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%'e construct a nonrelativistic field theory for the second-quantized 5-body system of point parti-
cles with Chem-Simons interactions. Various properties of this model are discussed: its obvious
and hidden symmetries, its relation to a relativistic field theory, and its supersymmetric formulation.
We present classical, static solutions —solitons —that satisfy a self-dual equation, which is

equivalent to the Liouville equation; hence, it is completely solvable. The dynamical role of the
Chem-Simons interaction is demonstrated: the interaction does not merely change statistics but
also provides the forces that bind the classical solitons.

I. INTRODUCTION everywhere. Consequently, the potential ap may be
presented as a singular pure gauge:

Dynamics for a collection of X point particles moving
nonrelativistically on a plane and interacting with each
other through the mediation of a U(1) gauge field, with
Chem-Simons kinetic action, ' is described by a Hamil-
tonian consisting solely of the particle kinetic energy:

N0= g —,'m v' .
p=l

8;arctan —= — 8;0,1
1

277 r 211' x 2'
r=(x,y)=(r cos8, r sin9) .

The singularity at r =0 is also seen from the identity

e't); t), 8=2~5(r ),

(1.3c)

(1.3d)

Here m is the particle mass and v its velocity —the
time derivative of the position vector r: vp = rp. As is
the case for magnetic systems, the interaction is hidden in
the nontrivial relation between the particle's kinetic
momentum m v and its canonical momentum p, conju-
gate to r:

which is a consequence of (1.3a), (1.3b), (1.3c).
The above action-at-a-distance description follows

from a local formulation based on the Lagrangian

matter L cs +L interaction

The matter Lagrangian is conventional,

pmpvpppay(ri riv)c
(1.2a)

N
2L matter ~ 2 p p

p=1
(1.5a)

The vector potential a seen by particle p describes point
vortices located at all the other particles:

while the Chem-Simons Lagrangian provides the kinetic
term for the gauge fields:

r~ —r
a'(ri, . . . , riv)= e't g e

P

(1.2b) L =— dre~~B 3CS a P y

1; r~
E ~—=6 ~B. lnr,

2~ r' ' 2m-

V lnr=5 (r) .
1

2m

(1.3a)

(1.3b)

[In the plane the curl of a vector V is a scalar S, and the
curl of a scalar is a vector: in components S=e'8; V,
( V X5 )'= e'tt) S.] The "magnetic" field arising from
(1.2b), VXa~, is a sum of 5 functions, vanishing almost

Each particle carries the "charge" e, c is the velocity of
light, and x is a measure of the interaction. The vector
potential involves the curl of the Laplacian Green's func-
tion:

fd'r t), AX A tt fd'r—A B .
2G

(1.5b)

N

Linieraction g e~v~. A(t, r~ )

p=1
Ã—ge A(tr),

p=1
(1.5c)

Here the fields depend on time t and on the field point r,
i.e., on the three-vector x"=(ct,r); 8 is the "magnetic'*
field 8=VX A; also we define the "electric" field by
E= —V A —

( 1/c)B, A. Finally, the interaction La-
grangian may be alternatively presented by particle vari-
ables
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=1=—fd'rA j—fd rA p,c
(1.5d)

with the current depending on field and rnatter coordi-
nates:

N

j "(t,r) = g e u "5(r r—),
p=l

u"=(c,v ) .
(1.6)

The previous Hamiltonian description (1.1) and (1.2) is
derived by eliminating the gauge-field variables in favor
of matter variables by use of the gauge-field equation of
motion, which in the present case reduces to a field-
current identity

—e" ~F =K@" ~B A
1.

ap a p (1.7a)

18= ——p,
K

(1.7b)

or by field variables in terms of a conserved current
j"=(cp,j), B,p+V. j=0,

21
interaction ~ pJc

N g2
ilia, Q= g

2mp

2
e

V i— a
Ac p

(1.13)

Time may be separated in the usual way,

e
—iEt Ifi

and uE solves an eigenvalue problem:

N g2
EuF =

2mp

ep
&E

Ac p
(1.15)

Owing to the pure-gauge nature of a, the interaction
may be removed by redefining the phase of uE. From
(1.2b) and (1.3c) it follows that

1
aPrt

2&K

N
e'J . Qeln(r —r

)

harp q~p

a
6

p q~p
(1.16)

relation (1.2) between kinetic and canonical momenta.
The quantum-mechanical problem requires solving the

A-body Schrodinger equation for the wave function
P(t;r, , . . . , r~, ):

E I ~IJ~ J1

CK
(1.7c) tane

x —x
(One finds that self-interactions are absent. )

Various symmetries are present. First, there are the
obvious space translation and rotation symmetries, with
associated momentum P and angular momentum J con-
stants of motion (generators):

Hence, by defining

u =e ''u
E E ~ (1.17)

(1.18a)

N
P= g mv

p=l
NJ=gr Xmv

p=1

(1.8)

(1.9)

epeq

ACK
(1.18b)

we see that the wave function uz solves the fvee N-body
Schrodinger equation

Moreover, there is a hidden SO(2, 1) conformal invari-
ance: redefining time by a translation t ~ t —a, by a dila-
tion t~at, or by a special conformal transformation
I/t~1/t+a, is an invariance provided the particle
coordinate is transformed, respectively, as
r (t)~r (t+a), r~(t)~&a r~(t/a), and
r~(t)~(1 at)r~[t/( I at)] —The r—espec.tive generators
are the Hamiltonian (1.1), the dilation generator

D=tH ~gm(r v+—v r ),
p=1

and the conformal generator
N

K = —t H +2tD+ —,
' g m v

p= 1

(1.10)

Finally, our system is invariant against Galileo boosts
r~r+Vt, generated by

N
G=tP —g m r

p=1

In all the generators the interaction is again hidden in the

,v
Zu~o=H'u~o= y

p=1

2 0
2

V' uE,
Zmp

(1.19)

while the interaction is hidden in the complicated bound-
ary conditions satisfied by uE. Since uE is single valued
but 8 is not, uE must be appropriately multivalued so
that uE=e '

uE remains single valued (for noninteger
v, which measure the magnetic flux due to particle q
and felt by particle p; integer v is invisible). As a conse-
quence, even though 0 is a sum of free one-body Hamil-
tonians, uE is not a product of free one-body wave func-
tions (plane waves). Rather it must be an appropriate su-
perposition of one-body wave functions (orbitals), where
the superposition is chosen so that the correct mul-
tivaluedness of uE is achieved.

