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Nontriviality of spontaneously broken A.P theories
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By using nonperturbative functional methods it is argued that A,P~ theories, undergoing spontane-
ous symmetry breaking, are asymptotically free. Comparison with Hamiltonian methods and with
results previously obtained by different authors is presented.

When dealing with phenomena such as spontaneous
symmetry breaking, gluon condensation, etc., it is usually
assumed that the details of the ground state are not
relevant at short distances. This point of view, based on
the assumption that the ultraviolet divergences of the
true theory are the same as in perturbation theory, im-
plies that the various renormalization-group (RG) prop-
erties, such as the scaling behavior of the ground-state
energy, may be deduced, in a weak-coupling regime, from
the perturbative evaluation of the relevant quantities (P
function, anomalous dimensions of the operators). This
procedure amounts to the truncation of the power-series
expansion about an unstable vacuum and may conceiv-
ably produce wrong results if, for example, there are non-
analytic effects in the coupling constant. The aim of this
Brief Report is to discuss the RG properties of the
effective potential for scalar self-interacting theories and
provide strong evidence that the usually accepted point
of view concerning their "triviality" has to be recon-
sidered in the presence of spontaneous symmetry break-
ing. Before entering the details of the problem a few gen-
eral considerations are in order. Two basically different
approaches to the calculation of the effective potential ex-
ist. The first one, based on a semiclassical approxima-
tion, the loop expansion, ' can be applied in the presence
of classically stable configurations and in a situation
where quantum fluctuations are "small. " This approach,
essentially of perturbative nature, does not enjoy any sta-
bility property. As shown in Ref. 2 for A,P theory and in
Ref. 3 for Yang-Mills theories the one-loop effective po-
tential is obtained by minimizing the expectation value of
the shifted, linearized Hamiltonian in a Gaussian state.
Now, the linearized Hamiltonian may exhibit well-known
pathologies, such as unboundedness from below, which
show up into the appearance of unphysical imaginary
parts, and there is no guarantee, in principle, that, by in-
creasing the accuracy in A, one also gets a better estimate
of the ground-state energy.

The second approach, based on the variational method,
is clearly advantageous and necessary in those cases
where quantum fluctuations can sizably change the naive

expectations based on the classical potential. As shown in
Ref. 5, in the Gaussian approximation, spontaneous sym-
metry breaking is discovered as a sensible phenomenon in
a pure massless A,P theory, differently from the usual
one-loop approximation where this is true only in the
presence of gauge bosons, i.e., in scalar electrodynamics. '

Moreover, in Ref. 5, it was implicitly assumed that the
cutoff regulated A,P theory was not allowing the "contin-
uum limit, " i.e., cutoff to infinity, in a consistent way.
However, in a weak-coupling regime, the cutoff was ex-
ponentially decoupled from the spontaneously broken
phase, thus implying a meaningful physical framework in
a low-energy region. An important progress was ob-
tained in Ref. 6 by Stevenson and Tarrach. These au-
thors, by applying mass renormalization conditions close
to the ones of Ref. 5, suggested that the effective potential
of Ref. 5 could be renormalized by allowing for an infinite
(in the infinite cutoff limit) wave-function renormalization
of the scalar field. This feature, well known in Yang-
Mills theories in the background gauge due to asymptotic
freedom, seems to be unavoidable in A,P theories in four
space-time dimensions as discussed in Ref. 7 by Frohlich.
This point of view has been pursued in Ref. 8 where the
constraints on the true P function of the theory obtained
by variational arguments, lead to the conclusion that
indeed scalar self-interacting theories, in the presence of
spontaneous symmetry breaking, are asymptotically free.
fn view of the importance of this result for quantum field
theories and for its implications on our present under-
standing of electroweak interactions, it is worthwhile to
support Ref. 8 by providing different arguments.

We shall employ, rather than the purely Hamiltonian
formalism, the covariant effective potential for composite
operators introduced in Ref. 9. At the same time, to
avoid any criticism related to the use of an ("old
fashioned") ultraviolet cutoff in momentum space we
shall adopt, here, the modified minimal subtraction (MS)
prescription of dimensional regularization. Finally, the
connection with the results of Ref. 6 will be clarified.

