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Scaling properties of quenched QED
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Critical scaling laws are studied in quenched quantum electrodynamics with induced four-
fermion interactions that drive the theory to criticality. The critical exponents are calculated in the
quenched, planar model and the physical picture extracted is consistent with recent results from lat-

tice simulations. Year criticality, a composite scalar state plays an essential role in the effective dy-

namics.

Quantum electrodynamics has often been used as a
convenient laboratory for the study of various properties
of quantum field theory. It serves as a model for more
complex gauge theories with slowly running coupling
constants. Recently there has been considerable interest
in the nonperturbative phase structure of gauge theories
and the dynamical nature of spontaneous symmetry
breaking which may have implications from models of
electroweak symmetry breaking to new states of matter
in quantum electrodynamics. Anomalous scaling behav-
ior provides a direct indication of the nontrivial nature of
the continuum quantum field theory.

In describing the critical behavior associated with a
spontaneous symmetry breaking, it is useful and conven-
tional to introduce various critical exponents' which
characterize the transition between different phases pos-
sessing distinct symmetry properties. One such exponent
relates the symmetry-breaking order parameter to an
externally controlled explicit symmetry-breaking variable
which can be coupled to it in the underlying theory. For
example, in the case of dynamical chiral-symmetry break-
ing, a useful order parameter is the vacuum condensate,
(lbt)'t), while a soft explicit chiral-symmetry breaking is
provided by the fermion mass term ljgkf. The critical
exponent 5,„ is then introduced via the critical scaling
law

When p„ is turned on, ( ttttit) will be nontrivial at the crit-
ical coupling and its value there allows for the extraction
of the critical exponent 6,„.

This critical exponent can be analytically calculated in
various field-theoretic models. In the case of QCD, the
critical coupling vanishes so that the critical theory is a
free field theory for which 6„=1.On the other hand, for
the case of the mean-field theory, the critical exponent is

given by 5,.„=3. Another model which exhibits dynami-
cal chiral symmetry breaking and provides a useful labo-
ratory for the study of certain features of gauge field

theory is ladder QED. We will consider a model which
includes chirally invariant four-fermion interactions as
they can play an important role in the critical behav-
ior.

The model is described by the Lagrangian

X =ilj(iy. D lto)g+(Go—/2, )[(gg) +(giy, g) ]

and corresponds to a gauged Nambu —Jona-Lasinio (NJL)
model. Treating the gauge interaction in the quenched,
planar (ladder) approximation, the model was shown to
exhibit a line of critical points separating the chirally bro-
ken phase from the symmetric one. The phase diagram
in the two-coupling-constant space is displayed in Fig. 1.

In the ladder model, the critical line may be computed

where the po dependence is computed at the critical
point.

Since dynamical symmetry breaking is an inherently
nonperturbative phenomenon, the techniques available
for its study are very limited. One such approach which
offers a great deal of promise involves lattice computer
simulations. Although present technology allows for
only a limited number of results to be reliably extracted,
one such quantity is the critical exponent 6„. This fol-
lows since (plij) can be measured as a function of the
gauge coupling constant in both the absence and presence
of the explicit symmetry-breaking parameter po. %'hen

po is set to zero, a nontrivial value for ( tttf) is found for
the gauge couplings in a range larger than a critical cou-
pling. At the critical coupling, the order parameter
(gttj) is expected to vanish without symmetry breaking.
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FIG. 1. Chiral-symmetry phase diagram in coupling-constant
space for ladder QED. The critical curve is given by
G ( a /a, ) = ( l + l/ l

—ct /a, . ) .
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and is given by

6 (a la, ) = ( 1++ I —a/a, . )', (3)

where 6=Go(A /7r )(a, /a) with A being an ultraviolet
momentum cutoff and the gauge coupling constant is in
the range 0 & a & a, = m /3. The point a =0 corresponds
to the ordinary NJL model. In the space above the criti-

cal line, the chiral symmetry is dynamically broken.
When a & a„ the gauge interaction alone is sufficient to
trigger the symmetry breaking, while for 0& a &a„an
additional attractive (6) I) four-fermion interaction is
required for the phase transition to occur.

