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Self-dual Chem-Simons solitons
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Recently discovered self-dual relativistic solitons in an Abelian Chem-Simons theory are dis-

cussed in detail. The model simultaneously supports topological and nontopological solitons.

I. INTRODUCTION 2e U
rnH =m„=

1 1

—I (1.5)

In this paper we study static classical solutions to a rel-
ativistic U(1)-invariant gauge theory in three space-time
dimensions, where the kinetic action for the gauge field

3„ is solely the Chem-Sirnons term. ' The matter degrees
of freedom comprise a self-interacting charged scalar field

P with a potential V(P) that possesses a minimum away
from the U(1)-symmetric value /=0. It was recently
shown that with a special choice for V(P) the energy
obeys a Bogornol'nyi-type lower bound, which is
achieved by fields satisfying a set of first-order "self-
duality" equations. The topologically stable vortex solu-
tions of these self-duality equations were presented. In
this paper we shall examine these vortex solutions in
more detail, but in addition we shall study a class of non-
topological soliton solutions which are also present.

In three dimensions, any U(1)-invariant renormalizable
potential possessing a symmetry-breaking minimum at
1/1 =u can be written in the form

Here e and x, which are introduced in Eq. (1.1) without
loss of generality for later convenience, are the gauge
coupling and strength of the Chem-Simons term, respec-
tively. (We have set fi and c to unity. ) When p & —,', V ac-
quires a symmetric minimum at /=0, which becomes
lower than the asymmetric minimum if p(0. The theory
possesses two propagating modes. About the symmetric
vacuum they are degenerate scalars with mass

&a(1—3P)e Up— (1.2)

About the Higgs vacuum there is a scalar with mass

2&me U

and a gauge-field excitation that carries mass

2e2U2
t7lg =

The Bogomol'nyi limit is obtained by setting +=1,
P=O. With this choice of parameters, the scalar and
gauge masses in the asymmetric vacuum are equal:

while the scalar mass in the symmetric vacuum is
p=m/2. In addition, the symmetric and asymmetric va-
cua are degenerate, so that one is at a (first-order) transi-
tion point between the symmetric and asymmetric
phases. This choice of parameters also has the special
property that the model is the bosonic part of a theory
with an N =2 extended supersymmetry.

In the asymmetric phase of the theory, there can be to-
pologically stable vortex solutions; for these, the phase of
the scalar $ varies around a circle at spatial infinity in
such a manner that

f„.„dl 7 in/ =2irin, (1.6)

Q= —1~4 . (1.8)

There are no topological invariants in the symmetric
vacuum phase of the theory. However, there exist nonto-
pological soliton solutions with nonzero flux and charge
related by Eq. (1.8). These have a central region in which
both P and 8 are nonvanishing. Their stability derives
from the fact, to be derived in Sec. II, that magnetic flux
is confined to regions of nonzero P. In contrast with pre-
vious examples of nontopological solitons, the mass of
these objects is strictly proportional to their charge, with
the charge-to-mass ratio being the same as for the ele-
mentary excitations. Consequently, there is no upper
limit on their charge.

The remainder of the paper is organized as follows. In
Sec. II we derive the self-duality (Bogomol'nyi) equations
and discuss their general properties. Section III is devot-
ed to rotationally symmetric solutions. In Sec. IV we dis-
cuss "domain-wa11" solutions with finite energy per unit

with n a topological invariant, which takes only integer
values. In order that the energy be finite, the covariant
derivative DP=(V ie A)P —must vanish asymptotically.
This fixes the asymptotic behavior of
A=(A', A )=(A„,A ) and implies a nonvanishing

magnetic flux:

4= f d r VX A= f d rB=
e

These vortices are also charged since in the presence of
the Chem-Simons term any object carrying magnetic flux
must also carry electric charge:
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length and use these to examine further properties of the
rotationally invariant solutions in the limit of large flux.
In Sec. V index theory methods are used to count the
number of self-duality preserving deformations, from
which the number of parameters entering the general
solution with given flux can be determined. Concluding
remarks comprise the final section.

provides crucial stabilization for the nontopological soli-
tons of this theory.

Returning to the energy, we note that, with the poten-
tial given by Eq. (2.2), Eq. (2.9) can be rewritten as

d r D /+iD2

II. MODKI, + '
y 'a+-' @*("—Iyl') +(a, l@l)'

Our model is described by the action

S=f d x[ID„Q +~~ire ~'A F&~
—V(P)J, (2. 1)

+eu 4+ —It)„„dl J,
2

(2.10)

where D„P=(r)„+ieA„)P, the Minkowski-space metric
tensor g„„is diag(1, —1,—1), and the scalar field potential
is obtained by setting a= 1 and P=O in Eq. (1.1); i.e.,

(2.2)

where the line integral vanishes for any finite-energy solu-
tion. Starting with this expression, we can make the usu-
al Bogomol'nyi-type argument. For a fixed value of the
flux, there is a lower bound on the energy:

