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Relationships are established among current matrix elements, covariant vertex functions, and

multipole form-factor decompositions for the case of electromagnetic interactions of spin-
~

systems.

The electromagnetic current matrix element for spin-2 baryons is defined in terms of the minimum

required four independent covariant vertex functions. Explicit Lorentz-invariant relations for the
multipole form factors are derived in terms of the previously defined covariant vertex function
coefficients. The derivation does not involve any nonrelativistic approximations. Finally, the mul-

tipole form factors are isolated and expressed in terms of the electromagnetic current matrix ele-

ments. These results are particularly useful in lattice QCD calculations.

I. INTRODUCTION

The electromagnetic form factors of hadrons are an in-
dispensable tool for exploring the underlying structure of
hadrons. Both model-dependent and model-independent
nonperturbative approaches to quantum chromodynam-
ics such as lattice gauge theory or the QCD sum-rule ap-
proach have exploited the well-known electromagnetic
current matrix elements' to calculate quantities such as
magnetic moments, electric and magnetic charge radii,
and magnetic transition moments of low-lying hadronic
states.

The study of the electromagnetic form factors of spin- —,
'

systems is a well-explored field. Aspects such as the mul-
tipole decomposition of current matrix elements and the
general covariant vertex functions have received a great
deal of attention. The purpose of this paper is to provide
relationships among the current matrix elements, covari-
ant vertex functions, and multipole form-factor decompo-
sitions for the case of electromagnetic interactions of
spin- —,

' systems. In this paper we define the electromag-
netic current matrix element for spin- —,

' baryons in terms
of the minimum required four independent covariant ver-
tex functions. The main focus of this paper is to derive
explicit Lorentz-invariant relations for the multipole
form factors in terms of the previously defined covariant
vertex function coefficients. A previous attempt to do
this using a nonrelativistic approximation contains some
errors, and the results are incomplete. Our derivation
does not involve any nonrelativistic approximations. The
results are presented in a general framework such that
they may be immediately and easily applied to a wide
range of analytical calculations such as the QCD sum-
rule approach, electroproduction of mesons off spin- —,'
baryons, pion-nucleon bremsstrahlung processes involv-
ing intermediate spin- —, baryons, etc. Finally, we invert
the multipole decomposition of the current matrix ele-
ment to isolate and express the multipole form factors in
terms of the electromagnetic current matrix elements.
These results are particularly useful in lattice gauge cal-
culations, and therefore we present these results with

In defining the electromagnetic form factors of spin- —,
'

baryons, we consider the following electromagnetic
current matrix element:

(p', s'~ j"(0)~p, s ) =u (p', s')8 "~u&(p, s ) .

Here p, p' denote momenta, s, s' spins, and u (p, s) is a
spinvector in the Rarita-Schwinger formalism. We have
obtained the following Lorentz-covariant form for the
tensor:

Q2
OaPP g

aP a ~P+ PP
2M~

a P C2+ ~~, c,y~+ p~
(2M' )

' 2M'
(2)

where P =p'+p, q =p' —p, and Mz is the mass of the
baryon considered. Here and in the following we follow
the Dirac representation for the y matrices illustrated in
Ref. l. In (2) the parameters a„a2, c„and c2 are in-

dependent covariant vertex function coefficients which
will be related to the multipole form factors.

Equation (2) satisfies the standard requirements of in-
variance under time reversal (T), parity (P), 6 parity,
and gauge invariance. In deriving (2) we have also used
the following subsidiary conditions for the on-shell spin- —,

baryons:

specific reference to lattice QCD.
With recent attempts to measure the Q magnetic mo-

ment, theoretical investigations of the electromagnetic
properties of the low-lying spin- —', baryons are rather
timely and appropriate. Furthermore, nonperturbative
approaches such as lattice QCD or QCD sum rules are at
present generally limited to the investigations of the
lowest-lying baryon state for a given total angular
momentum. Hence, in the investigation of the excited-
state spectrum of baryons, this work is only one step in a
trend toward the analysis of higher angular momentum
systems.

II. MULTIPOLE FORM FACTORS
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y"u„(p, s) =0, p "u„(p,s ) =0,
u„(p', s')y"=0, u„(p', s')p'"=0 .

(3a)

(3b)

Note that in Ref. 2 the expression analogous to (2) con-
tains two additional terms proportional to (q g "~
—q~g" ) and ie "~'q, y5 .However, it is known that
the number of independent amplitudes should be four in
the vertex of (1). Indeed, the following nontrivial identity
relations show that the additional two terms in Ref. 2 are
not linearly independent of the other terms in (2). One
can show

u„(p,s)= g (lm —,'sI1 —,
' —3s)e„(p,m)u(p, s),

m, s

(5)

where the coeScient in (5) is a Clebsch-Gordan
coefficient in Condon-Shortley phase convention. The
polarization vector e„(p,m ) is given by

where a„and b„are arbitrary four-vectors. Note that
(4a) is valid only for on-shell baryons.