For this range of a values, the fermion condensate
takes the form'

(PP) =(3/4n )AXo (a, la)[(1—I/n))(Ae /Xo) +(I+I/co)(Ae /Xo) ]+ (4)

where au=+I —a/a, and Xo=X(0) is the dynamically generated fermion mass scale. 3 = 3 (a) and 5=5(a) are pa-
rameters of the fermion self-energy function X(p), which is the solution of the Schwinger-Dyson equations of the
quenched, planar theory with fixed coupling constant a. X(p) has the asymptotic expansion (p ~ N) )

X(p)~ /I (Xo /p )(1/2')[(pe /Xo) —(pe /Xo)
' ]+

In addition, the full fermion bare mass parameter is obtained as

mo=Po —Go(tijou()) =(3/4)(Xo /A)[(1+ 1/cu)(Ae /Xo)"+(I —I/ru)(AE /Xo) '"] .

The fermion mass scale Xo is determined from the gap equation

)MoA= ) /IXo I [(1—6)/ru+(I+6))(Ae /Xo) +[—(1—6)/n)+(1+6)](Ae /Xo) (7)

which follows from combining Eqs. (4) and (6). Along
the critical line defined by Eq. (3), the coefftcient of the
first term on the right-hand side precisely vanishes so
that the po dependence of Xo is given by Xo~po ' + '.

Substituting into the expression for the fermion conden-
sate then gives the critical scaling relation

( qy ) (2 —cu)/(2 ru)+
cr Po

from which we extract the critical exponent

5,„=(2+n))/(2 —cu)

=(2+3/ I —a/a, . )/(2 —+1—a/a, ) .

For a=0, this gives the ordinary NJL model and the
mean-field value of 5,„=3,while as a~a, =a/3, we find

Now consider fixing the four-fermion coupling to be
some particular value in the range of 6 ) 1 while varying
a over the entire range 0&a & a, . For this value of 6, a
will approach its critical value, a*=46/(1+6), where
the critical line is encountered. Here the critical ex-
ponent will be given by 5,„=(36+1)/(6+3). On the
other hand, away from the critical line, the gap equation
is dominated by the first term on the right-hand side
(RHS) of Eq. (7). The Po dePendence of (P1()) is obtained
by combining Eqs. (4) and (7) yielding ( 1(/lt/) =po far from
the critical coupling. Thus if the po dependence of ( Ptt) )
over the entire range 0 & a & a, is parametrized as
( f1()) ~( /I pI) '+ C ) with /I and C being )Mo-

independent functions of a, then the exponent 6 exhibits
a sharply peaked behavior attaining its maximum at criti-
cality. The form of 1/6 as a function of a for fixed 6
(=7.873) is sketched in Fig. 2. The points represent the
calculation in ladder QED using Eqs. (4) and (7). The
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FIG. 2. Tke critical exponent 6 as a function of a/o, defined
using the functional form ()/iP) = /I po' '+ C.

critical coupling is extracted as a*/a, =0.40 and corre-
sponds to 5,,=2.27. Although this parametrization pro-
duces the correct behavior both at the critical point and
far from criticality, it fails to properly describe the ap-
proach to the critical point. Thus, while Fig. 2 can be
used to extract the value of a* and 5„, the particular
shape of the curve is not an appropriate fit to the near
critical behavior. Alternatively, we can fit the po depen-
dence of (gf) as (1T)lt)) ~/I@I)' ' to extract a different
value for 5. With this definition, we plot, in Fig. 3, the
exponent 1/5 as a function of P= 1/4n. a for two distinct
values of the explicit bare mass parameter po. The arrow
indicates the position of the critical coupling as deter-
mined from Fig. 2. Points to the left of the arrow corre-
spond to the chirally broken phase. The vanishing of the
exponent 1/5 in this phase refiects the presence of a non-
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FIG. 3. The critical exponent 1/5 as a function of
P= 1/(4mcc) defined using the functional form ()t'ai ) = Atuo(

/ ),

for two distinct values of po. The arrow indicates the position
of the critical coupling.

trivial chiral condensate independent of po. On the other
hand, in the symmetric phase to the right of the arrow, a
nonvanishing value for (,gf) is produced only if )tee is
nonzero. Once again, this fitting fails to accurately model
the form of (pl()) except at critically and far from the
critical point. A more accurate procedure to parametrize
the order-parameter dependence on po near the critical
point follows from the form of the effective potential
which we shall obtain subsequently.