E& ev'Iel . (2.11)

Variation of this action yields the field equations

D D"P=- av

and

(2.3)

Since static configurations that are stationary points of
the energy are also stationary points of the action, the
Euler-Lagrange equations of the theory will be satisfied
by static configurations obeying the self-duality equations

~ ~q~Pry
2 Py (2.4)

D, P= 7 iD&P, (2.12)

where the conserved matter current J"=(p,J) is given by 2
U

2
(2.13)

I„=ie ( Q*D„Q PD„P' ) .—

The time component of Eq. (2.4),

(2.5)

—~B =p, (2.6)

is just the Chem-Simons version of Gauss's law and im-
plies the relation (1.8) between magnetic flux and electric
charge. It can also be used to solve for A o, giving

Ao=
z z

——BoArg(P) .
B 1

(2.7)

2B2=f d (0 Igl) + +ID/I +v($)
4 'lyl' (2.9)

where Eq. (2.7) has been used to obtain the second equali-
ty.

The term involving 8 /Igl should be noted; it forces
the magnetic field to vanish whenever P does. One conse-
quence of this is that the magnetic flux in the vortex solu-
tions lies in a ring, rather than being concentrated at the
center as in the Landau-Ginzburg model. This term also

The energy can be found from the energy-momentum
tensor

~„,=D„P'D,P+D„PD,,P* —g„„[ID yl' —V(y) J,
(2.8)

which is obtained by varying the curved-space form of
the action with respect to the metric. Integration of the
time-time component yields

F-= f d'r[IDodl'+IDWI'+ V(P) J
E=eu 4 = Igl=pg (2.14)

where p is the scalar mass in the symmetric vacuum.
Thus the energy per unit charge is identical to that of the
elementary excitations in the symmetric phase. This indi-
cates that the collective, nontopological excitations are
just at the threshold of stability against emission of ele-
mentary particles. Consequently, as stated above, stabili-
ty does not impose an upper bound on the nontopological
soliton charges. The topological solitons are of course
stable for topological reasons; their flux is quantized.

where the upper (lower) sign corresponds to a positive
(negative) value of 4&; these solutions achieve the lower
bound in Eq. (2.11).

These equations possess topologically stable vortex
solutions for which

I P I
~ U at large distances and 4 is

quantized. But there also exist nontopological soliton
solutions for which $~0 asymptotically. For these, the
flux is not quantized, but rather is an arbitrary parameter
describing the solution. This parameter can be continu-
ously varied; therefore, it is evident, since the energy
F. =eu I+l, that these solutions are not stationary points
of the energy. This is understood by recalling that the
energy is stationary, provided that the field variations
vanish faster than 1/r Such varia. tions are sufficient to
establish the Euler-Lagrange equations, and so the solu-
tions of the self-duality equations are indeed solutions of
the full field equations. The above-mentioned nonstation-
ary variations have 5 A-1/r.

The energy of a nontopological soliton with a given
charge g is
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Equation (2.12) implies that

eA ':—eA' —V, Arg($)

=+ "v,l. lel . (2.15)

The divergence terms in the last two equalities lead to
boundary terms which vanish for P( ~ ) =0 and P( ~ ) = u,

respectively, and so

When substituted into Eq. (2.13), this gives

v 1 I))l
2

V U

(2.16)

f d r III (2v —
lgl ), P( &x )=0,

e f d r(u IP—
I ), P(~)=v .

K

(2.23)

(This equation holds only away from the zeros of P; at
these zeros there is an additional 5-function contribution
which results when one takes the curl of the gradient of
the function Argg. ) Equation (2.16) does not possess
known solutions, though for small

I P I, when the 0 ( I P I
)

term may be neglected, it becomes the Liouville equation,
all of whose solutions are known. Equation (2.16) is also
the Euler-Lagrange equation for the energylike functional

III. ROTATIONALLY SYMMETRIC SOLUTIONS

We now specialize to rotationally symmetric solutions.
With the aid of a gauge transformation, any static rota-
tionally symmetric configuration of vorticity n can be
brought into the form

18= —f d r (Vlnlgl ) +m 1 —' (2.17)

The angular momentum can be obtained from the
momentum density P via

J=f d rrXV

= —f d r[D&P"rXDP+DogrX(DQ)*] . (2.18)

For static configurations this reduces to

P= vg (r)e'"
A

y
, -reA'=e'~ —[a (r) —n],r

(3.1)

'2 . 2

E =2au f dr r (g')2+ +
0 r mrg

L

with g(r) real. Substitution of this ansatz into the ex-
pression (2.9) for the energy gives

J=—f d r B[erX A —rXVArg(P)] .
e

(2.19)

Let us exclude points where /=0 from the integration
surface; since the integrand is nonsingular on this set of
measure zero, the result for J is unaffected. Because
V X A =V X A away from the zeros of P, we may write

J=l~ f d r(V X A) ~ (rX A)

=~ f d r [V [—,'r( A )
—A(r A)]+(V A)(r A)I .