The starting point for our analysis is Eq. (2.9a) of Ref.
9, where the effective action I [P,G] (fr= l ) up to a con-
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is explicitly given. For our simple case, described by the
Lagrangian (A,a & 0)

variational procedure within the class of the Gaussian
state functionals. '

For constant fields the effective potential V(P) is ob-
tained by minimizing E[P,G] with respect to G, and the
ground state energy density %V corresponds to the abso-
lute minimum of the effective potential: V(gp). Corre-
spondingly, in the Gaussian subspace, we have Eg[P, G]
and the approximated values (t), G, Vs(P):—'ling, instead
of the exact minimum configuration Pp, Gp V(gp).

The variational content of the Gaussian approximation
allows us to deduce the fundamental inequality

we obtain (we restrict to the case of constant P) 'lV ~%V (14)
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which is hardly to be recovered by employing different
truncations of I 2(i}),6 ).

By evaluating E[itp, 6], whose dependence on the un-
known function co(k ) is well known to be extremized by
the form

and 6(x,y ) admits the general, space-time translationally
invariant, form
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The stability of the underlying theory can be investi-
gated through the relation

r[4 61..;.= —f«EN»G] (9)

I [P,G]„„;,being defined in Ref. 12, and ( (((('il P) = 1)

in terms of the unknown function (o(k).
Finally I z[$,6] is obtained by the sum of all two-

particle-irreducible vacuum-vacuum graphs of the shifted
theory with propagators set equal to G. As shown in Ref.
9 the usual effective action I [P] is obtained by minimiz-
ing r[(|},6] with respect to G, i.e.,

r[y]=r[y, G,(y)],
where Gp(((}} is defined as the solution of

(p (k }=k +Q (15)

and by using dimensional regularization, we obtain
(V= three dimensional volume)
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and we have for the sake of clarity added a subscript B to
the field to indicate that we are dealing with bare quanti-
ties before renormalization. Equation (16} is equivalent
to the result obtained in Ref. 5 by introducing a bare
mass counterterm and by regulating the divergences in
three-momentum space by means of an ultraviolet cutoff.

As discussed in detail in Ref. 5 one gets the extremum
conditions

E[y,6]=min), ~(ply lq),
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whose solutions, %Pa and Q, given by
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%e stress that the above equivalence is only true for

the exact quantity I [$,6] and that the problem of
finding approximations to E[P,G], which enjoy stability
properties, by truncating the infinite series in I 2[(}),6], is
highly nontrivial. The only known case is the Hartree-
Fock contribution since it corresponds to a systematic

produce the variational estimate for the energy density

'N (e,A~)= 0
128m

(21)

Note that, from Eq. (20) and from the positivity of A,~, it
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follows that the continuum limit n —+4 should be taken
from below, i.e., e~O, thus avoiding the "triviality
bound" of Ref. 7 which holds for @~0+.

In order to eliminate any polar term from the
minimum of the Gaussian effective potential, which
is the only point that may, possibly, have a physical
meaning, we introduce a MS running coupling constant
A.(p) through the relation

1+
&

—+in@ +y+lnm
16~'

(22)

so that Eq. (20) becomes

p, 16m

Q~ A(p)
(23)

From Eq. (22), it follows immediately that, by defining
the function Ps(A, ),

Pg(A, )= — +O(A, ), (24}

'}V satisfies the equation

p +Ps(A, ) '}Vs(p, A. )=0, (25)
Bp

and %V (p, A, } is the same quantity of Eq. (21) after replac-
ing )L.ii in terms of A,(p).

Then d 0/d p, =0, and Eq. (19) can be expressed as
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where P(p) is automatically defined by Eqs. (19}, (22),
and (26). Now let us consider the exact ground-state en-

ergy. In this case, from the inequality (14), for the un-
renormalized quantities, i.e.,

(26)

% ( e, A, ii ) ~ '}V ( e, A, ii ),
a suitable definition of the running coupling constant
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(the superscript T= "true") may be introduced, in terms
of an unknown constant c, to renormalize %, at least for
small value of A,z. It should be clear that Eq. (27) is the
only alternative left out by our variational upper bound
since, otherwise, the resulting unboundness from below
(for n ~4) of the exact theory, for positive A,ii, would be
very difBcult to understand. As a consequence, the in-
equality (14) can be read as

2
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and from Eq. (29) one gets
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is to be compared with the Gaussian approximation re-
sult, Eq. (22):

Alternatively one can start from Eq. (28), and the general
form (29) to obtain Eq. (27).