In the comparable lattice simulations, one typically
starts with pure quenched QED without explicit four-
fermion interactions and measures ( 1((1i) ) as a function of
the lattice value of n. However, it should be expected
that a certain amount of four-fermion interaction will be
induced as an artifact of the lattice. The amount of in-
duced coupling depends on the particular lattice regulari-
zation employed. Thus the pure lattice QED probes a
specific trajectory in the larger space of coupling con-
stants that included the four-fermion interactions. The
flow in coupling-constant space will not be the simple
6 =0 or 6 =fixed behavior we have just considered in
the ladder QED model. Nonetheless, a particular
amount of four-fermion coupling will be induced as a
function of u],«,„so that a typical flow might have the
behavior shown in Fig. 4. Such a Qow will take the
theory to the critical line for a certain value of 0.. The
particular value of e depends on the induced four-
fermion couplings and therefore the specific lattice regu-
larization. The sharply peaked behavior of the exponent
6 as a function of a is expected in the quenched, planar
QED due to the anomalous dimensions which control the
approach to the critical line. This behavior should also
be reflected in the lattice simulations if the critical cou-
pling seen there is related to the presence of the critical
line in a larger space of couplings than explicitly probed
by the simulation. Indeed, the latest simulations of Ref. 9
seem to indicate a value of 5„=2.2 which is less than the

t

FIG. 4. Schematic illustration of the coupling-constant flow
across the critical line in lattice simulations.

mean-field value 5„=3and would correspond to calcula-
tions in the ladder theory with a =a*=0.4a, .

To provide a field-theoretic description of the critical
behavior, one must include all physically relevant degrees
of freedom. In quenched, planar QED, a composite sca-
lar degree of freedom plays a special role in the critical
behavior. As the four-fermion coupling gets tuned to
near the critical line, the scalar must be considered an in-

dependent, propagating degree of freedom with a mass of
order the fermion mass scale Xo. The interactions of this
scalar degree of freedom become relevant near criticality
and must be included in the description of the phase tran-
sition region.

We introduce the chiral fields, (cr, m ), by rewriting the
model four-fermion Lagrangian as

2 =it)(iy D )tt) g(cr+iy—,~)g
—

( I/2Go)[((r po) +~ ]— (10)

which reproduces Eq. (2) upon application of the Euler-
Lagrange equations

tt))i = —(1/Go)(o —)(co),

1(((iy s)g= —(1/G() )m. . (12)

Rather than eliminating the (cr, m. ) fields, it proves con-
venient to integrate out, instead, the short-distance com-
ponents of the fermion field. So doing, we construct the
effective potential'

V(cr, )r) = W(cr, vr)+( I /2G&)[(cr —
)Mo) +m' ], (14)

where W( o., m. ) is the contribution from the fermion
determinant. In the quenched, ladder approximation,
this determinant for constant external fields has been ex-
plicitly computed with the result

The form of X allows the identification ( 0 ) =mo [cf. Eq.
(6)]. It then follows that

(13)

W(cr, m)= —(A /2n )(1+co) (o +rr )+(A /16rr )(a, /u)(2/co —1)

X [( A /4)( I+ 1/ )erose( —I+su)] —4/(2 —ru)(~ +22)2/(2 —co)+
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which is valid in the range 0 & a & a, . Substituting into Eq. (14) gives the full effective potential

V((7, m)=)MO l26O —()Mo/60)o+ —,'[1/Go —(A /m. )(1+co) ](o +m2)

+(A /16m' )(a, /a)(2/co —1)[(A/4)(1+1/co)e ' A' '+"'] /' '(cr +sr )

+ 0 ~ ~ (16)

d =2 —co —=I+rj/2, (17)

where

g/2=1 —co= 1 —Ql —a/a,

is the anomalous dimension. The scaling behavior of Eq.

The first two terms contain explicit p0 dependence and
correspond to soft explicit chiral- and scale-symmetry
breaking, while the third term is a quadratically diver-
gent effective mass term. The last term represents the
scale-invariant effective interaction which determines the
physical mass dimension of the chiral fields (o, m) at the
critical point:

[( I )
cy As(1 c+u)/A ]1/(2 r+u) I/(2+@))

0 cr (19)

To secure the critical exponent 5,„we use Eqs. (6) and
(19) with Eq. (13) to give the critical scaling law

(17) can also be obtained directly" using the methods of
Ref. 12 where the renormalization constant of the bare
mass p0 was calculated along the critical line.