+ —,'m'g'(1 —g )

where primes denote differentiation with respect to r.
The self-duality equations (2.12) and (2.13) become

Qg

r

(3.2)

(3.3)

(2.20) and

The final term in the last line vanishes because A is
transverse, as shown in Eq. (2.15). This gives

J = Ir f d I—X [ —,
' r( A )

—A( r A )], (2.21)

where the integral is to be taken both around a circle at
spatial infinity and around infinitesimal contours sur-
rounding the excluded points, i.e., the zeros of P.

An alternative expression for the angular momentum is
obtained by substituting Eqs. (2.13) and (2.15) into the
first line of Eq. (2.20), producing

f d'rlgl(u' —IWI')r. VI+I

r 2—=+
r 2

(3.4)

The boundary conditions at the origin follow from the
requirement that the fields be nonsingular. This implies
that a (0)=n and that ng (0) vanish. At spatial infinity,
finiteness of the energy implies that g ( oo ) be either 0 or
1, and that a ( ~ )g ( ~ ) vanish. These requirements leave
g(0) undetermined if n =0, and a(oo )= —a undeter-
mined if g ( ~ ) =0.

Equations (3.3) and (3.4) may be combined to give

2

f d'rIIPI'(2v' —lgl') —V.[rIWI'«' ——,'I(tl')]I
(lng )"+ —(lng-')'= —m'g (1—g ) .

r
(3.5)

= —' f d" I(v' —lgl')' —
—,'V [r(v' —lyl')']I .

(2.22)

This is just the restriction of Eq. (2.16) to our rotationally
symmetric pnsatz For small g, th. e O(g ) term may be
ignored and this equation reduces to the rotationally
symmetric form of Liouville's equation, whose solution
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can be found; it is

&8Ng(r)=
mr

N
r +

ro

ro
N

(3.6)

solution gives

6„
g(r)=G„(mr)" — (mr) "+

8(n +1)

where ro and X are arbitrary constants.
With our Ansatz, the magnetic field is 8 = —a'/(er),

and so the magnetic flux and electric charge are

[a (0)—a ( oo )]= (n +a) .
K e e

(3.7)

From the expression (2.21) for the angular momentum,
we obtain

J= [a ( ~ )' —a (0)']
e2

(a —n )
e2

Q + nQ—
4mK e

(3.8)

In examining solutions of Eqs. (3.3) and (3.4), we shall
consider only those with 4&0, i.e., those corresponding
to the upper choice of sign. Solutions with negative flux
are related to these by the transformation g ~g, a ~—a.
It is convenient to consider separately those solutions
that approach the asymmetric and symmetric vacuums at
spatial infinity, and those with nonzero vorticity separate-
ly from those with n =0. We thus have four categories.

A. g ( 00 ) = 1, n =0

This includes the vacuum solution g(r)—= 1, a(r}=—0.
To see that this is the only solution, note first that the
boundary conditions on the gauge field are
a(0)=a(oo)=0. Now consider a continuous family of
configurations a (r) =A.f, (r), g (r) =f2(r}, which obeys
these boundary conditions. Since the energy is clearly a
monotonically increasing function of A, , any stationary
point must have a(r) identically zero. Equation (3.3)
then implies that g(r) must be a constant, leaving the
vacuum solution as the only possible solution.

6 5

+ (mr)'"+ +O((mr)'" ),
8(2n +1)

(3.10)
4

a (r) =n — (mr) "+ + (mr)4" +2
4(n +1) 4(2n +1)

+O((mr) "+
) .

[The first two terms can be obtained directly from the
Liouville approximation (3.6).] The constant G„ is not
determined by the behavior of the fields near the origin,
but is instead fixed by requiring proper behavior as
r ~ ~. If 6„ is chosen too large, g reaches unity at some
finite value r, , with a (r, ) )0; for all r ) r, , both g' and
a' are positive, and g and a both grow without bound. If
6„ is chosen too small, a becomes negative at some value
r2 while g is still less than unity. For all r & r2, both g'
and a' are negative, and so the boundary condition
g( oo )=1 clearly cannot be met; instead, asymptotically
g~0, while a tends to a negative constant. (These solu-
tions are discussed further in Sec. IIID, below. ) The
value 6„"separating these two regimes gives the vortex
solutions.

In Fig. 1 we plot g (r) and a (r) for the n =1 solution.
The value of 6„"as a function of n is plotted in Fig. 2; in
this figure the solid line indicates the prediction for the
large-n behavior of G„" which we obtain in the next sec-
tion.