The nontrivial task of constructing a superposition of
free wave functions so that a complicated boundary con-
dition is satisfied has been solved so far only for the two-
body problem. (Owing to the absence of self-
interactions, the one-body problem is trivial. ) The gen-
eral case is reminiscent of the N-body problem on a line,
with the interaction potential comprising a sum of one-
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II. NONRELATIVISTIC QUANTUM FIELD THEORY

A. Hamiltonian and equation of motion

We consider a quantum field operator 4 and its Hermi-
tian conjugate 4, obeying (bosonic) commutation rela-
tions at equal times (a time argument of our operators is
suppressed):

[%(r),4(r')]=0, [4 (r), % (r')]=0,
[4(r),+ (r)]=5(r—r') .

(2.1)

(For definiteness and simplicity we take a bosonic alge-
bra; similar analysis can be given with a fermionic alge-
bra. ) We posit a Hamiltonian, which governs time evolu-
tion. Ordering of noncommutating operators is impor-

dimensional 6 functions. There too the many-body wave
function is obtained by superposing one-body, free wave
functions in a fashion prescribed by the Bethe Ansatz.
While the two-dimensional generalization of the 5-
functional potential problem has resisted solution, it may
be that our dynamics, with velocity-dependent 6 func-
tions contributing to the Lorentz force [in
E(r )+(v /c)XB(rz), E and B are sums of 6 functions
according to (1.6) and (1.7)] is more tractable.

An alternative and equivalent approach to the N-body
problem with identical particles (m =m, e~ = e) is
through second quantization: The Schrodinger problem
is replaced by a nonrelativistic field theory. By the addi-
tion of a magnetic interaction, we obtain a two-
dimensional, gauged nonlinear Schrodinger equation.
This paper is devoted to a study of such a field theory and
to an elaboration of the self-dual soliton solutions that we
have recently found in the classical version of the model. '

Of course, the second-quantized one-dimensional prob-
lern with 5-function potentials also leads to the nonlinear
Schrodinger equation in one dimension, whose analysis
on the classical level was an important achievement in
the complete integrability program for nonlinear partial
differential equations. Moreover, finding solitons of the
nonlinear one-dimensional Schrodinger equation, quan-
tizing them, and reproducing the Bethe solution was a
milestone in the semiclassical, nonperturbative analysis of
nonlinear quantum field theories. No useful results are
known for the ungauged, two-dimensional, nonlinear
Schrodinger equation. However, adding a Chem-Simons
gauge interaction evidently opens new possibilities for
solution.

In Sec. II we present our field theory. Owing to parti-
cle number conservation, the model may be analyzed in
the N-particle sector, where we reproduce the
Schrodinger equation (1.15), with an additional magnetic
interaction. The classical field theory is analyzed in Sec.
III, and static, self-dual, zero-energy solutions are
presented. Section IV is devoted to concluding remarks
about several further features of the model. In particular,
relativistic and supersymmetric generalizations of our
model are discussed, and it is demonstrated that the
Chem-Simons term does not merely alter statistics, but in
general gives rise to dynamical interactions as well.

tant; the normal-ordering prescription of putting all 4 to
the left of %' is made and is denoted by colons. To de-
scribe the Hamiltonian accurately, we begin by defining
the operator covariant derivative

II(r) = V i —A(r) +(r) —=DV(r)
Pic

(2.2)

by a formula that solves the Chem-Simons relation be-
tween magnetic field B=V X A and charge density ep,'

compare (1.7b):

eB=——p.
K

We take

(2.4)

A(r)=VX —f d'r'G(r —r')p(r'),
K

(2.5)

with G the Green's function for the Laplacian, as in (1.3).
Hence, as explained there, V'XG(r —r') may also be
presented as a gradient:

1
V X G(r —r') = — V8(r —r'),2'

I

tans(r —r') =
X X

Note that the 8 is multivalued, since 8=0 and 8=2m
are identified.

From the commutation relations it follows that

[ A(r), %(r')] = ——V X G(r —r')%(r') .
K

(2.7)

VXG(r) is ill defined at the origin; we shall prescribe
that it vanishes there; i.e., we have in mind a regulariza-
tion that preserves the antisymmetry of VXG under
space refiection. Therefore, 4(r) and 4 (r) commute
with A(r), and no ordering ambiguity afflicts II and II .
Also p(r) commutes with p(r') and so do the vector po-
tential components with each other.

The posited Hamiltonian is

(2.8a)

(2.8b)

In view of (2.3) and (2.4), this may alternatively be writ-
ten as

&(r)= II (r).II(r)+:B(r)p(r):,
2m 2e

(2.8c)

which shows that the quartic term in (2.8b) describes a
magnetic-field —charge-density interaction of strength
gK/2e . Note that although H and II are separately
normal ordered, II -H is not.

The field equation of motion follows by commutation:

and its conjugate II:—(D4), where the Hermitian vec-
tor poter]tial operator A is constructed from the number
density operator

(2.3)
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A (r) = — f d r'G(r —r')V X j(r'),
CK

where j is the number current-density operator:

j= " (e'11—11'e) .
2ml

(2.10)

(2.11)

The third term on the right-hand side of (2.9) comes from
the magnetic-quartic interaction, while the last term

4 d
, , p(r')~p(r)

2mc a (2m) Ir —r'I

is a quantum correction arising from reordering; it will

play a crucial role in the following. The magnetic next-
to-last term in (2.9) may also be written as—g (dr'5lr —r')p(r')4(r); hence it is of the same dimen-

sionality as the reordering term, since 5(r) scales as r
Because the matter density p satisfies the continuity

equation

l
B,p= [H,p]= ——V j, (2.12)

the number operator N = J d r p commutes with the
Hamiltonian. Also, with the help of (2.12) we see that the
formula (2.10) for the scalar potential A solves the
remaining Chem-Simons field-current identity between
the electric field and the current density [compare (1.7c)]:

E'= —8; A ——8, A '= e"j~ .1; e

C CK
(2.13)

ikey,

+(r) =[%(r),H]
$2

D 4(r)+eA (r)%(r) —gp(r)%(r)
2m

4

+ Jd r'VG(r —r')
2mc K

.V'G(r —r')p(r')4(r) . (2.9)

The scalar potential A in (2.9) is given by

e(r) In) =o=
& nIe'(r),

and also by X and H:

NIn)=0=HIn) .

(2.17)

(2.18)

(2.20)

evaluating the commutators from (2.9), and reexpressing
the resultant matrix elements in terms of uE again, one
arrives at the Schrodinger equations obeyed by the X-
body wave functions uE.