Using the effective potential, the origin of the fine-

tuning of the four-fermion coupling becomes apparent.
Unless 6 is tuned to be near the critical line, the quadrat-
ically divergent mass term will dominate the potential
and the chiral fields will not propagate. %hen tuned to
the critical line, this mass term precisely vanishes and the
minimum of the potential gives

(gy&)„„=(A'/4~')(I/~)p, , (A/4m )(a—, /a)(1/co)[(1 co)e —A"+ '/A]/(+ )p'

which implies the form for 5,„given in Eq. (9):

5„=(2+co)/(2—co)

=(2++1—a/a, )/(2 —+1—a/a, ) .

l

of mo as given by Eq. (6) yields

(gG )(2 co)/2' — + —0

B„mo~(bG) ', )(co~0 . (28)

V(( cr &,0)~(b 6), )(co=0,

(fP& (66)~, )(c =0,
a(py& (aG) r ~, 0,
m ~(b 6)", )(co~0,

(21)

(22)

(23)

where we have used a instead of o.' to avoid confusion
with the gauge coupling constant.

From an examination of the gap equation, or
equivalently by minimizing the effective potential with
respect to m0, it follows that near the critical line the
dynamically generated fermion mass scale has the depen-
dence

Xo~(46 )' ", p0=0, (2S)

B„X() '~(66 ) ', )(co~0 .
)tto 0

Combining this behavior with the known X0 dependence

In addition to the critical exponent 5„the efFective po-
tential can also be used to extract other critical exponents
for the ladder theory. These exponents are defined to
quantify the approach to criticality of the order parame-
ter, the vacuum potential, and the scalar mass. That is,
they are designed to measure the dependence of these
quantities on b, G =—6(a/a, )

—(1+co) which corre-
sponds to the deviation from criticality. In particular,
the critical exponents a, p, y, v are defined as

=(2—+I—a/a, )/2+ I —a/a, , (29)

y=1. (30)

Next we use Eq. (17) in the chiral limit (@0=0)to find the
scaling behavior of the full effective potential
V(mo, 0)~(mo) ' ' which in turn gives the exponent

a = 2(co—1)/co

=2(+I —a/a, —I )/Q 1 —a/a, .

Finally the exponent v is secured by noting that in the
scaling region

m -X (SG)"/2' (32)

so that

v= 1/2co= 1/2+1 —a/a, . (33)

Combining the expressions for the various critical ex-
ponents, it follows that usual scaling relations

The exponents p and y can be obtained directly using Eq.
(13):

P= (2—co) /2co



3518 BARDEEN, LOVE, AND MIRANSKY

2@+y = 2 —a, 2P5 —
y =2 —

(2. ,

y =v{2—g), 4v=2 —6,
are indeed satisfied.

(34)
The eff'ective potential computed in Eq. (16) can pro-

vide a way to properly parametrize the approach to the
critical point. Vacuum properties are obtained by
minimizing this potential which yields

po/Go = [1/G() (—A /vr )(1+co) ]m()

+ ( 1 /4ir2) A 2(& /& )( 1/~)[( A /4)( 1+ I/~)ego 5/t( — ) +re)] —4/(2 —~)(m )(2+co)/(2 —ru) (35)

with mo related to (i)'/ij/) via Eq. (13). Guided by this
form obtained in the explicit ladder calculation, it follows
that an accurate par ametrization of the data for
quenched QED should take the form

(36)

where A, B, and 5 are nonuniversal functions of the cou-
pling constants to be fitted. The normal fitting procedure
would require that Eq. (36) be numerically inverted to ex-
press (1()i|)) as a function of the parameters A, B, 5, and
)uo. We note that larger values of po, and/or larger values
of the condensate, may require higher-order terms of the
effective potential' to get an accurate description of the
dependence of ( PP) on )uo and a.

