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Gravitational waves emitted from infinite strings
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Gravitational radiation from an infinite string with a helicoidal standing wave is studied in the
weak-field approximation. The radiation power and the spectrum are calculated. The implications
of the results for gravitational damping of small-scale structure on the long strings are briefly dis-

cussed.

I. INTRODUCTION

A large number of current particle-physics models pre-
dict spontaneous symmetry-breaking processes as the ear-
ly Universe expanded and cooled. Such processes can
leave behind topological defects, as relics of the old sym-
metric phase.! The case of remnants in the form of one-
dimensional strings or vortex lines® presents a particular
interest, providing the necessary density fluctuations for
galaxy and large-scale structure formation®* and leading
to presently observable effects.’

According to the standard picture, 80% of the energy
in a cosmic-string network is initially in very long (longer
than the horizon) Brownian strings and only 20% in a
distribution of closed loops. During the expansion of the
Universe, long strings chop off loops, which self-intersect
until a class of non-self-intersecting loop trajectories is
reached.

The energy-loss mechanism for oscillating loops is
mainly the emission of gravitational waves.>” However,
a straight infinite string does not radiate, even when
modulated by traveling waves.! Thus, the expansion of
the Universe straightened out the long strings, which be-
ing unable to decay by gravitational radiation, could sur-
vive indefinitely.

Recent numerical simulation results question the
so-far accepted one-scale hypothesis, yielding an evolu-
tion of the string network, which deviates from the
standard-model picture.*”!! As string segments inter-
commute, discontinuities in their velocity and direction
(kinks) are developed, which result in the presence of
significant substructures on the long strings. Such small-
scale wiggles are likely to play an important role in the
energy distribution of the produced loops. It has been
suggested'® that the characteristic scale of the wiggles
may be determined by gravitational radiation from long
strings. In order to assess this possibility, we shall study
the spectrum of gravitational waves emitted by a particu-
lar class of modulated long strings. We analytically cal-
culate, in the weak-field approximation, the power radiat-
ed by an infinite string with a helicoidal standing wave.

It would be fair to mention that the numerical results
of Refs. 9 and 10 are still under debate. The small-scale
structure they yield is not generally accepted and contra-
dicts other recent numerical simulations.

9,10

Throughout the paper we use the system of units in
which #i=c =1; we choose (—, +, +, +) to be the signa-
ture for the metric and we denote by u the mass per unit
length of a string.

II. PRELIMINARIES

The space-time trajectory of a macroscopic string, with
dimension much greater than its thickness, is described
by a vector function f(o,?), where o can be thought of as
a parameter along the string trajectory. Here we consid-
er an infinite string having the form of a helix along the z
axis. We write f as

f(o,t)=E&(0,t)+V1—€0Z, (1

where & is a modulation orthogonal to the z axis. The ac-
tual form of £ can then be obtained as follows.

The action for a macroscopic string is the Nambu ac-
tion.2” ! Thus, the equation of motion in a flat nonex-
panding background is'*

.

f—f"=0, (2)
with the constraints'*

f-f'=0,

f2+f£2=1, ¥

where dots and primes stand for derivatives with respect
to t and o, respectively. The general solution to Eq. (2)
reads

f(o,t)=1{a(c—1)+blo+1)], 4)

where the otherwise arbitrary functions a and b must
satisfy

a?=b?=1, (5)

due to the constraints of Eq. (3).
Taking into account the definition of & [see Eq. (1)], we
are led to

Elo,t)=1[alo—t)+Bloc+1)], (6)

with a?=8"7=¢€
form

We shall consider a solution of the
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€ Clearly, € is the breathing frequency of the helix and the
alc—t)= —e—cos[Q(a—t)],——sin[Q(o—t)],0 , (7 parameter € (0 <€ < 1) determines its winding number per
Q@ Q unit length.
The energy-momentum tensor is obtained by varying
6 ¢ the string action with respect to the metric and the result
Blo+t)= —Q—cos[Q(a+t)],Esin[Q(U—H)],O ) is’
(8) - Pog PYRYNG))
T, (x,t)=p|do(f,f,—f.f. )8 (x—f(ag,t)), (10)
Then, the full string trajectory is # f g W
€ € .
f(o,t)= HCOS( Q0 )cos(Q21), ES"‘(QU) where x is the field point and we take f,=t.
Because of the symmetry of the problem, we find it
X cos(Qt) Vi—éo 9) convenient to work in cylindrical coordinates. Thus,
’ x=(p cosb,psinh,{) and
J
8(3)(x—f(0,t))=l8 p— é—|cos(ﬂt)| ) [9—00—127-—[ 1—sgn[cos(Q2)]} |8(6—V1—€0) . (11)
p