For example, in the one-body problem we have

uz(r)=&nI P(r)IE, I ),
Eu, (r)=&nI[e(r), H]IE, I) .

(2.21a)

(2.21b)

The commutator, given by (2.9), involves operators that
contain 4 standing on the left and annihilating & nI, ex-
cept for the Laplacian portion of D 4:

$2
&nI[e(r), H]= — v &nIe(r) .

2m

Hence the one-body problem is free —there are no self-
interactions:

$2
V uz(r) =Euz(r) .

2m

For two bodies we begin with

(2.21c)

tHowever, 4 operating on In) produces another state,
and in particular we define

&nI'I'(r, ) 'P(r~)IE, N) —=uz(r, , . . . , r~) . (2.19)

It is clear that exactly X field operators are needed to
connect IE,N) to n). Also, as a consequence of its
definition (2.19) and the commutativity of the operators
iI', uz(r„. . . , r~) is a bosonic wave function, symmetric
under position interchange.

By considering the commutator matrix element

&nI[%(r, ) 4(rv), H ]IE,N) =EuF(r„. . . , r~),

We record one further commutator that will be used
below: uz(r„rz) =

& nI+(r, )%(rz)IE,2), (2.22a)

—[p(r), j(r')] =—p(r')V5(r —r') .l . , 1

m
(2.14)

B. State space and the Schrodinger equation

(In this section and below, in contrast with Sec. I, p and j
are defined without the gauge coupling constant e; they
are matter densities; the charge densities of Sec. I are ob-
tained upon multiplication by e.)

Euz(r„rz)= &nI[~II(r, )%(rz), H]IE, 2)
$2

v, & n I%'(r, )%(rz)IE, 2)

+ &nI+(r&)[%(rz), H]IE, 2) . (2.22b)

Here the matrix element of the remaining commutator is
no longer trivial, since the 4(r, ) operator is interposed.
The evaluation is straightforward, with the result

The two commuting operators H and X can be simul-
taneously diagonalized, and we label eigenstates by their
eigenvalues IE,N):

ie
Eu~(r, , r, ) = — V, — V, X G(r, —rz)

2m AC K

2

'2

HIE, N)=EIE, N),
NIE, N ) =NI E N ~ .

(2.15)

(2.16)

le

2m ACK
V' — V XG(r —r, )

Also, we posit the existence of the "vacuum" zero state
I
n ), annihilated by 4',

—g5(r, —r, ) ue(r], rz) . (2.22c)
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It is instructive to follow the steps leading to (2.22c),
since the reordering last term in (2.9) plays a crucial role:
it is needed to reconstruct the full covariant Laplacian
[V]—(ie /]]lc]])VXG] from the free Laplacian V, seen
in (2.22b). Equation (2.22c) is just the two-body equation
of (1.15) for identical, bosonic particles, with an addition-
al 6-function interaction. Note that this further contact
interaction, which as we remarked can be viewed as an
interaction with the magnetic field, does not affect wave
functions that vanish at r, =r2', however, careful analysis
of the Schrodinger operator is required to ensure self-
adjointness. It will be shown below that the additional
contact interaction, with a definite value for its strength,
g, is a very natural modification of the minimal theory.

We do not here pursue further the quantum-
mechanical problem. Also, we leave for future analysis
the subject of divergences and renormalization in our
quantum field theory.

C. Removing the gauge field

We stated in Sec. I that the interaction with the gauge
potential a can be removed by using the fact that a is
locally a pure gauge, which disappears after a phase
redefinition of the wave function [see (1.16)—(1.19)]. This
is again seen explicitly (2.22c). According to (2.6),

ie re
V, XG(r, —r2)= V O(r —r ) .

CK
12 1 2

QCK
12 1 2

which occurs in the covariant derivative (2.2), is in some
sense a pure gauge. As a consequence of (2.6), we may
certainly write A as

A(r ] = — Id'r'VO(r —r')]o(r') .
27TK

(2.27)

However, moving the gradient with respect to r out of
the integral and thus displaying A as a pure gauge is in
general not correct; the integration cannot be inter-
changed with the differentiation. The reason for this is
that 0 is multivalued and integrating 0 over the two-
dimensional r' plane requires specifying a cut in r', which
begins at r. The details of the cut are immaterial, but
now the range of the r' integration depends on r, and
consequently, moving the r derivative outside the r in-

tegral gives an additional contribution.
There is an exceptional situation where we need not ex-

ercise the above-described care: The r gradient can be
moved outside the integral with impunity and the vector
potential is a pure gauge. This happens when the matter
density p is localized at points, i.e., when it is a superposi-
tion of 5 functions. Of course, in the present context ]o is
an operator, but in nonrelativistic quantum field theory
the eigenvalues of this operator are indeed 5 functions.
So for the problem at hand, we can write

r

A(r)=V — f d r'8(r —r')p(r')
2 ''K

=Vp](r) . (2.28)
Therefore, by redefining the single-valued wave function
uz according to

up(r„r2)=e '" us(r„ri),
where r=r, ri =(r c so—]9r sin8) and

2

V=
hCK

'

the gauge-field interaction is eliminated:

(2.23}

(2.24)

Euz(r„r )= — V — V2. 2.
—g5(r] —r, } u~(r], r, ), (2.25)

but uz satisfies a nontrivial boundary condition that is
sensitive to magnetic flux with noninteger v:

0 i 2vrv 0u~(r], r2)lg=p„=e 'u~(r], rp)lg=p . (2.26a)

(ur~], r )=2e' "u~(r2, r]) . (2.26b)

The question we wish to address is how this
phenomenon manifests itself in the quantum-field-
theoretic formalism. The discussion involves mathemati-
cally delicate manipulation, and care must be exercised to
avoid blunders.

At issue is whether the vector potential operator (2.5),

Note that rotating the relative separation r by 2m. corre-
sponds to a double interchange: (r„rz)~(r2, r])~(r], r2).
Since uE(r], r~)=uE(r, , r]), it follows that

This is consistent with B =VX A= —(el]~)p as long as p
vanishes almost everywhere, which it does in nonrela-
tivistic quantum field theory. The magnetic field V X Vcr
[see (1.3d)] is present at isolated points owing to the mul-
tivaluedness of the gauge function co, which in turn is a
consequence of 0 being multivalued and p being a sum of
5 functions.

But when p is nonvanishing and is smoothly distribut-
ed over an extended region, (2.28) is not consistent with
nonvanishing B, no matter whether or not co is single
valued.