In our calculations we use a well-known explicit form
of the Rarita-Schwinger spinor u„(p, s ) in terms of the
spin-1 vector e„(p,m ) and the Dirac spinor u(p, s ); i.e.,

and

2

(q g"~ q~g"—)=2M+ 1 — g ~y"
4M~

—g ~P"+ q q~y"1

M~
(4a}

—~(y b' —y'b )

+(a b~ a~b )—, (4b}

ie ~&"—a„b„ys=(iliiIi ab)i—o ~+g(y a~ y~a —)

0 &mP
e (p, m)=

B

&m 'P
e(p, m ) =e + (m =+1,0),

where E = (
I p I

+Ms )
' and e is a spherical unit vec-

tor which satisfies e ' e =5 . Note that the spin- —,
'

spinor u„(p, s) defined by (5) satisfies (3) as well as the
Dirac equation.

The multipole expansion of the electromagnetic
current matrix element is well known. ' ' In the labora-
tory or Breit frame, the current matrix element is

(p', s'Ijo(0)Ip, s }= —A (-'s'IG~O(q')+2&5rGs, (q')[&"'X(qXq)"']' 'I-,'s }

(p', s'Ij(0)Ip, s) = v'r( —', s'IIG—zo(q )+2&5rGzz(q )[X' 'X(qXq)' ]' 'IP

(7a)

+i I —,'GMi(q )X"I+3rGxr3(q )[2' 'X(qXq)'2']I") XqI —3s ), (7b)

where r= —
q /(2M&) ( 0), and P and q are unit vectors. In (7), A is a factor dependent on the kinematics; i.e.,

A =&I+r for a laboratory frame (p=O) and A = 1 for a baryon Breit frame (P=p +p=O). Note that the term pro-
portional to P vanishes in the baryon Breit frame. The spin matrix elements in (7) are defined by Clebsch-Gordan
coefficients:

( —,'s'I-,'s ) =5... ,

(-', s'IX'"I-', s) =&15(-',s'lm
I
—', 1-,'s),

&-,
' 'I&"'I-,' &= —Q-,'(-', '2

(ga)

(&b)

(&c)

(gd)

Iil (7) Gso Gsp Gli and GM3 are called charge (EO), electroquadrupole (E2), magnetic-dipole (M 1 ) and magnetic-
octupole (M3) multipole form factors, respectively.

By inserting (2) and (5) into (1), and working out a lengthy but straightforward calculation, we obtain the following
expressions for the multipole form factors in terms of the covariant vertex function coefficients a „a2, c „and c2:

GEp(q )=(1+—',r)[ai +( I+r)a2] —
—,'r( I+r)[ci +( I+a)c2]

Gz2(q )=[a,+(1+r)a2]—
—,'(1+r)[c,+(1+r)c2],

G~i(q ) =(1+—4r )a, ——2r(1+ r)c, ,

G~,(q')=a, —
—,'(1+r)c, .

(9a)

(9c)

(9d)

Note that (9) is a Lorentz-invariant expression in which all orders of r have been kept. It should also be noted that the
E2 and M3 form factors are nonzero even in the case where only the a

&
and a2 terms are kept, although they are linear-

ly dependent to the EO and M1 form factors, respectively. The nonrelativistic forms may be easily extracted in the
Breit frame by keeping terms to first order in ~.
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We define the spin-independent hadron tensor as

W""=—,
' y (p', s'j~"(0)~p, s ) (p', s'~j (0)~p, s )*

$$

p v
pV+ q q

1

q

P Pq P V Pqqv
M q q

(10)

W, and W2 are related to the experimental cross section for the elastic scattering of an electron in a one-photon-
exchange approximation through the well-known formula

Zsa cos (e, /2) L9,

4 &
W&+2W&tan

4E, sin (8, /2)[1+(2E, /m, )sin (8, /2)] 2

where Ze =2 for doubly charged baryons, and otherwise Zs =1. Using (1), (2), and (9), we obtain W, and W2 in terms
of the multipole form factors as follows:

W, =9rGM, (q )+ ,', r Gs—t3(q ), (12a)

1
2

1 + Gso(q )+ 1 Gati (q )+ r Gs2 (q )+ r Gst3 (q )
9

(12b)

By (7},(9), and (12), the electromagnetic form factors of spin- —,
' baryons are well defined at the hadronic level.

