a sub-
stantial difference between A, z(t) and Az, (t) amplitudes.
This leads him to predict "appreciable" CP-violation
effects in D D and B B systems.

In contrast to Khalfin's estimate, our solution predicts
the corresponding deviation from unity to be

which is over 11 orders of magnitude smaller than that
given by Khalfin.

We now turn to some theoretical considerations. For
each neutral system there are two distinct lifetimes in-
volved; in turn, there are two distinct eigenstates. The
energy spectrum matrix W

&
is nonsingular. It has a

positive-definite determinant. For the prediction of a
"new CP-violation effect, "Khalfin made an additional as-
sumption that the off-diagonal matrix elements of W

&
take the factorizable form of (4.23), which implies the
vanishing of the corresponding determinant or an overes-
timate of the off-diagonal elements. So Khalfin estimates
should be regarded as an upper bound. Our analysis
above shows that this upper bound is many orders of
magnitude larger than what we obtain from our exact
solution.

Inspection of (4.25) and (4.26) reveals another
deficiency. The new CP-violating effect predicted persists
for a CP-conserving situation, where m12 and I 12 are
real. For this case the CP-violating effect is not to be ex-
pected [see Eq. (4.14)].

5=0(rtz/m), ) . (4.31) D. Various t regions of A &2 ( t )

See (4.5) and (4.6). For the neutral-K system, to evaluate
6 we take

r12-rs-5X 10' sec (4.32)

The quantity m» is the difference between the kaon mass
and the threshold energy of the continuum state, say,
E~2m. This difference is 220 MeV. So A„(0)l,.„,= —ir„F'=O(r, /m„) . (4.37)

The algebraic expression of A, z(t) is given by the sum
of the pole contribution of (4.5) and the background con-
tribution of (3.23) and (3.24).

At t=0: From (3.26) we see the two pole terms cancel
out each other, except for a tiny residual value

m» -220 MeV-3X10 sec

Therefore,

(4.33} This extra residual term is canceled by the background
contribution of (3.25). This leads to (3.28), which implies

5-0.16X10 " (4.34) A, z(0)=0 . (4.38}

From (4.28) and (4.34),

3X 10
—13 + 1p

—12 (4.35)

So the completeness relation of (2.25) is restored.
Zeno region: Denote T& -min(1/m», 1/coo). In this

domain the amplitude rises linearly with t. From (3.28),
1/2

In other words, our solution implies that for the pole con-
tribution, deviation from unity is over 12 orders of mag-

COp

A»(t)= —
~ m»+r»

m»
(4.39)
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P(t) =
l
3 (t) —1 —const X t (4.40)

So it has a zero slope with respect to t at t =0.
Analogously, for the transition process of K to E or

vice versa, because of the orthogonality of the two E
states, the transition probability vanishes at t =0. On
general grounds it can be shown that in the small-t region
the transition amplitude is proportional to t; in turn, the
corresponding probability is proportional to t . So, for
the transition probability of E to K in the small region,
we expect

We recall the "quantum Zeno effect77 of an unstable sys-
tem ' refers to the situation that if an unstable system is
monitored for its existence at a sufficiently small time in-
terval, the lifetime of the system appears to be longer
than that obtained by monitoring the same system with a
coarser time interval. Recent experiments by Itano
et al. ' have con6rmed the quantum Zeno effect. The ex-
periment of Itano et al. involves the observation of the
Zeno effect for the transition from one discrete state into
another discrete state. To our knowledge the observation
of the Zeno effect from one discrete state to a continuum
state has not yet been carried out experimentally. For
both discrete-to-discrete and discrete-to-continuum cases,
the Zeno effect is due to the fact that the survival proba-
bility near t =0 is given by

which is identical to that of LOY theory. Let us estimate
Tz for two different cases. —i (A.L

—A.~ ) T~
Case 1: T& occurs when le 'l «1. This is

the case for the neutral-kaon system. At Tz, the E&-pole
contribution is already vanishingly small. From (4.43)
and (3.30), we have

Iiz—P e — 1+
2q m

&& coo (mt)

or

-r IL

~o (m))t)
(4.44)

Assuming coo- m „, from (4.32) and (4.33), with
m»-3X10 'sec ', I I —10 sec ', at t =Tz,

3 5 m»
I t ——ln(I t) —ln— -95,

or

Tq-102/I L . (4.45)

Case 2: Tz occurs in the region where
l(A. t —A.s)Tz l

« 1. We recall that present theoretical es-

timates of (4.29}give

dP, z
P, z( t) = const X t, (0)=0 .

dt
(4.41)

In other words, there is also the presence of the Zeno
effect for the transition from K to E or vice versa.

In the LOY theory, where a pole approximation is as-
sumed, from (4.2), in the small t region,

A, ~(t),)„~ (As —
A, t )t

lp

2q

b, m (D) ))b I (D), —10 —10I'(D)
bm (8&)

hm (Bd ) «b, l (B„), —10 '-10

At T~, using (4.43) and (3.30), we get

—IA, , r —l(A.~
—

A, L )I —rLt
e ' (e —1) -b,mte

2q

(4.46)

ip t = (—im~+—I,~}t . (4.42)

Here again (4.41) is satisfied. While for the unstable de-
cay case the Zeno effect is a paradox in that there is the
apparent extension of lifetime due to quantum measure-
ment, for the transition case the Zeno effect is to be ex-
pected, since the suppression occurs even within the
Weisskopf-Wigner pole approximation.