There have been published analyses of relativistic
quantum field theory, where the gauge field (2.27) is writ-
ten as in (2.28). However, in relativistic field theory the
eigenvalues of ]o are not sums of 5 functions; particles are
not points, but are extended. Hence the representation
(2.28) is inconsistent with nonvanishing B arising from a
smooth p. ' Rather, the correct expression for A, which
takes into account the contribution from the cut, is

A=Vcr ——e'j dzip z (2.29)
K

Here the line integral of p is along the cut z, which begins
at r and passes to infinity in some arbitrary but r-
independent fashion, e.g., z=r+ f(r), f(0)=0, f(1)= ~.

Another context where the Chem-Simons gauge poten-
tial is not a pure gauge is classical field theory, whether
nonrelativistic or relativistic, because there p is a smooth,
distributed function. In the next section we shall give vi-
vid demonstration of the influence of a nontrivial Chern-
Simons vector potential on classical field-theory dynam-
1cs.
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Returning now to our nonrelativistic quantum field
theory, we may use (2.28) together with a redefinition of
the matter field

A (r)= fd-r'[VXG(r —r')].j(r')
CK

d2r'VO r —r' .j r'
2VTC K

qi( r ) e i( e /i)c ku)I/O( r ) (2.30) fd r'8(r —r')V' j(r')
27TC K

to reduce the covariant derivative operator (2.2) to
II(r) =e"I""V(I( (r) and the Hamiltonian density (2.8b)
to

f d r'8(r —r')B,p(r')
27TC K

1——B,o)(r) .
c

(2.32)

(2.31)

The gauge fields also disappear from the equation of
motion (2.9), and this happens in an interesting way.
First, A of (2.10) is rewritten as

We have used current conservation and freely dropped
surface terms because the densities are 1ocal—for distri-
buted densities these steps would be illegitimate. Thus,
according to (2.30) and (2.32), the operator equation of
motion (2.9) in the nonrelativistic quantum field theory
becomes

ikey q) (r)= — V )Ii (r) —g (r)% (r) — ice i(e/Sc)~B, ei( hc)~+ e i(e/hc—)mB hei(e/Sc)~
$2 e

2m c

4

fd'r'VG(r —r') VG(r —r')p(r') qi (r) .
2mC K

(2.33)

The first two terms in the large parentheses do not cancel, because B,co, which involves B,p= —V j, does not commute
with co, as is seen from (2.14). When this noncommutation is taken into account, one finds that the entire expression in
large parentheses vanishes —once again, the last reordering term is needed.

We conclude that the 4 fields satisfy equations of motion without gauge potentials; with g =0 these are free equa-
tions. However, the commutation relations are now modified:

(I/O( ))I(0( ~

)
—i(e/Sc )ru(r)(II( r )

—i(e/t)cku(r ))I(('
—i(el')c)[a&(r)+re(r')] i(e Ihce)8(r' —r) Ii(r()(I((ri)

i (e/i)c)[cu(—r)+re(r')] i(e Ihce)8(r' —r) i(e c/)iri(r u)@0( i
)'((e/iic)ru(r)@0(r)

i (e /hce)[8(r' —r) —8(r —r')]@0(ri )@0(r)

i rrv@ 0( r i
))I(0( r ) (2.34)

[We use v from (2.24).] Thus upon defining the wave
function u& by

fi (D%)* (Dq) )
——((Ii'(I')2' 2

(3.1b)

(A~(I( (r))%' (rz)~E, 2) =uz(r„rz), (2.35)

III. NONRELATIVISTIC
CLASSICAL FIELD THEORY

A. Hamiltonian and equation of motion

we see that under interchange, uE acquires the phase
e' ', and under double interchange, the phase change is
e' "",in agreement with (2.26).

Finally we remark that a calculation similar to (2.35)
shows that the canonical commutator is unchanged:

[(Ii (r) ),4 (r2)]=5(r) —r2) . {2.36) —gp{t,r)+{t,r) . {3.2)

The derivative D is covariant, as in (2.2); the vector and
scalar potentials describe Chem-Simons gauge fields that
satisfy the field-current identities:

but the classical equation of motion does not include the
quantum reordering term —the last term in (2.9):

ilia, %'(t, r) = 5H
fiqi'(t, r)

$2
D (Ii(t, r)+eA (t, r)%(t, r)

201

(3.1a)

We now consider + to be a classical c-number field and
its complex conjugate 4*. The Hamiltonian is, as in

(2.8),
H= d r~,

e8=VX A= ——p,
K

(3.3a)

(3.3b)
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where the matter density and current are as in (2.3) and
(2.11). Explicit formulas for A and A are as in (2.5) and
(2.10), except now it is useful to leave arbitrary a gauge
function:

A(t, r) = V'X —f d r'G(r —r')p(t, r')
K

z 4e m . cKg2
V' lnp=, j—

p
f1 CK e

2m . , fi

2mJ
fi ( V'p )'

J 2m p
(3.12)

+gauge term,

A (t, r)= —VX f d r'G(r r')j—(t, r')
CK

while (3.3a) and (3.11) imply(3.4a)

V'lnp ———e2 'll (V )2

mcK J J p
(3.13)

+gauge term .

Upon setting

(3 4b) Below we shall present solutions of these static equations.

B. Space-time symmetries

i(elec)cu 1/2 (3.5)

B,p+V j=0,
while the real part yields

V2lnp= (eA —gp)

(3.6)

Eq. (3.1) is decomposed into real and imaginary parts. It
is found that the imaginary part of (3.2) is the continuity
equation

The field-theoretic dynamics admits the same space-
time symmetries as the particle dynamics. These sym-
metries were discussed in Sec. I, but we did not there in-
clude the g-dependent magnetic interaction. However,
this addition does not alter the invariances of the theory.
Here we record the field-theoretic conserved quantities
(generators) and the field transformation laws.

Consider first space-time translations t ~ t —a,
r~r+ ro. Under the former the field transforms as

0'(t, r) 4(t +a, r), (3.14)

+ e A — V'Xlnp e A+ V'Xlnp2 Ac Ac

g2 2 2 2

(3.7)
where the potentials are given by formulas (3.4) with ad-
ditional gauge contributions coming from co. Note that
the current density takes the London form"

H= fd'rm, (3.15a)

and the conserved generator is the Hamiltonian H of
(3.1)—the spatial integral of the Hamiltonian density,
which we here call T, the time-time component of a
nonrelativistic energy-momentum tensor:

pA.
mc

(3.8) Too ~D@~2 g
2m 2

(3.15b)

From (3.4a) we see that the nontrivial part of A is a
nonlocal functional of p, and therefore so is j. Decom-
posing the latter into a longitudinal component jI, deter-
mined by B,p (B,p= —V' jt ) and a transverse component
VXj,

I+VXj (3.9)

allows expressing the nontrivial part of 3 in terms of j:

CK
(3.10)

e A= —mc(V'Xlnp)j'(p) .