C. g ( Do ) =0, n =0

For this case the Higgs field approaches the symmetric
minimum at large distances, and so all configurations are
topologica11y trivial. These are the nontopologica1 soli-
tons. They are characterized by the value of the magnet-
ic flux 4= 2rra(oo )/e =2—~a/e, which need not be
quantized. Equation (3.3} implies that at large distances

I I I
I

I I I

B. g ( 00 ) = 1, n &0

These are the vortex solutions discussed in Ref. 2.
They are topologically nontrivial and hence cannot be
continuously deformed to the vacuum solution. The
boundary conditions are g(0)=0, a(0)=n, and
a(~ )=0. At large distances, the fields approach their
asymptotic values exponentially. Specifically,

g (r) = 1 —yKO(mr),

a (r) =ymrK, (mr),
(3.9)

where y is a constant that is not determined by the be-
havior at infinity, but rather by the requirement of proper
behavior at the origin. Near the origin a power-series

FIG. 1. Plot of g [r) (solid line) and a (r) (dashed line) for the
n = 1 topological vortex solution.
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FIG. 2. Behavior of 6,,
' as a function of n. The solid line

corresponds to the asymptotic formula (4.18) with b(n) =1, i.e.,
G„""=(2n+ 1) ", while the crosses represent actual data.

the Higgs field must behave as g(r)-(mr) . More pre-
cisely, we find

Gog(r)=
1+(m /8)Gor

(3.13)

which is in fact small, and therefore a good approxima-
tion, for all r. Substituting this approximation into Eq.
(3.3) gives

2Ta(r)=—
2+ 8/m 262 (3.14)

In the limit ro~ ~ this approximate solution should be-
come exact, and so the solution corresponding to the lim-

it Go~0 will have a=2 and flux 4=4m /e. By numeri-

cally integrating the field equations for nonvanishing
values of Go, we find that this is in fact the lower bound
on the flux of these nontopological solitons. As shown in

Fig. 3, the flux increases with Go and diverges as Go ap-
proaches unity; we shall derive this behavior in the next
section.

An example of a nontopological soliton is shown in

Fig. 4.

Cg(r)=
(mr}

C3
+O( ( )

—sa+4)
8(a —1) (mr)

D. g(~ )=0, n%0

(3.11)

a(r)= —u+ +O((mr) +
) .

C2

4(a —1)(mr)

Again, the first few terms in this expansion can be read
off directly from the Liouville approximation.

We next consider the behavior near the origin. While
a (0) must vanish in order that the solution be nonsingu-
lar, g(0)=GO is not so constrained. Since the sign
change g(r)~ —g(r) can be implemented by a gauge
transformation, we need only consider the case of posi-
tive Go. To find the behavior near the origin, we attempt
a power-series solution, obtaining

g (r) = Go —
—,
' Go(1 —Go )(mr)

+—„',Go(1 —Go)(2 —36O)(mr) +O((mr) ),
(3.12)

a (r) = —
—,
' Go( 1 —

Go )(mr)

+ —,', Go'(1 —Go )(1 —26O )(mr) + 0((mr) ) .

These solutions will not in general have acceptable large
distance behavior. In particular, it is clear from Eqs.
(3.3) and (3.4) that if Go ) 1, both g and a will be mono-
tonically increasing functions of r and, hence, that the
boundary condition at r = ~ cannot be met. The choices
Go=0 and 1 lead to the constant symmetric and asym-
metric vacuum solutions, respectively. Thus the nontrivi-
al solutions correspond to values in the range 0& Go & 1.
It is of interest to determine the correspondence between
the short- and large-distance behavior of the solution, i.e.,
between Go and cx.

For small Go the Liouville approximation can be used
near the origin. To match the boundary conditions at the
origin, the constant N in Eq. (3.6) should be set equal to
1, while Go =&8/(mro). This gives

These solutions are hybrids of the two previous cases.
Their large-distance behavior is the same as that of the
nontopological solitons [Eq. (3.11)]. At short distances
they resemble the vortex solutions, behaving as in Eq.
(3.10), but with values of 6„ less than the critical value
6„'" needed to give the vortex. They may be interpreted
as nontopological solitons with vortices embedded at
their origin; we shall call them nontopological vortices.

For each integer n there will be a continuous set of
solutions corresponding to the range 0& 6„&6„". For
6„«1,g(r) is small for all r and can therefore be ap-
proximated by the solution (3.6) of Liouville s equation.
In this case, matching of the boundary conditions re-
quires N =n +1 and 6„=&8(n +1)/(mro)" '. As
6„~0 (ro~ ~ ) the solution becomes exact; from its
large-r behavior we obtain the value a=a(oo )=n+2
and the flux 4=4(n+1)m/e. The flux increases with

6„, tending to ~ as G„~G„". An example of this type
of soliton is shown in Fig. 5.