We notice that for our particular string trajectory, the
energy-momentum tensor T,,(x,7) turns out to be
periodic along the z axis, with period 27V 1 —¢€?/Q, and
periodic in time, with period 27 /).

III. GRAVITATIONAL RADIATION FROM AN
INFINITELY LONG SOURCE

In the weak-field approximation, the gravitational field

h ., (x,t) is given by the well-known retarded potential for-

mula'?
S, (x',t—|x—x'])
— il

b (x,0=4G [ dx

- , (12)
Ix—x'|
where the source density S, (x,t) is simply related to the
energy-momentum tensor T,,(x,?) by

suV=Tﬂv—gnuvT§ ) (13)

If one is interested in the energy transmitted through a
surface at large distance from the source, the formula re-
lating h,,, to S,,, can be considerably simplified, when the
symmetry of the source is explicitly taken into account.
The standard case discussed in textbooks'® is that of a lo-
calized source. Here, we analyze the case of an infinitely
long source in some detail. We stress that by infinitely
long we mean a source which is infinite in one direction,

J

[
say the z direction, and has a finite size in the orthogonal
plane.

Quite generally the source density will be given by a
sum of Fourier components:

S,(x,0)=3 e S, (x,0)+c.c. (14)

In addition, to fully take advantage of the present sym-
metry, it is convenient to Fourier analyze S,,(x,®) with
respect to z. Thus,

Suv(x,a))=25#v(r,x,w)e“‘z , (15)

where r is the component of x orthogonal to the z axis,
i.e., Xx=(r,z). We shall first calculate the field which
originates from a single-frequency source. Such a field is
given by

dz'dr’

Ru(r,2,1)=4Ge 3 [

S ('K, 0)

Xell@Pte)p o e (16)

where D=V (z—z')*+(r—r')>. One can easily show
that only Fourier components of S,,, with x < will con-
tribute to the radiation of energy, since otherwise the
field decays exponentially as one moves away from the
source. Thus, for k < w,

ho(1,2,0)=4Gime "' 3 o™ [drS, (r',k,0) HY (Vo —kr—r|) +c.c. (17)

K<w

and, for r much bigger than the orthogonal size of the source, this simplifies to

172 —
C et ] 2 —; ; explilr—r'|V o’ —«?)
h Z,t) = iot | £ iT/4 iKkz ’ ’ .
ul1,2,1)=4Gime \17- e Kgme fdrS#v(r,K,w) (0 — ) T =r] c.c
- = in/4 expli(—wt +kz'+q-r)] , , it
=4GVame! T 3 S e A Jdrs, vk oe 9T +ec. (18)

Kk<w
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where, to obtain the last equation, we have replaced
|[r—r’'| by 7 in the denominator and by » —(r/r)-r’ in the
exponential, on account of the finite extent of the source.
Also,

qz\/mz—;cz»} . (19)

From Eq. (18) it is apparent that, for large r, the field is
a superposition of plane waves of the form

expli(Q-x—wt)]e,,(r,Q ), (20)

where the “wave vector” Q and the “polarization tensor”
e, are explicitly given by

Q=(q,x), (21)

— eim4 S (Q,0)
v =4GV2r e )
Vi (0?—k?)1/4

(22)

The total gravitational field corresponding to the
source of Eq. (14) is obtained by summing over the fre-
quency components:

=Y 3 expli(Qx—wt)]e,, (r,Quw)+c.c. (23)

We notice that when the source has periodicity in z, as is
in the case examined here, the Fourier component of S,
appearing in Eqgs. (18) and (22) is

_ 1
)= A f0<zsAdXS“"(x’w

where A is the period along z. The present symmetry
suggests to consider the power radiated through a cylin-
drical surface centered on the source and having a radius
much larger than the source’s orthogonal size. The
power radiated through such a surface in the angle be-
tween ¢ and ¢ +d@;zand z +dz is

dP=derdzt(t°), (25)