Hence, with the local Ansatz, (3.7) reduces to

(3.11)

Thus the nontrivial part of 3 also is a functional of p,
and (3.7) is recognized to be a nonlinear and nonlocal
equation for p at fixed time, while (3.6) determines the
time dependence.

For static configurations, (3.6) requires j to be trans-
verse; i.e., jL vanishes and j=VXj. Let us choose a
gauge so that A in (3.8) is transverse. To ensure
transversality of j, we must have A Vp =0. This sug-
gests a local A nsatz for the p dependence of A:
A=VXa(p)=(VXp)a'(p), where a is a function of p.
Comparison with (3.8) and (3.9) shows that
a'(p) = —mcj'(p)/ep, and

B,T +0; T'"=0, (3.16)

the latter being given by

;oT' = — [(D,4)*D;iII+(D;4)*(D,4)],
(3.17)

Space translations induce the field change

ql(t, r) ~4(t, r —ro) (3.18)

generated by the momentum P, which is an integral of
the momentum density P' —also denoted by T '.

P= fd'rW,

P'= T"'=mj '= —.[4'*(D 4') —(D P)*P]0;
21 t

(3.19a)

(3.19b)

Note that the momentum density does not coincide with
the energy flux T 'W T': the energy-momentum tensor is
not symmetric since the theory is not Lorentz invariant.
Again, a continuity equation holds with the momentum

The time independence of H is assured by the continuity
equation satisfied, as a consequence of the equations of
motion, by T and the energy flux T',
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flux T'j: 8, 9'+ 8 ( tT" r—'T i) =0 . (3.28)

a T"+a T~ =O.t J (3.20)

The momentum flux, the stress tensor T'~, is given by

Now we turn to the unexpected conformal sym-
metries. Under a dilation t ~at, r~&a r, the field
transforms as

fiT'j= [(D;%)*(D,4)+(D %)*(D;4)

—5'~(Dk %)*(Dt,4)]

+ (5"V —2B, B )p+5"& .
4m

(3.21}

0'(t, r)~ 1 t r
Va a' v'a

which is generated by D:

D=tH ——' d rr.P .
2

(3.29)

(3.30a)

T ~ is symmetric —this follows from rotation invariance
(see below). Also, T'~ has been improved so that its trace
is twice the energy density:

The corresponding density S,
2)=tA ,'r P—, — (3.30b)

5iT ~=2m=2T~ . (3.22) satisfies the continuity equation

The possibility of finding such an improvement is related
to the conformal symmetry (see below). [Recall that in a
Lorentz-invariant theory with conformal symmetry, the
relation corresponding to (3.22) contains a single factor of
energy density: 5'JT'J=&= T .]

Next, we consider rotations, whereby the coordinate r
is rotated by a rotation matrix R '~:

8,2)+c};(tT' 'riT'i—) =0—, (3.31)

qi(t, r)~ —I'mgr /2A( ] —gg) ari r
e

1 —at 1 —at 1 —at

as a consequence of the trace property of T" [see (3.22)].
A conformal redefinition 1/t ~1/t+a, r~r/(1+at )

is implemented on the fields by

r'~R "r', R IJR kJ glk

%(t, r) %(t,R 'r) .
(3.23} (3.32)

The density 8 for the angular momentum J,
J= fd'rZ,
d"=r XP= mr Xj,

(3.24a)

(3.24b)

satisfies a continuity equation as a consequence of T'~ be-
ing symmetric:

B,8+8;e" x "T' =0 . (3.25)

Equation (3.24) shows that the angular momentum is pro-
portional to the magnetic dipole moment. One verifies
that J generates on 4i(t, r) an infinitesimal rotation of the
coordinate r, supplemented by a gauge transformation
5%= —rXV+ i(e/h —ac)Qq, iQ =e Jd rp Henc. e J
may be decomposed into orbital and spin parts J=L+S,
~here L generates the coordinate change, while S gen-
erates the gauge transformation. The magnitude of the
spin S=(1/4~ctt)Q coincides with what is found by
other methods.

Finally, the remaining conventional symmetry
comprises Galileo boosts: r~r+Vt, which act on the
fields with a one-cocyle:

The constant of motion can be constructed from (3.30a),
because dilation invariance frequently (but not always)
implies conformal invariance: We write (3.30a) from
(3.19b) as

(tD)=—— H ———d r(B;» )mj' .d d t 1

dt dt 2 4

An integration by parts and the current continuity equa-
tion allow presenting the above as

=d t' Pl0=——0—tD ——d rr pdt 2 4

K= t H+2tD+ ——f d r r p .
2

The corresponding density A,

(3.33a)

JV = t A t r.P+ rp, ——
2

(3.33b)

We conclude therefore that the following quantity, in-

volving the electric quadrupole moment, is a constant of
motion; indeed, it generates the transformation (3.32):

%(t, r)~expi(m/fi)(U. r —,
' V t )]4(t,r Ut) . — —(3.26)

satisfies the continuity equation, again as a consequence
of the trace property of T'j:

The generator G involves the electric dipole moment g y(+g (t2Tio tr T + ,
' r2Toi }

—0—(3.34)

G=tP —rn d rrp,

and is obtained from the density 0,

9=tP—mrp,

which satisfies a continuity equation:

(3.27a)

(3.27b)

It should be understood that the transformation laws
(3.14), (3.18), (3.23), (3.26), (3.29), and (3.32) imply that if
'tii(t, r) solves the field equation (3.2), then so also does the
transformed field, given in the right-hand side of these
equations. Using this fact allows constructing time-
dependent solutions from time-independent ones.
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C. Static self-dual systems

~D%~ =~(D, +iD, )4~ +—VXj+ Bp .
Ac

(3.35j

Therefore, in view of (3.3a), the energy density h' in
(3.1b) is

&= ~(D, +iD2)%~ +—VXj — —+ p
g Ae

2m 2 2 2fPlC K

According to (3.2), the Hamiltonian (3.1) is stationary
on static solutions. They satisfy (3.7), or if the local An
satz (3.11) is made, then (3.12) and (3.13) hold. Rather
than solving these equations, we take an indirect ap-
proach.