Note that in Eqs. (25) and (28) p and k are independent
variables, as in a partial differential equation, but only
along integral curves A, =A(p) and A, =A, (p) with the
same boundary conditions we are allowed to compare "}Vs

and 1V .
We note that the possibility to renormalize }V, as in

(27), is equivalent to solving Eq. (28) for arbitrarily large
values of p only if c is positive as in the Gaussian approx-
imation (c =1). In this case we can consider the same re-
gion in the (p, A, } plane (large p and small )(,} as the in-
tegral curves of both the exact theory and its Gaussian
approximation are driven toward the ultraviolet fixed
point at X=0. On the other hand, if one would follow
the perturbative indications (c=——', ) the exact theory
and its Gaussian approximation decouple in the continu-
um limit. In this case, surprising as it may be, the Gauss-
ian approximation would be, nevertheless, very appealing
for consistent quantum-field-theoretical models of weak
and electromagnetic interactions as it exhibits both spon-
taneous syrnrnetry breaking and asymptotic freedom.
Henceforth we shall adopt the more realistic point of
view that the Gaussian approximation, at least for weak
coupling, well reproduces the properties of the exact
theory thus providing the correct sign of c. By assuming
the "Lipschitz continuity" of both P and P, the existence
and uniqueness theorem of Ref. 11 states that only one
integral curve (of P or Ps) can pass through any non-
singular point in our plane. By considering the two dis-
tinct characteristics, one of P and one of P, crossing a
given (pD, A0) point, thus corresponding to the same Aii,
we can find a relation between the scale parameter M as-
sociated with the true ground-state energy }V and our
variational quantity Q.

From the general solution of Eq. (28),

')V (p, & (p)) ~'}Vs(p, &(p)),

and the RG equation

T
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0

(32)

p +P ')V (p, A. )=0
Bp

defines the "true" P function of the theory P(A, ):

(28}
In the weak-coupling limit, and by using the fundamental
inequality (14), we deduce 0&c ~ 1 [or P(A, ) ~Ps(A, )].

It should be clear that asymptotic freedom is, in gen-
eral, a nonperturbative statement concerning Eq. (28).
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(33)

from which the wave-function renormalization Z can be
derived through the general expression

d V(P}
A/2

2
mg

Z
(34)

In our case, mz is 0 .
Therefore we obtain, in the Gaussian approximation,

24m

}i,(p)
(35)

Spontaneous symmetry breaking, signaling the "essential
instability'* of massless self-interacting scalar theories,
prevents the possibility of any consistent perturbation
theory in the unbroken phase.

We note, incidentally, that from our results it follows
automatically the "triviality" of the A,P theory in the
symmetric phase. Indeed by using the definition of the
leading-logarithmic perturbative coupling constant A, (p)
one gets the chain inequalities

A,(p) )As ) A. (p) .

Since (when a~0 ) A,&~0+, k (p) identically vanishes
at any scale.

Connection with the results of Ref. 6 can be obtained
by the explicit expression for the renormalized Gaussian
effective potential around one of its absolute minima
(+p),

or, by introducing explicitly the mass 0,

p
Zg 0

2

=-'ln
2 —
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the infinite rescaling of Ref. 6 in the limit p~ ao, and 0
fixed. Equation (35) may be checked by means of an ex-
plicit calculation in the shifted theory. '

As stressed in Ref. 6, the formal identity (up to a finite
rescaling of the field) of Eq. (33) with the one-loop result
of Ref. 1 is accidental. Equation (33) is nonperturbative
and has no leading-logarithmic corrections.

Finally the generalization of our approach to the con-
tinuous symmetry case O(N) is straightforward following
Ref. 13. In that paper, by introducing two variational
masses, corresponding to the "radial" (physical Higgs bo-
son) and "angular" excitations (Goldstone modes}, it is
found that the Goldstone theorem is recovered exactly in
the limit N~ ~. This result, a property of the continu-
um theory, is obtained by keeping fixed the physical
Higgs-boson mass, to set up the scale of the theory, in the
infinite cutoff limit, as in the discrete symmetry case ana-
lyzed in this paper. As a consequence, if one accepts that
spontaneous symmetry breaking is discovered as sensible
result in pure A,P theories, the existence of an ultraviolet
fixed point is unavoidable.

Because of the nonuniformity of the two limits
N~ ~,p~ ao, the conclusion of Ref. 14, that an O(N)-
invariant self-interacting scalar theory is trivial, in the
large-N limit, should be limited to the symmetric phase.
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