The final part of this paper is devoted to extracting the electromagnetic multipole form factors in full relativistic form
from the current matrix elements. These results are particularly useful in lattice gauge calculations, and therefore we

present these results with specific reference to lattice QCD. The study of electromagnetic form factors in lattice QCD
centers around the three-point function'

(G .„(t2,t, ;p', p;I )) &= g e 'e 'Tr[I (Q~T[y (xzj)"(x&)hatt(0)]~Q) j .
X2, xi

(13)

y (x) is an interpolating field coupling to spin- —, baryons, Q represents the QCD vacuum, and I is a 4X4 matrix in

Dirac space, which will be discussed in detail. For large Euclidean time separations t2 —t, &&1 and t, &) 1, the three-
point function at the hadronic level takes the limit

(G .„(tz,t„p', p;I )) &= ge ' ' ' e ' 'Tr[l (Q~y (0)~p', s') (p', s'~j "(0)~p,s) (p, s~g&(0)~Q)] .
$, $

At the hadronic level one defines

(Q~q (0)~p,s) =su, (p,s),

(14)

(15)

where A, represents the coupling strength of g (0) to baryon state ~p, s ). Hence the electromagnetic form factors are to
be extracted from the tensor Mt'& (which is also a 4 X4 matrix in Dirac space) defined as

def
Mi'tt= g u (p', s')(p', s'~j "(0)~p,s)u&(p, s) .

$9$

The exponential energy dependence in (14) and the coupling dependence (A, ) in (15) of the three-point function may be
eliminated with the use of the two-point function. ' Hence we are left with the evaluation of

Tr(I M"&)= g [I ]~b[u (p', s')]b(p', s'j~"(0)~p,s)[u&(p, s)]
$,$', ab

= g u&(p, s)t u (p', s')(p', s'~j (0)~p,s)
$, $

= Q I tt (s,s') (p', s'j~"(0)~p, s ),
$,$

where we have defined (a c number)

def

I & (s,s')= u&(p, s)t u (p', s') . (18)

Equation (17) is determined by the hadron matrix ele-
ment multipole decomposition of (7). On the other hand,
the three-point function of (13}may be calculated at the

(17)

l

quark level. The task is to define the correct choice of
the matrix I and combinations of the Lorentz indices a
and P which make it possible to isolate and extract the
electromagnetic multipole form factors Gzo, GM&, Gz2,
and 6~3 from the quark-level calculations of the three-
point function. The most general form of the matrix I
may be written
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a pI +a-cr b pI +b'0'

cpI +c cT dpI +d'0' (19)

now have

I Ii (s,s') = g ( lm —,'s
~

1 —,
' —', s )( lm' —,'s '~1 —,

'
—,'s')

m, m', X,l'
where a„, b„, c„,and d„are 16 independent coeScients,
and I(a ) is a unit (Pauli) matrix.

We present our results in two frames of reference. We
select the Breit frame (BF) in which the extraction of the
multipole form factors is simple and elegant, and the lab-
oratory frame (LF) where additional kinematical factors
are required. The LF is particularly interesting in lattice
calculations where the rninirnum momentum transfer is
limited by the largest spatial dimension of the lattice.
Charge radii and magnetic moments are determined by
the properties of the form factors at q =O. In the BF the
minimum q available is 4 times that of the LF.

Let us first start in the BF. We specify, for simplicity,
the direction of the initial baryon momentum as the x
axis; i.e., p=( ~p~, 0,0}. By choosing ao =1, do = —1, and
all other coefFicients to be zeros, i.e.,

I 0

Xe&(p, m)e ( p—, m')

X(-,'sin e'i-,'s') . (26)

Using (26), we find the following combinations. For M I,
defr, (s,s')= r (s,s )+r„(s,s')

+ I 22(s, s')+ I 22(s, s') (27a)

(27b)

and, for M3,
defr, (s, s') =r (s,s )+r„(s,s')

+r„(s,s ) ——',r„(s,s ) . (28)

Applying these operators to the z component of the
quark matrix elements, we have

we then obtain, for (18),

r& (s,s') = g ( lm —,'s
~

1 —,
' —', s )( lm' —,'s ~1 —,

'
—',s')

m, m', f

Tr[I (Moo+M;) +M;, +M33 }]
", v'riG—M)(q ) (29a)

Xe&(p, m)e, (
—p, m') . (21)

We find that the EO and E2 form factors can be projected
out by the following combination of (21). Namely, for
EO,

and

Tr[I y(Moo+M;, +M22 —
—,'M33 )]

= —
l &v'«GM2(q') . (29b}

def

r„(s,s')=r (s,s')+r„(s,s')

+r„(s,s')+r„(s,s')

=( —,'s gs'&,

and, for E2,
def

I s2(s, s') = I oo(s, s')+ r i i(s, s')

+r„(s,s ) —2r„(s,s')

/6( 3s /y(2)/ 3s~ )z o z

(22a)

(22b)

(23a}

(23b)

Applying these operators to the time component of the
quark current matrix elements, we have, for (17),

Equations (24) and (29) summarize the correct combina-
tion of Dirac and Lorentz indices for extracting the elec-
tromagnetic multipole moments of spin- —,

' baryons in the
BF.