S, Qe Je i (24)

where T is the vector orthogonal to the surface and (¢/°)
is the average of the energy flux vector of the plane wave,
with the average being taken over space-time dimensions
large compared to (1/w).!” Since the average energy-
momentum tensor of a plane wave is'>

k,k ,
(1) =T (e ey, —5led |, (26)

PP with k =(w,Q), Eq. (25) becomes
|
dP=d@dz2G 3 3 o[$**(Q,0)S,,(Q0,)— 1S} (Q0,)|*] 27
0w kK<w
=d@dz2G 3 3 o[T"*(Q,0)T;,(Qu,) —1T}Quw,)*], (28)
o K<w
r
where the last equation has been obtained using the rela- €
tion between the source S, and the energy-momentum A=8 p~—6icos(0t )|
tensor T, given in Eq. (13). Thus, the gravitational en-
ergy radiated, in the weak-field approximation, through a m{1—sgn[cos(Q1)]}
cylinder of unit length per unit time, reads X8 [0—z— g 5 3D

P=263 3 o[ de[T""*(q,x0)T;,(qK0)

o K<

—1THq,x,0)%] . (29)

IV. GRAVITATIONAL RADIATION FROM AN
INFINITE STRING WITH A HELICOIDAL
STANDING WAVE

In this section we will calculate the gravitational radia-
tion for the string trajectory specified by Eq. (9) in the
weak-field approximation. In the present case, the com-
bination of components of T, appearing in Eqs. (28) and
(29) has no dependence on ¢ (see below). Therefore, us-
ing Eq. (28) or (29) is completely equivalent. We will first
calculate the components of the energy-momentum ten-
sor from Egs. (9) and (10). We define some new parame-
ters which will enable us to write the final formulas for
the energy-momentum components in concise form:

After some algebra, we obtain, for the components of the
energy-momentum tensor, Tuv(x,t ):

Too=—=L—A,, (32)
00 p\/l—fz 1
To) =T 0= — —A—-esin(Qt JcosZA, (33)
p\/1—€2
Toy=Tp=— —A—esin(Qt)sinz4, , 34)
p\/l--e2
Ty;=T3=0, (35)
T, =—A— €e[cos’z sin 2(Qt)—sin*z cos(Q1)]A, ,
p\/l-—e
(36)
T, = —A——&[sin’z sin( Q1) — cosz cos?( Q1) 1A,
p\/l—éz
(37
— V1 — 2
7*33=__1:§__l_€_A1 , (38)

P



T,=Ty =—“/‘H‘—;GZCOSZ sinZA , (39)
pVi1l—e
Ty =Ts, =Esinz cos(Q1)A, , (40)
p
T23=T32=—:‘L£cos2' cos(Q1)A, . (41)
p

We next calculate the Fourier transform of the energy-
momentum tensor 7,,(x,?) in two steps. We first com-
pute T, (x,0) and then T, (q,k,®). Because of the
periodicity of the energy-momentum tensor, in both time
and z variables, we denote the discrete values of w _and «

by , and k,,, with w,=nQ and k,=mQ/V1—¢.
Clearly,
T, (x,1)= 20 T, (x,0,)e" ¥ +c.c. , 42)
n=

with

- -1 e —inQ
T, (x,0,)=(1+8,,) Zf_”mTw(x,t)e ‘dr .
43)

Again, it is convenient to define a couple of intermediate
parameters to present the result of the integral of Eq.
(43):

t,=arccos({p/€) , (44)

Ay =(1+8,0)[8(6—2)£(—1)"8(6—2—m)] .  (45)
J
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Thus, the components T ,,(x,w, ) are given by