Observe the identity

j'(p) = +
2m

(3.42a)

With this choice, the last terms in (3.12) and (3.13) van-
ish. Equation (3.13) then reproduces (3.41}, while Eq.
(3.12) also gives (3.41), provided g is taken at the value
(3.37) and (3.42a) is integrated to

constant a=e /fiche~. According to (3.37), this means
that the nonlinear coupling g is always positive,

g =A'e mc ~v~, and therefore according to (3.1b), the self-
interaction is attractive, as in the one-dimensional, non-
linear Schrodinger equation. Nevertheless, our Hamil-
tonian is non-negative [see (3.38}].

From (3.40) we see that in the self-dual system the local
Ansatz (3.11) for the vector potential charge-density
dependence is satisfied with

Consequently, with

Aeg=+
mcK

(3.36}

(3.37)

j(p}=+ p»
2Pl

j=+ VXp .
2m

(3.42b)

(3.42c)

and sufficiently well-behaved fields so that the integral
over all space of V X j vanishes, the energy is

a= d2r D, +I.D2 e''. (3.38)

D]% = -+iD, + . (3.39a)

The self-dual character of this equation is recognized
when it is written as

This is non-negative and attains its minimum, zero, when
4 satisfies

Thus the second-order equations (3.7), (3.12), and (3.13)
are indeed solved by the self-dual system, which evidently
provides a first integral, corresponding to zero energy.
Remarkably, the remaining integration can also be per-
formed, owing to the integrability of the Liouville equa-
tion.

D. Self-dual symmetry generators

The various symmetry generators of Sec. IIIB take
simplified expressions in the self-dual sector. We have al-
ready remarked that the energy density is a total deriva-
tive,

0%=+iDX% . (3.39b)

We shall henceforth make the choice (3.37) for the
strength g of the nonlinearity, equivalently for the
strength of the magnetic-field —charge-density coupling. '
As will be indicated below, this is in fact a very natural
choice.

To solve (3.39), ql is decomposed into its phase and am-
plitude as in (3.5). Equation (3.39) then implies that the
vector potential is given by

A'c
A=Vcr+ VXlnp .

2e
(3.40)

From (3.3a) it now foHows that away from the zeros of p,
lnp satisfies the Liouville equation, all whose solutions are
known:

fiVf=+ —VXj=
2

V 2p
4m

(3.43)

so that for well-behaved p the total energy is zero, con-
sistent with (3.38) and (3.39).

The momentum density follows from (3.19b) and
(3.42c); it too is a total derivative:

P=+ —VXp .
2

(3.44)

This integrates to zero, provided p is sufficiently well
behaved —our zero-energy solitons are at rest.

The angular momentum density is evaluated from
(3.24b) and (3.42c):

7

V' lnp=+2 p .
ACK

(3.41)
(3.45a)o'=+ —r Vp= +Pip+ V.(rp) . —

2

The matter density p must be positive and nonsingular; in
particular, there can be no poles in p.

The Liouville equation possesses nonsingular, non-
negative solutoins for p when the numerical constant on
the right-hand side of (3.41) is negative. Hence the +
sign is chosen opposite to K: For negative K the upper
sign is taken, for positive K the lower; there is no sign am-
biguity: +e /ACK is always a positive, dimensionless

J=+fiN=+ —Q=+ KA

e e
(3.45b)

As remarked previous1y, J is also proportional to the
magnetic dipole moment.

Thus, provided r p vanishes at infinity, the angular
momentum is proportional to N= fd r p and also to the
charge Q =eN, as well as to the Aux 4= —(1/lr)Q:
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G= —m f d rrp. (3.46)

The Galileo generator (3.27a) is proportional to the
electric dipole moment: 4np(r)=

ar

n

rp r+
ro

(3.50)

The dilation generator (3.30a)

D= —f d rrXV'p
4

(3.47)

vanishes with single-valued p.
Finally, the conformal generator (3.33a) is related to

the electric quadrupole moment:

drrp.P1

2
(3.48)

The integral converges provided r p vanishes at infinity.
We have established that the density of energy T and

of momentum T ' are total divergences when evaluated
on self-dual solutions [see (3.43) and (3.44)]. The same is
true of the remaining components of the energy-
momentum tensor, T' and T', (3.17) and (3.21), which
are given by manifestly transverse expressions:

Alternatively, (3.50) is obtained from (3.49) with f (z)
taken to be an nth-order zero or pole, f (z)=c„z+", w—ith

~c„~ related to ro. Note that (3.50) is even in n, and so we

take n ~0.
The matter density vanishes as 1/r "+ for large r and

behaves as r " for small r. Hence p is regular at the
origin for n ~ 1, and vanishes there for n & 1, producing a
singular contribution to the vector potential at r =0:

Ac
A '= c);co+ e'J

e r
2n

n —1—
I+(ro/r) "

Pic—B,co+ e" (n —1) .
o

' e r
(3.51)

This singularity is removed when we chose
co=+(A' c/e )(n —1)8, and so the field profile is

—1'n

;o Ae0

8m c~
p'J(j .p2

%(r)=e +—' "
&ar

ro r
r rp

(3.52)

plj
2t7l

Thus, apart from total derivative terms, the energy-
momentum tensor vanishes on a self-dual solution —a
circumstance fainiliar from other self-dual systems.

E. Explicit, self-dual solutions

The matter density that solves (3.41) is

(3.49)

We now see that n must be an integer for single-valued +.
Moreover, at the origin, 4 is an analytic or antianalytic
function: +(r) —(2n/&a)z" ' or (2n/&a)(z")"

r~o
Integrating p on (3.50) over all space evaluates N,

hc il~[

2
2n

e
(3.53)

Consequently, the configuration carries flux 4 given by
an even number 2n of flux quanta hc/e. The Galileo gen-
erator (3.46) vanishes with this spherically symmetric
solution, while the conformal generator (3.48) takes the
value

z =re' vrhc~rn o
2

sin(n. /n )
(3.54)

where f (z) is an arbitrary function, but so chosen that p
is well behaved. A natural choice is a superposition of
poles and/or zeros.

The matter density vanishes at the zeros of
~
f'(z)

~

and/or poles of
~ f(z)~ . There, Inp is singular, and so is

V lnp, which according to (3.40) contributes to the mag-
netic field. Nevertheless, the complete magnetic field will
remain nonsingular, because co in (3.40) can be chosen to
be discontinuous, so that singularities on VXV~ cancel
those of + (Pic /2e )7 lnp. However, since the modulus of
4 is p' and the phase is co, discontinuities of co must be
quantized, so that %' remains single valued when zeros of
p' are encircled. Below, we show in detail how this
works.