The combinations of Lorentz indices in (24) and (29)
are not in a Lorentz-invariant form such as g ~M"&.

Therefore, the expressions for extracting the form factors
are frame dependent. In the LF we specify the direction
of the final baryon momentum in the x direction; i.e.,
p'=( ~p'~, 0,0). We choose the same forms for I as in the
BF case, i.e., I p for EO and E2, and I „ for M1 and M3.
Note that contributions from the coeScients dp and d
vanish in this frame. Using I p, we now obtain

r& (s,s')=&1+r g (lm ,'s~ 1 —,
' —', s)—

Tr[I o(Moo+Mi i +M22+M33 ))= —4GEo(q )

and

(24a)
m, m', f

X ( lm '
—,'s

~

1 —,
' —', s')

Tr[I o(Moo +M i i +M22 2M33 )]= —
—,'~GE2(q') .

(24b) For EO, we define

Xe&(0,m }e (p', m'} . (30)

Similarly, by choosing a =d =a =(0, 1,0) and all other
coefficients to be zeros in (19), i.e.,

ey Cr

def

I (s,s'}= I „(s,s')+I (s,s')+I (s,s')
1+2m

(31a)

My F775~ (25) =&1+r(-,'s Ps') (31b)

one can project out the M1 and M3 form factors. We and, for E2,
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def

I zz(s, s')= I »(s,s')+I z2(s, s') —21 i3(s, s')

= —&6&1+r&-,'s~a,"'( 3s ) .

(32a)

(32b)

and

, +2
Z + Z 3 Z

1+2'

M +Mp p p

and

4(1+r )GEc(q ) (33a}

Applying these operators to the time component of the
quark matrix elements, we have

=—2~&v(1+v)iG~i(q ) . (37b)

Equations (33} and (37) summarize the correct combina-
tion of Dirac and Lorentz indices for extracting the elec-
tromagnetic multipole moments of spin- —,

' baryons in the

LF. A calculation of these equations at the quark level in
lattice QCD is currently in progress.

Tr I p M)(+M22 —2M33
1 p p p

We define, for M1,

Xe&(O, m)e (p', m')

X &-,'rltr ~'I-,'s') . (34)

defr, (s,s )=, r„(s,s')+r„(s,s )+r„(s,s')
1+2m

(35a)

and, for M3,

—1
&

3s~g(l). ~y~ 3s )3 2 2
(35b)

def
I (s,s'}= I „{s,s'}+I {s,s'}—

—,'I {1+2~

(36)

By applying these operators to the z component of the
quark matrix elements, we have

T I M'„+M' +M'
1+2~

',~v'r(1+r)iGsti(q ) (37a)

= ——",r(1+v)Gg2(q ) . (33b)

Similarly, for the M 1 and M3 form factors, we now have

I &,(s,s') = g ( lm —,'7~ 1 —,
'

—,'s )( 1m' —,
'X''~ 1 —,

'
—,'s')

m, m', f, 3' '

III. SUMMARY

This completes our analysis of spin- —,
' electromagnetic

multipole form factors. Equations (1) and (2) define the
electromagnetic current matrix element for spin- —,

'
baryons in terms of the minimum required four indepen-
dent covariant vertex functions. In (7) the current matrix
elements are expressed in terms of the multipole form
factors GEp, GE2, G~&, and G~3. The explicit Lorentz-
invariant structures of these form factors are illustrated
in (9) in terms of the covariant vertex function coefficients
a, , a2, c&, and c2. Finally, a formalism to invert the re-
lationship of (7) and express the multipole form factors in
terms of the current matrix elements was presented with
reference to lattice QCD. The results in the laboratory
frame are summarized in (33) and (37). We have estab-
lished relationships among current matrix elements, co-
variant vertex functions, and multipole form-factor
decompositions for the case of electromagnetic interac-
tions of spin- —, systems. It is hoped that this work will as-

sist in future investigations of the electromagnetic prop-
erties of spin- —,

' baryons.
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