Qu cos(nt,)
To= Ay, (46)
® mpV 1—é€ \/62—02p2 ?
To =Tio=— 2 coszsin(nt,)A; , 47)
ﬂp\/l-e
Tor=To=— Rt sinz sin(nt,)A; , (48)
wp\/l—e
To3=T3=0, (49)
Qelu cos(nt,) . Q% |
T,= cosZ — Ay, (50)
! mpV'1—€e* V€€ —Q%p? € :
Qeu cos(nt,) . ap? | .
Ty,= sinz— =L (A}, (51)
2 mpV1—€ \/62—-sz2 € :
—Quv'i—e coslnt)) |
Ty3= ———A], (52)
33 p ‘/Gz—ﬂzpz 2
T,=T =——Q/Lcosfsin‘z'cos(nt )AS (53)
27 I oV E— 0%y plB2
0’ . -
T,=Ty;= o sinZ cos(nt,)A; (54)
-2 -
Ty3,=Ts= o cosz cos(nt,)A; . (55)

The spatial Fourier transform T,(q,k,,®,) of the
energy-momentum tensor are calculated from

_ Q €/Q 2T —igr cos(6—o) ZW\/—I—_GZ/Q —iK,z
T (QyK @, )—mfo rdr [ Tdgeireosoe fo dze T,.(x,0,), (56)
1
using Egs. (46)—(55), with 0 and ¢ being the polar angles  To3=T3=0, (66)
of the vectors r and q. After some lengthy manipula- E& . _
tions, relatively simple expressions are obtained in terms T}, = — —4—(e2"PI I—to—1TeXTpy
of Bessel functions. These are best presented introducing
a few definitions: oy, 4), (67)
I—(m+n)/2 N (57) TZZZ_EE (—‘62'¢II*1YU_1—92'¢11+1,v+1
v=(m—n)/2, (58)
=3 (FRRERES SN I (68
g=eq/(2Q), (59) I+1o=17d—1,0+1 )
T,;=—(1—€)EI,, , 69
E=0 if m+n=odd , 3 €)EL, (69)
(60) iE€* 5 iy
T,=T,; = (e¥L,_ ,_y—e ¥, i) s (70)
E=71‘u—2—exp[——im(<p+1r/2)], if m+n=even, ] : et Tl
—€
V1—é? ‘ .
L,=1@J,@) , 61)  T,,=Ts =§—‘:—E<e—'w1vf,+e'¢1,;) : (71)
IZ=TJ(g)J(q)+T, . (g, _ () . (62)
iy - T T..=T =_L.§_E‘/_1__£i(_e—i¢>]++ei¢1+) (72)
Hence the Fourier components of T,,(q,«,,,®, ) read 23 "2 4 vl Lo’ -
Tw=EI,, , (63) Using the Fourier components of the energy-momentum
E tensor given in the above equations and the relation
To,=Tp= ——e—(e"“’l,“u +e I, 64) J_,(z)=(—1)"J,(2), we easily get the emitted gravita-
4 tional radiation from Eq. (29). The power emitted within
Top =Ty = iEe (eI, —e =9I ) 65 @ cylinder of unit length, whose axis coincides with the
4 g ntt? string axis, is
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62

P=47GQu? >n 3

2  __
1—€" 7 m<nV1—e

[(1'—62/2)JUJ1(J1+]“J/_l)(Jv+1—Jv_l)

€U IO I+ (€U IR =TT, (73)

where the prime in the sum over m further restricts m to
those values for which m +n is even, and the argument
of Bessel functions is

g=(e/2Vn*—m?/(1—¢€?) .

V. RESULTS AND DISCUSSION

A careful inspection of Eq. (73) reveals that the power
radiated by the infinite string with a helicoidal standing
wave we have considered here diverges as e— 1. The fac-
tor €2/(1—¢€?), which appears in the total power is clearly
diverging in this limit, whereas the frequency sum, which
it multiplies, saturates to a finite value. The reason for
this is simply understood by realizing that in such a limit
the amount (length) of string per unit distance along z
goes also to infinity. This can be immediately seen by
writing the energy per unit length (E) along the z axis.
From Eq. (9), we get Az=V'1—€’AE /U, where
AE=uAo. Hence,

E= . 74
;#%; (74)

Clearly, the winding number of the helix Q/Q27V'1 —é€?),
defined as the number of revolutions per unit length

TT Y—r T T T T T 11T T T T T T 11T
P L |
o
L < B
o
<
o
100 — o ]
o
|- O -
o
L o ]
_3 [ —_
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1076 — ]
SR 4
= | 1 1 1 1 1t 11 1 1 1 1 111 =
001 0.05 0.1 0.5 1

FIG. 1. Power P radiated by an infinite string with a hel-
icoidal standing wave, in the weak-field approximaition, vs €. €
is the parameter determining the wirnding number of the helix
and P is in units of Gu?Q.

f

along its axis, is also diverging in the limit of e—~1. On
the other hand, for e=0 the emitted radiation vanishes,
since in such a case the trajectory reduces to that of a
static infinite straight string.