We have seen that the four-fermion interactions play
an important role in determining the scaling behavior of
quenched, planar QED. This is particularly true at weak
gauge coupling where the amount of four-fermion in-
teraction affects the critical value of o. at the phase transi-
tion, the critical line, and therefore the value of the criti-
cal indices. However, this sensitivity seems surprising as
the four-fermion operators would normally be considered
as irrelevant interactions since their effective physical di-
mension is greater than four. Normally, it should be pos-
sible to absorb the effects of all the irrelevant interactions
by suitable modifications of the coupling strengths of the
relevant interactions. ' This "theorem" would seem to be
violated by the observed critical scaling behavior.

A related aspect of the scaling behavior is the fine-
tuning which is necessary to approach the critical limit.
Away from the critical line, the four-fermion interactions
are, indeed, irrelevant as their effects are suppressed by
powers of the cutoff. It is only when the couplings are
tuned very close to the critical line that the continuum
scaling behavior is seen. The physical picture in the criti-
cal region requires that new composite degrees of free-
dom be introduced and it is the relevant interactions of
these composite degrees of freedom which determine the
critical behavior. In the case of quenched QED, the fine-
tuning is expected to produce scalar and pseudoscalar de-
grees of freedom with chiral-invariant interactions as
seen by the etfective potential of Eq. (16). We now see
that the "theorem" on relevant interactions is not violat-
ed but we must include the possibility of generating com-
posite degrees of freedom (o, m, etc. ) and their relevant
interactions in addition to the dynamics associated with
the fermions and gauge interactions.

The above physical picture is needed to understand the
structure of the quenched theory where the critical line is

I

presumed to exist with induced four-fermion interactions
being present even in the pure gauge theory. In the full
unquenched QED, the running of the gauge coupling
constant will modify the scaling structure and it is likely
that the critical line will disappear being replaced by ei-
ther a true ultraviolet fixed point or triviality. Even in
this case, it may be necessary to introduce the composite
degrees of freedom and their effective interactions to
properly understand the physics near the continuum lim-
t 14, 15

We have shown that irrelevant interactions may play a
crucial role in understanding the dynamical structure of
gauge theories. These results may have important impli-
cations for the proper interpretation of lattice-field-
theory simulations where irrelevant interactions are ex-
pected to be generated by the regularization procedure.
In the quenched version of lattice QED, only the gauge
coupling appears as an explicit parameter. However, one
should view the simulations as corresponding to theories
defined in a large space of possible induced interactions
and their couplings. By varying the explicit gauge cou-
pling, the simulation follows a specific trajectory in the
space of induced couplings. In most cases, these induced
couplings have little effect on the infrared dynamics of
the theory. However, in the quenched theory, we have
seen that these small induced couplings [Go~0(1/A )]
can play a crucial role in determining the critical cou-
plings and the scaling behavior at the critical point. In
interpreting lattice-field-theory simulations, one must try
to determine whether the induced interactions can play a
significant role in the critical, or near critical behavior
seen in the- simulati-o-ns.

We have made an explicit study of the scaling behavior
of quenched, planar (ladder) QED. We have shown that
small four-fermion interactions can strongly affect the
critical behavior of the theory. We have made an explicit
calculation of the critical indices along the critical line
for 0&a &o, To compare with specific lattice simula-
tions, one must be sure to identify the theories at the ap-
propriate value of the gauge coupling constant defined in
each theory. The critical indices reflect the anomalous
dimensions of the theory and the full set of critical in-
dices should agree if a proper identification is made for
the gauge coupling constant. To aid in this comparison,
we plot in Fig. 5 the critical exponent 5„as given in Eq.
{9) as a function of the gauge coupling constant a/e,
defined in quenched, planar QED.

The physics near the critical line should be understood
in terms of the dynamics of composite degrees of freedom
(o, m) which become active through the fine-tuning re-
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quired to approach the critical line. The formally ir-
relevant four-fermion interactions are replaced by
relevant interactions of the composite degrees of freedom.
These results have been obtained for ladder QED and are
consistent with the lattice simulations for quenched
QED. The nature of the critical line could change in the
unquenched version of the theory due to the additional
running of the gauge coupling constant. Nevertheless,
the role of the dynamics of the composite states and for-
mally irrelevant interactions near the critical point may
be a more general feature of quantum field theory and im-
portant in the interpretation of lattice-Geld-theory simu-
lations.
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