Let us examine some explicit solutions. To begin we
consider the radially symmetric, positive and nonsingular
solution to the Liouville equation. The radial equation is
an ordinary differential equation that can be solved by
quadrature. The solution depends on two parameters, n

and ro.

which requires n & 1.
In general, N is not an integer. But recall that quan-

tized solitons, unlike ordinary particles, are not approxi-
mate eigenstates of the number operator; rather they are
coherent superpositions of an undetermined number of
ordinary particles, approximating eigenstates of an opera-
tor conjugate to the number operator.

(In a non-Abelian theory, ~ is quantized so that 2hca. is
an integer multiple of e . ' Hence, with non-Abelian
quantization for ~, X is an integer, but there is no reason
for invoking this quantization in the present Abelian con-
text. )

Even though the solution carries 2n units of flux, it
clearly describes n solitons, all located at the origin—
evidently each soliton carries two units of flux. Also, all
the solitons are characterized by a common scale ro-
recall our theory is dilation invariant. More generally,
the solitons can be located at different points and have
diff'erent scales. Also, each can carry its own U(1) phase,
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although an overall phase in the wave function is imma-

terial.
With the above counting, one is led to expect that an

n-soliton solution depends on 4n parameters (two posi-
tions, one scale, one phase per soliton) and is described by
(3.49) with f (z) taken as

C;f(z)= g
Z Z

(3.55a)

The locations of the poles z, specify the positions, while
the complex residues c; determine the scales and phases
of the solitons. In fact, one may give another formula for
f (z), which also leads to an n-soliton solution, but de-
pends on two additional (real) parameters. The expres-
sion

(3.55b)

is more natural, because unlike (3.55a), it is closed under
coordinate inversion z ~z, which is a symmetry of the
Liouville equation:

n

f(z)~fo+ g
, —1Z Z

=fo+ g
C i

n

fo=fo —X—
i

c;
ci

Z2
1

Z I
ZI

In spite of its richer structure, (3.55b) leads to a soliton
profile with the same number of parameters (4n) as that
arising from (3.55a) —the additional quantity fo enters
the formula for p only to redefine the positions and resi-
dues of the poles. This is easily seen for n =1 by comput-
ing p, with f (z) =fo+c, l(z —z

& ), and finding the result-
ing matter density to be the same as the one with fo ab-
sent, but with the residue c, replaced by c, /(1+lfo )

and the location z, shifted to z, c,f,* /(1+
I
f—ol'). F«

arbitrary n, similar but more complicated redefinitions of
the c; and z; again remove dependence on fo. ' Thus, re-
gardless of which of the expressions in (3.55) is used for f,
the solitons depend on 4n parameters, with one overall
phase parameter being irrelevant.

Supplementing f (z) of (3.55) by contributions involv-
ing simple or multiple zeros increases the n "number" of
solitons —an effect that can be alternatively achieved by
increasing the number of poles. Higher-order poles in
f (z) can be obtained as suitable limits of our expression
(3.55).

The matter density (3.49) for the n-soliton solution
constructed from (3.5Sb) is

where f(z) is given by (3.55) and V(z)=g". , (z
—z,. ).

The denominator of (3.S6b) is nonsingular and nonvan-
ishing, but the numerator may possess zeros that give rise
to singularities in V Xlnp. However, since the logarithm
of the numerator is a harmonic function, it can be re-
moved from 7' X lnp by a suitable choice of co in (3.40), so
that the vector potential is singularity free. This is
achieved with

co=~ argf'(z)V (z),Ac

e
(3.57)

p(r) = —V' lnd(r),1

d(r)=IV(z) '+If(z)V(z)l

(3.59a)

(3.59b)

For large r, d(r) behaves as

c;fod(r)~(1+If l'olr "
1 —2Re —g z;—

(I+
I fol )'

(3.60)

Thus we find, as in the rotationally symmetric special
case (3.53),

X= jd rp= r lnd
Br

hc I(el
2n

e
(3.61)

and with the upper sign the wave-function profile be-
comes

f '(z) V'(z)
(3.58)

&~
I
V(z) I'+ lf (z) V(z) I' '

so that 4' is an analytic function near its zeros; when the
lower sign applies, 4(r) is given by the complex conju-

gate of (3.58) and is antianalytic near its zeros.
We can determine N = f d r p simply and universally

in terms of asymptotic data by employing the Liouville
equation to replace p by V lnp and then using Gauss' law
to evaluate the integral. However, before V lnp is
identified with p on the entire plane, the singularities
coming from the zeros of p must be removed. These
zeros are contained in the numerator of (3.56b)—nump.
Since the logarithm of nump is a harmonic function,
7 ln(nump) is zero, except at the singularities where a 5
function arises. We conclude that removing singularities
amounts to ignoring the numerator of (3.56b) and retain-
ing only p's denominator. Thus,

4
p(r) =—

n

g [c, /(z —z;) ]
i=]

n

1+ fo+ g [c,-l(z —z, )]
i =1

2 2 7 (3.56a)

m 2, 2aG = —— d 0 r'r —lnda 0 Br r
(3.62a)

which again corresponds to an even number of Aux quan-
ta.

The Galileo generator (3.46) becomes
r

or in rationalized form

( )
4 lf'(z) V'(z)l'
~ [ I V(z) I'+

If(z) V(z) I']' (3.56b)
G= —mXR, (3.62b)

The angular integral picks out the subdominant contribu-
tion to d in (3.60). We get
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where

=1R„+iR = —g z, —
n,

c fo
1+If.l'

(3.63)

—i mar /2ttt( 1
—at))It1 2 r

1 —at 1 —at
(3.65)

It remains an open question whether other time-
dependent solutions can be constructed, indeed, whether
Eq. (3.2), or equivalently (3.6) and (3.7), can be integrated.
In this connection it is useful to note that there exists a
completely integrable (2+ 1)-dimensional system de-
scribed by the Davey-Stewartson equation, which bears
some resemblance to our planar, gauged nonlinear
Schrodinger equation. '

IV. DISCUSSION

A. Nature of the magnetic interaction

We elaborate on the nonminimal magnetic interaction,
which we included in our model, and which gives rise to
the cubic nonlinearity with strength g in the equation of
motion (3.2). Note first that even with g =0, the equation
possesses cubic nonlinearities, owing to the interaction
with A and A, which are functionals of field bilinears.
Thus our addition can be viewed as local modification of
already present nonlocal terms. This is especially evident
in the quantum equation of motion (2.9). As already
mentioned there, the additional local kernel g5(r —r') is a
natural partner of the nonlocal kernel e /8n. mc a Ir—r'I that arises from quantum-mechanical reordering.