Actually the pole-approximation result and our results
differ in details. For our solution the pole contribution to
the transition amplitude alone has a constant term. It
takes the combination of the background and pole contri-
butions, which lead to a linear behavior in t in the transi-
tion amplitude. Note also the difference between our re-
sult in (4.39}and that of the LOY result in (4.42). For in-
stance, the multiplicative phase for the I,z term is imagi-
nary in our solution, while it is real in the LOY theory.

Pole-dominance region: Denote this region by
T, & t & Tz, where Tz is the time where the pole contri-
bution and background contribution become comparable.
Here, in the lowest-order approximation,

Iiz 1

~0 (m )(t)
(4.47}

Since Am, EI « I I, we expect I,z- I L. As before, as-
sume coo- m» )220 MeV. Thus (4.47) leads to

12

5m
1

(m „t)'"
~~2

Am m»

5/2
1

(I t) /25

or

5 5 m» ~L
I t t ——ln(I L t) =—ln +ln

2 2 I L Am
(4.48}

m» )220 MeV =3.3 X 10 sec

We use the D and 8 data quoted earlier for evaluation of
(4.36):

A,g L =m» —
1 r]]+pq 7

(4.43)
I I &1.3X10' sec ', &10.

So Tz for the D and 8 systems can be evaluated:
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m)) I LI LT —
—,'lnI LT2= —', ln +ln &67,L 2 2 L 2

I T &78, or T &78/I

Power law-region: For t ) T2, from (3.30},

A (t) = A (t) ~~„

(4.49)

1 1 1I, (a, b, t)= f dye ye
m(b —a) p y+a y+6

[v'a e "erfc(&at )
—&be 'erfc(v'bt )] .

a —b

(A3)

For n =2, from the definition of (Al),
6)p I—e"4 1+

~pp (m~~t) 3/2 (4.50)
I~( a, bt)= — I, (a, b, t) . (A4}

We observe that the power-law behavior in the asymptot-
ic t region is very similar to that for the survival ampli-
tude of unstable particle. In fact, they both may be
directly correlated to the threshold behavior of the con-
tinuum. '

We see from the analysis in this paper that a quantum
system with two metastable states which communicate
with each other exhibits interesting phenomena in its
time evolution. For its short-time behavior the quantum
Zeno effect obtains; for very-long-term behavior there is a
regeneration effect even in vacuum unless the long- and
short-lived superpositions are strictly orthogonal. In the
kaon complex the short-lived particle Kz has passed from
the exponential regime to the inverse power regime be-
fore appreciable decay of the KL or regeneration of the
K& takes place. The CPT invariance making the diagonal
elements of the decay matrix in the E,K basis equal is
crucial to the nature of the time evolution. In the study
of communicating metastable states in atomic physics,
such an additional constraint on CPT is not there; conse-
quently the decay exhibits richer features. We will
present the general study elsewhere. Suffice it to observe
that the asymptotic and Zeno region time dependences
are very much the same as with the case of a single meta-
stable state decay: This is not surprising since the generic
arguments apply without restriction to the number of
channels involved.
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Small-t expansion: For small y, i.e., y & 1,

erf(y) = 1 — +
v'm

(A5)

For at, bt « 1, using (A5) from (A3) and (A4), we get

g3/2 a 3/2

I)= —2 — + t .v'a +v'b w b —a
(A6)

Large argument expansion: For large y, i.e., y & 1,

e
erfc(y} =

&my

1 + 4 ~ ~

2y
(A7)

and

1 1

2&nab t'" .'

1 1I2=
2V'~a ~b

(A8)

(A9)

APPENDIX 8: J(t) FUNCTION

Recall from (3.24),

A lying this identity to (A3) and (A4), we get, for
at, v'bt »1,
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—r t2,I

J(t) = —f, ,F(k),—~ (r —im)

where with k=e ' r the form-factor function

(B1)

Let

APPENDIX A: INTEGRAL IDENTITIES

F(A, )=n +C1

+A, + t +cop

1 rdre "' rI„(a,b, t)=-
(r +a)" r +b

(A 1)

—i w/4Q
i n. /4 —i n. /4C

r +resp
(B2)

&ye "
dy

o y+a

1/2

—a&a e "erfc(v at ), (A2}

where erfc(y) = 1 —erf(y). So, using (A2), we get

We want to evaluate this integral for n =1 and 2. We re-
call a useful identity:

with

I QCOp
and C =

A, +COp
(B3)

The subscript of m is suppressed in this appendix. Since r
range in (Bl) is symmetric about r =0, only the even part
of the integrand contributes to the integral. This leads to
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From (85), (86), and after some algebra, we get, for near
t=0,

=ne™/4Iz( i—m, itoo, t) .

Small tbe-hauior ofJ(t): From (A5) and (A6),

J(0)=e' n (
—1) 1™& im—+/icoo

(84)
COp

J(t) =F'(m) —i —+
2 m +Q)p

l COp COp

m +cop m

'1/2-

(87)

=e n
—i m'/4

dm e
—l~/4Q + in/4&

y COp Large tbeh-auior of J(t): From (A9) and (84), for
t mt, t//toot )) 1,

+C
&a+i +to,

J'(0) =e ™/4n
(
—1 )

d
d( im—)

=F'(m),

( im—) (i t—oo)

( —irn ) (i coo—)

(85)

J(t) ein/4
2&m( im)—(iron)t /

m= —in
dm M +cop

(86)
3'JTl /4 Q)p 11+ 3/22v'v m coo(mt)
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