0.1-

0.01-

Q
C)

10

Q
5

10

10

FIG. 3. Behavior of Go as a function of a. The solid curve is

actual data, while the dashed line represents the asymptotic for-

mula (4.20) and d (n) set equal to 2.90.
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I I I I 1

I
I I I

I I I 1 I I I I

10

FIG. 4. Plot of g(r) (solid line) and a(r) (dashed line) for a
nontopological soliton with a =4. 10.

FIG. 5. Plot of g(r) (solid line) and a(r) (dashed line) for a
nontopological vortex with n =1 and o.=4.37.

In conclusion, we emphasize that the limiting values of
a are in fact bounds; the actual solutions for the nontopo-
logical solitons and vortices have a) n+2. Note also
that there is a correspondence between the limit of small
g and the nonrelativistic limit. Indeed, the solitons and
nontopological vortices in the nonrelativistic version of
our model have been found. They satisfy the Liouville

equation and can be explicitly constructed.

IV. DOMAIN WALLS
AND THE LARGE FLUX LIMIT

Whenever a potential possesses two disconnected, but
degenerate, vacua, one expects to find a static classical
solution which may be interpreted as an infinitely long
boundary separating regions lying in the two vacua.
Such a solution does indeed exist in the model we study
in this paper; we shall refer to it as a domain wall, al-
though it is a one-dimensional structure. In fact, because
the boundary can contain an arbitrary amount of flux per
unit length, there is a continuous family of domain-wall
solutions.

Whereas these solutions separate two infinite regions,
one can also consider the possibility of a finite domain of
one vacuum completely surrounded by the other vacuum.
If the radius of curvature of the domain boundary is large
enough, the fields in the region of the boundary should
approximate those near an infinite domain wall. In gen-
eral, this boundary will not be stationary, but will instead
tend to shrink. We shall find, however, that a critical
amount of flux can stabilize such a boundary against col-
lapse. These stabilized domains turn out in fact to be
simply topological and nontopological solitons with large
values for the flux.

To begin, let us seek a solution corresponding to an
infinite domain wall parallel to the y axis, with the scalar
field interpolating between the asymmetric vacuum at
large negative x and the symmetric vacuum at large posi-
tive x. By an appropriate gauge transformation, P=ug
can be made real everywhere. The translational invari-
ance of the theory then implies that g, A, and A de-
pend only on x. With primes denoting differentiation
with respect to x, the energy can be written as

E=u fdr (g')+ g(1 —g )+e(A„+A )g+

2

=u f d r g'+ —g(1 —g ) + eA~g+
2

'2 IeA' m e+ 2A2 2+ (1 2)2 + (A2)i
mg 4 m

(4.1)

The assumed boundary conditions on the scalar field im-
ply g (

—ao ) =1 and g( ao ) =0. To have finite energy per
unit wave length, the gauge field must vanish in the
asymmetric vacuum, and so A~( —~ ) =0. A~( ~ )

=f-
can be chosen arbitrarily, and is equal to the magnetic
flux per unit length of domain wall.

A static solution can be obtained by minimizing the en-
ergy per unit wall length, with f held fixed. [Because f
can be varied continuously, these solutions are not sta-
tionary points of the energy; remarks similar to those fol-
lowing Eq. (2.13) apply. ] Taking the upper signs in Eq.
(4.1) for our choice of the boundary condition on g(x),
we find the minimum energy per unit length to be

1 eD=mu —+ — f~
m'

and

g'= ——g(1 —g'»
2

A'=mA, g

Integrating these gives

( 1+ m(x —x})—1/2

which is obtained if A =0,

(4.2)

(4.3)

(4.4)

(4.5)
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A 3' 1+ —m (x —x) (4.6) e4
277

(4.12)

Here X is a constant of integration determined by the po-
sition of the domain wall, which has a thickness of order
m '. Note that the magnetic field

mB= sech m
4

x —X
(4.7)

T ~= —(D iti*D P+D PD P*)=—(A )', (4.8)

where Gauss's law has been used. The linear rnomenturn
density per unit length along the domain wall is then

K
(4.9)

Although the structure of Eq. (4.1) is similar to that
used to obtain the Bogomol'nyi bound for our solitons,
Eqs. (4.3) and (4.4) are not equivalent to the self-duality
equations (2. 12) and (2.13). This can be easily seen by
noting that the equation governing the scalar field does
not involve the gauge potential, and that the solution for
the scalar field does not depend on the total flux. In fact,
the scalar field equation (4.3) is identical to the finite-

energy soliton equation' in a (1+1)-dimensional scalar
field theory with potential (2.2). The two pairs of Eqs.
(2.12), (2.13) and (4.3), (4.4) are equivalent for

~f ~

=m /(2e).
W'e now turn to the case of a large but finite domain.

Specifically, we consider a circular region of asymmetric
vacuum of radius R »m, with a magnetic flux 4 uni-
formly distributed along the domain boundary. Near the
domain boundary, the fields should be well approximated
by the infinite domain-wall solution with f =%I(2nR). .
Thus, for r =R, we expect

mir —RI) —I/2

(4.10)

3 '= —e'r" —m(r —R)

is concentrated near x =X and falls off rapidly away from
the domain wall.