We have numerically evaluated the radiated power as a
function of €. The results are given in Fig. 1. One clearly
sees the increase of the emitted power with €. From Eq.
(73) it is clear that the emitted power has a strong depen-
dence upon ¢, through the factor €2/(1—¢€?). Therefore,
it may be useful to rewrite

e’
2

Pe), (75)
1—e€

P=Gau?

where the residual dependence on € is contained in the re-
duced power P and its explicit expression is obtained by
comparing Eq. (76) with Eq. (73). In fact, from Fig. 2, it
is clear that P is a smooth function of €, which vanishes
at €e=0 and remains otherwise of order 1.

We have also analyzed for given € the frequency spec-
trum of the gravitational radiation. In Figs. 3(a)-3(c) we
report such a spectrum for few values of the parameter €.
Of course, the radiated power decreases with increasing
frequency. It is also apparent that the contribution from
odd frequencies becomes less and less important as € ap-

proaches 1. In fact, for our string with a helicoidal
~N TTT T T T T rrrr T T T T 17 11T
P (o2
R 0°%%

o —

10 F o> o 3

C o 3

I o ]

07! = —

E o 3

1072 = E

- —

1073 |~ —

E o 3

: lli 1 B N T 1 1 1 1 111 I| :

0.01 0.05 0.1 0.5 1 €

FIG. 2. € dependence of the reduced power P [see text and
Egs. (73) and (75)].



standing wave, the lowest radiating odd frequency is
bigger than Q/V'(1—¢?), which diverges in the limit
€—1. On the other hand, the lowest even frequency
which appears in the spectrum of the emitted power is
2Q. Figure 4 shows the ratio between the power emitted
at 2Q and the total power, as a function of e. We find
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lowest allowed frequency. In such a case (e<<1), g=e€
and expanding the Bessel functions in Eq. (73) we get
P =~2we*. This can also be seen in Fig. 2; for small €, the
graph represents a straight line with slope 2. The radia-
tion power in this limit can be written as

that for small € essentially all the power is emitted at the

P=47'Gu*e*r !,

(76)

P = T T 17T T T T T T:
2+ i
101 — —
E © E
F o ]
r o ]
2t ° J
o | —
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= o 3
E ° 3
- 0 |
L 0000 _
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I XIO00X0ssec |
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2t y i
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FIG. 3. Frequency dependence of the power radiated by an infinite string with a helicoidal standing wave, in the weak-field ap-
proximation.  is in units of the natural frequency Q. The cases €=0.99, €=0.9, €=0.5 are shown in (a)-(c), respectively. The dia-
monds give the power radiated at even frequencies and the crosses that at odd frequencies.
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FIG. 4. Ratio of the power radiated at frequency 2}(P,) to
the total radiated power (P) vs €.

where A=2m/Q is the wavelength.

To assess the effect of the gravitational back reaction
on the oscillating string, we compare the radiation power
[Egs. (75) and (76)] with the oscillation energy

1

e -]

V1—¢?

Eoe=n (77

The characteristic damping time of the oscillations can
be estimated from

EOSC

T~T . (78)

In the small-€ limit this gives

~—_—

4rGuer

For e=1 this equation should also give the right order of
magnitude.

We see from Eq. (79) that gravitational damping is
rather efficient for large-amplitude waves (e~ 1), but be-
comes less and less efficient as € decreases. In the simula-
tions of Ref. 9 the small-scale structure is spread over
many different scales, and the amplitude of each logarith-
mic range of wavelengths may in fact be small. This indi-
cates that gravitational radiation may be less effective in
damping the small-scale structure as it was assumed in
Ref. 10. Another suggestion to resolve the discrepancy of
the numerical simulations has been recently introduced.'®
The radiation from a string with a wide spectrum of
waves is now being investigated.

(79)
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