Not only is the form of the nonminimal interaction
"natural, " but also the specific value of the coupling that
renders the system self-dual, g = + e A/mcK, may be un-
derstood in the following manner. Consider a two-
component spinor y and construct

S=o' 0, —i
Ac

(4. 1)

This is the center-of-mass coordinate (shifted by fo).
The conformal generator (3.48) is not expressible solely

in terms of asymptotic data.
We conclude this discussion of classical solutions by

noting that time-dependent solutions may be obtained
from the above static ones by using the symmetries of the
problem. Obviously, owing to Galilean invariance, the
boosted static solution solves the time-dependent field
equation. From (3.26) we have

'(p(t, r)=exp[i(m/fi)(U r ,'V t)—] I—)(tr—Ut) . (3.64)

Less trivially obvious is the conformal transform (3.32) of
the static solution:

$2
IDx I' — '

2m 2mc
(4.2b)

When y is taken to be an eigenstate of cr, g=(o ) or (~),
the above reduces to (2.8c) with gale=+efi/mc, in
agreement with (3.37). Thus we see that the nonminimal
magnetic interaction corresponds to the two-dimensional
Pauli interaction, which is also known to be supersym-
metric " '"

B. Relativistic generalization

Recently, there has been found a relativistic, Abelian
Chem-Simons model that leads to self-dual equations for
classical configurations. ' In this model the matter de-
grees of freedom comprise a relativistic charged scalar
field ttt whose nonlinear self-interactions take a particular
form. The matter Lagrange density is

(4.3)

mc'I~I
U

Re
(4.4)

so that the Lagrange density (4.3) is

2 p2 4—m'c'I@l'+ '
Igl' — ' IWI'. (4.5)

C K C K

Next, we substitute in (4.5):

where D„b=(3„+i(e/Pic)A„and v is a positive con-
stant.

The interaction potential, which also is the unqiue
form that admits an X =2 supersymmetry, ' allows
symmetry-breaking (lgl =v ) and symmetric ()=0) reali-
zations of the U(1) gauge symmetry. The potential de-
scribes a theory at the critical point of a first-order transi-
tion between the two symmetry phases and, furthermore,
supports solitons that are respectively topological' ' and
non-topological. ' ' We now show that the nonrelativis-
tic limit of (4.3) with the symmetric realization leads to
our nonlinear Schrodinger theory, with nonminimal cou-
pling at the self-dual value (3.37).

Observe first that the quadratic term in a scalar field
potential defines the mass through its coefficient, which is
m c . Comparison with (4.3) shows that v should be
evaluated as

where o' are two Pauli matrices i = 1,2 satisfying
o'o. =6' +i e' o. . It follows that the Hamiltonian density —t(mc t)lt(t'(It+ t (mc t le-@ e

)
7

&2m
(4.6)

S S
2m

also equals, apart from a total derivative,

(4.2a)
All terms that oscillate as c~ oc are dropped. Keeping
dominant inverse powers of c leaves
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. e 0 . e o —
~

2

~i'% 8 +i —3 %+i AV * 8 —irnatter 2m

~ e
V —i A %

Pic

2

2' V+i A %
Ac

$2 2

+ (p +4pp+P )—
2mc Ia.

I

A2e4

. . .(p'+9p'p+9pP '+P '} . (4.7a)

Here p is the density of particles (charge e) p=%'4, while p correspond to antiparticles (charge —e), p=4 *ql. In (4.7a)
particles and antiparticles are separately conserved, and so we may work in the zero antiparticle sector by setting O'=O.
This leaves

2m 2mc~K~ 8m c K
(4.7b)

Comparison with (2.8b) and (3.37) shows that we have regained the attractive quartic (p ) self-interaction with precisely
the self-dual strength, while the repulsive sixth-order (p ) self-coupling is 8(c ) and may be dropped in the nonrela-
tivistic limit, leaving us with the nonrelativistic Chem-Simons-matter Lagrangian:

K f2L= fd rB, AXA+iAfd r4 B,+—fd rA (x'B+ep) —fd r ID%'I
2c 2m

Ae

2mc
I
s'I

(4.8)

The terms containing only gauge fields comprise the Chem-Simons Lagrangian [see (1.5b)].
To accomplish unconstrained quantization of this system, we make use of the recently publicized formalism for quan-

tizing first-order (in time} Lagrangians. ' It is useful to decompose the gauge potential into longitudinal and transverse
components; i.e., we replace the two dynamical variables contained in the two-vector A by m and B defined through

A(r)=%co —VX fdr'G(r r')B(r—') .

Then (4.8) becomes, apart from total derivatives,

fi
L = ——f d rBco+ifif d r0"8,+—f d r A (~B+ep) —f d r

c 2m

. e . e
V —i V'o) —i A

Rc Ac

Ae

2mc I~I

(4.9)

(4.10a)

In (4.10a) the Lagrange multiplier A enforces the
Chem-Simons Gauss law. %'e solve this constraint by
setting B = —(e/x. )p and also redefine the phase of 4 by
%~e'" ""+. This leaves

Ae2I.=isfd'r q 'a, e fd'r —IDeI'—
2m 2mcIa

I

A(r)=VX —f d rG(r —r')p(r') .
K

(4.1 1)

In (4.10b) we recognize our self-dual Hamiltonian [com-
pare (2.5), (2.8b), and (3.37)).

C. Dynamical role of the Chem-Simons interaction

We have already remarked in Sec. II C above that it is
impossible to remove the interaction with the Chern-
Simons gauge field, when the matter density p is an ex-
tended quantity, as in classical field theory or in relativis-
tic quantum field theory, contrary to assertions in the

(4.10b)

where now the derivative D is covariant with respect to
the gauge potential

literature that such an interaction can be removed. The
existence of regular, static soliton solutions both in the
relativistic' ' ' and nonrelativistic classical models, vi-

vidly supports our assertion. For if the gauge field could

be removed by a gauge transformation, our solutions

would be (gauge equivalent to} solutions that stationarize
a scalar field Hamiltonian in two spatial dimensions. But
according to well-known scaling arguments, such station-
ary configurations do not exist beyond one spatial dimen-
sion. Moreover, since in the solution B ~p is extended,
A cannot be a pure gauge.

Thus it is not true that the "effect of the (Chern-
Simons) terms is to transmute the statistics of the parti-
cles and to do nothing else." On the contrary, the
Chem-Simons term supports nonperturbative excitations,
whose role in the nonrelativistic and relativistic quantum
field theory still needs to be further explored.
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