There is a linear momentum flow along the domain
wall. The nonzero component of linear momentum den-
sity along the domain wall is

and

e4E =2mv~
27K

(4.13)

A E 1
1+em(r —R)

n

eR

with f= &0 I( 2n.R ) = n I(eR ).
Following the same procedure as above, one finds that

the minimum energy for a given flux is obtained when
R =2nm

This approach can be pursued further. For a rotation-
ally symmetric solution, the magnitude of the scalar field

obeys Eq. (3.5). Approximations leading to analytic solu-
tions can be found in three regimes.

(a) When g &(1, the g term in Eq. (3.5) can be neglect-
ed. This leads to the Liouville solution Eq. (3.6). [When
g))1, the g term can be neglected, and Eq. (3.5) be-
comes the Liouville equation of opposite sign, whose
solutions are unbounded and physically uninteresting. ]

(b) When 1 —g &(1, linearization of Eq. (3.5) gives
Bessel's equation, with the result that 1 —g is a linear
combination of the Bessel functions Io(mr) and Ko(mr).

(c) If (lng )'Ir « m g (1—g ), the first-derivative term
in Eq. (3.5) can be neglected. One integration then gives

This value for the energy saturates the lower bound
(2.11), indicating that the fields must be solutions of the
self-duality equations. Indeed, the configuration we have
described satisfies the self-duality equations near r =R
and is nothing but a nontopological soliton of large flux,
@=2m.a/e, with R =2am '. (Recall that for a))2, the
value of P at the center of a nontopological solition is
very close to v. )

A topological vortex solution of flux 4=2mn/e, with
n »1, can be obtained in a similar fashion by consider-
ing a large circular domain of symmetric vacuum of ra-
dius R with a boundary region of width —m '. In order
that the phase of P vary uniformly with angle, we gauge
transform the domain-wall solution, obtaining

v&in8( 1+ m (R —r)) —1/2

(4.14)

Away from the domain boundary, P will be close to one
or the other of its vacuum values, while A should be
essentially a pure gauge.

The energy of such a configuration is concentrated
near the domain boundary. From Eq. (4.2) we expect the
energy to be approximately

E =2vrmRv —+1 e4
4 2vrmR

(4.11)

The domain boundary will be stable against contraction
or expansion when the energy is minimized for a given
flux. Minimizing the energy as a function of the radius,
we find

g'= +- —g [(1—g ) + k ]'/
2

(4.15)

where k is a constant of integration. When k =0, this
reduces to Eq. (4.3) and gives the domain-wall solutions
(4.10) and (4.14).

Now consider a topological vortex solution with vorti-
city n »1. Near the origin, g (&1 and the Liouville ap-
proxirnation can be used. At large r, the approximation
(4.15) can be used. The boundary conditions at infinity
require that k =0, and so g can be approximated by the
domain-wall solution (4.14). This solution can be extend-
ed to smaller r, provided that g'l(m rg )=1/(mrg )

remains small. From the previous discussion we know
that transition from g=0 to g=l occurs at r=2nm
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We therefore expect there to be a region, corresponding
to values of g in the range n ' &(g ((1,where both of
these approximations should be valid. If we write
r =R —(5/m ), then the domain-wall approximation
(4.14) gives, at small r,

g=(1+e )
' +

in Fig. 3; the dashed line in that graph corresponds to
setting d (a) equal to a constant, 2.90.

Finally, let us return to the angular momentum. In the
large flux limit, the linear momentum density is nonzero
only along the domain wall. With the linear momentum
density (4.9) and radius (4.12) of the soliton, the angular
momentum is

—6/2+ (4. 16)

&8(n +1)
mR —5

' n+1
mR —5

mro

where the ellipsis in the first line indicates the corrections
due to the omitted (lng)'/r term, and the second line ap-
proximates the first for r ((R. In this region the Liou-
ville approximation gives, from Eq. (3.6) with X replaced
by n+1,

J =2mR P= a
e-'

This is what we got in Eq. (3.8).

V. MULTISOLITON SOLUTIONS
AND PARAMETER COUNTING

(4.21)

mr0

mR —5
n+1

=v'2 -s/z + ~ ~ ~

n+1 —1

+ ~ ~ ~

(4.17)

The second line is obtained by noting that the second
term in the square brackets is dominant in the region of
interest. Again, the ellipsis in the first line indicates
corrections due to omitted terms in the differential equa-
tion, while the second line is valid in the limit of large n.
By comparing the leading terms in the two expressions,
we see that (mro)"+'=&2(mR)"+'=&2(2n)"+', and
hence that the constant G„" in the short-distance expan-
sion (3.10) of the vortex solution must be

&8(n +1)
(mr, )" +'

The rotationally symmetric solutions are only special
cases; the set of classical solutions is in fact much richer.
For fixed values of the vorticity and flux, we expect the
general solution to depend on a number of continuously
variable parameters. Furthermore, these parameters may
have a natural interpretation in terms of a multisoliton
description of the solution.

We shall count these parameters, using methods simi-
lar to those which have been used in other self-dual sys-
tems. "' The basic idea is to note that the variation of a
parameter gives an infinitesimal fluctuation of the fields
which preserves the self-duality equations. Such modes
lie in the kernel of a matrix linear differential operator 2),
from the dimension of which one can determine the num-
ber of independent parameters. This dimension is deter-
mined in two steps. One first derives an index theorem
which expressed the index

1

[2n +b(n)]"
(4.18)

g(g)) =dim(kerneLO) —dim(kerneLO" )

C = [2a+c (a)] (4.19)

while the value of the scalar field at the origin is given by

0 (4.20)

Both c(a)/a and d(a)/a vanish in the limit a~ oo.
Equation (4.20) should be compared with the data shown

where b(n)/n ~0 as n tends to infinity. The nonleading
behavior at large n can be found by finding the correc-
tions to the domain-wall and Liouville approximations.
As shown in Fig. 2, the actual value of G„" is fit rather
well by Eq. (4.18) with b (n) =1. For n ranging from 1 to
8, we find that (G„") ' " is given by 3.09, 5.07, 7.05, 9.04,
11.04, 13.03, 15.02, and 17.01.

A similar procedure can be applied to the nontopologi-
cal solitons with a&)1. In this case one must use all
three approximations: the Bessel-function solution near
the origin, the Liouville solution at large distances, and
the domain-wall solution in between. The constant k in
Eq. (4.15) does not vanish, although it tends to zero in the
large-o. limit. One finds that the constant C in the large-
distance expansion (3.11) is

=dim(kerneLO*X)) —dim(kerne192)*), (5.1)

in terms of spatial integrals involving the background
fields. The second step is to prove a vanishing theorem
stating that the adjoint operator 2)* has vanishing kernel,
so that the index is in fact equal to the dimension of the
kernel of 2).

Although we follow rather closely the analysis' used
to study Landau-Ginzburg vortices, we encounter two
difficulties which do not arise there. First, the vanishing
theorem fails whenever a certain Schrodinger equation,
involving the Higgs field of the self-dual solution, has a
zero-energy bound state; we believe that this occurs only
for exceptional field configurations and does not affect the
counting of parameters. Second, the formula we obtain
for the index does not necessarily yield an integer when
the background field is a nontopological soliton, whereas
Eq. (5.1) clearly requires the index to be integral. The
problem can be traced to the fact that the operators we
deal with act on an open infinite space; they have a con-
tinuous spectrum in addition to the discrete set of eigen-
values. ' ' For the topological vortex case, the continu-
um is separated by a finite gap from the zero eigenvalues
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and causes no problem. However, when $~0 at spatial
infinity, the continuum extends to zero and affects the
calculation of the index. Fortunately, we are able to
adapt the analysis of a related problem to determine the
continuum contribution. ' Subtracting this from the re-
sult of our calculation yields an integer. (Even when the
result for the index is an integer, this continuum contri-
bution may be nonzero, although integral. ) As a check of
this answer, we then explicitly study the zero-mode equa-
tions in the background of a rotationally symmetric solu-
tion and show that the predicted number of zero modes
emerges.

Thus, let us suppose that we are given an arbitrary
self-dual solution with fields A and P =P, +i P~
Infinitesimal Auctuations which preserve self-duality
satisfy

and

(D, +iD2 )5$ iep—(5 A '+i 5 A ~)=0,

2

eV X5 A=, «' —2IyI')IyI5IyI .

(5.2)

(5.3)

Many of these are simply gauge transformations; they are
of no interest and can be eliminated by imposing a gauge
condition. A particularly convenient choice is the back-
ground gauge condition

eV 5A+ ($*5$ $5—$*)=0—,
2

(5.4)

which is equivalent to requiring that the fluctuation be
orthogonal to all gauge transformations whose gauge pa-
rameter vanishes at spatial infinity. When ~P~~v, those
gauge transformations whose parameter does not vanish
asymptotically are also excluded, since the corresponding
5$ does not vanish at spatial infinity. If instead P ap-
proaches the symmetric vacuum, there is one surviving
gauge mode with asymptotically nonvanishing parameter
which is not excluded by Eq. (5.4). This mode, which is
analogous to the global gauge modes of the multi-
instanton solutions and the global U(1) mode of the mul-
timonopole solution, " must be explicitly subtracted at
the end of the calculation.

These equations can be summarized by a single matrix
equation

each'

e5A

(5.7)

In order to evaluate the index of X), let us define

M
2(2) ) = lim Tr

M' 2)*2)+M
M—Tr

2)2)'+ M

(5.8)

where Tr denote a functional trace. Now observe that if
g is an eigenfunction of 2)*2) with nonzero eigenvalue,
then 2)g is an eigenfunction of 2)2)' with the same eigen-
value. By evaluating Eq. (5.8) in a basis corresponding to
the eigenfunctions of these operators, it would seem that
the contribution from nonzero eigenvalues would cancel
between the two terms, and that 2(2)) would be in fact
just the index we seek.

If there were only a discrete spectrum, there would be
no dimculty in carrying out this one-to-one cancellation
between eigenvalues. However, when there is a continu-
um spectrum extending to zero, there can also be a con-
tribution from the lower end of the continuum. To ob-
tain the number of normalizable zero modes, this contin-
uum contribution must be subtracted from Eq. (5.8).

We now evaluate 2($). A straightforward calculation
shows that

S'2)= —V I L, ,
—

2)2)*= —V I L2, — (5.9)

where L, and L2 are first-order differential operators that
satisfy

tr(L~ L2) =4B, — (5.10)

with tr denoting the matrix trace. The two terms in Eq.
(5.8) can each be expanded about M (

—V +M ) '. The
leading terms in the two expansions are identical and
cancel, while the third and higher terms vanish in the
M ~ ac limit. This leaves only the second terms, which
give

J"(2))= lim J d r tr(L, L2)M (x~( V'—+M ) ~x )—
M

0=,Sg,
where

(5.5)

=2(n +a) . (5.1 1)

V, +eA —V2+eA '

V2
—eA ' V, +eA '

$, U

U =2(m /v )(v —2~/~ ), and

V —V2 1

V, V2

(5.6)

For the vortex solutions a=O, there is no continuum
contribution, and our result is indeed an integer. On the
other hand, for the solutions which approach the syrn-
metric vacuum at large distances, J(2)) need not be an in-

teger and thus clearly contains a continuum contribution
which must be calculated and subtracted.

Because this contribution arises from the zero-
frequency end of the continuum, it is sensitive only to the
large-distance behavior of 2) and 2)*. Omitting all terms
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l{(t( ~ )I =U
Z(2))= '

2n +2a, P( ~ )=0, (5.12)

where a is defined to be the greatest integer less than a.
We now examine the kernel of 2)'. Any solution of

O=X)"P must also be a solution of

which fall faster than 1/r makes 2) block diagonal, al-
lowing us to divide the eigenfunctions into those with
only upper components nonzero and those with only
lower components nonzero. From an examination of 2),
it is obvious that the latter make no contribution and can
be ignored. The former eigenfunctions correspond to
the solutions of (D, +iD2 )5$ =0. By noting that

D,—+iD2 and its adjoint 2) *—= Di—+iD, are just
the off-diagonal elements of the Dirac operator
i (02D, +cr,D2 }, one can easily show that the calculation
of the index of 2) is essentially equivalent to the problem
of counting the fermion zero modes in the presence of the
gauge field A (more precisely, the difference between the
number of positive- and negative-chirality modes). The
continuum contribution to this calculation was studied
some time ago. In our notation, the result' is that the
continuum contribution to the fermion problem is equal
to the fractional part of a if a is nonintegral, and unity if
a is an integer. Although P and i f are not counted sepa-
rately in the fermion problem, the corresponding modes
in the parameter counting problem must be treated as
linearly independent; because of this, we must multiply
by 2. Doing so, and then subtracting from S(2)), we ob-
tain

in general expect this to be the case; therefore, 2($)
indeed counts the zero modes of 2).

As a check of these formal manipulations, let us explic-
itly count the zero modes about an arbitrary rotationally
symmetric solution described by functions g (r) and a (r)
according to the Ansatz (3.1). From Eq. (5.2) we find that

. . v, 5lyl
e5 A ' —V;5 Arg(P) =e'J (5.19)

Substituting this into the background gauge condition
(5.4) then gives

0=( —V + llI)l )5Arg(p) . (5.20)

Pll=g(r)[1 +h(r, 8)] . (5.21)

By expanding the differential equation (2.16) obeyed by
the magnitude of the scalar field, we obtain

0= —V' h+m (2g —g )h, (5.22)

This has singular solutions, which can be accepted if the
singularity in 5Arg(P) occurs at a zero of P. By match-
ing the singularities of these with the singularities we
shall find for the right-hand side of Eq. (5.19), a nonsingu-
lar 5A can be obtained. In addition to these, there is a
also a solution with 5 Arg(P) asymptotically constant if
/=0 at spatial infinity. This solution corresponds to the
single gauge mode allowed by the background gauge con-
dition.

Thus, once 5lgl is found, 5A and 5Arg(ltl} can be
determined. Let us write

2 V2 Vi

0 0 02

{('20 0

0=M)'lj'j,

for any operator 8. In particular, let us choose

(5.13)

(5.14)

which is identical to Eq. (5.16). When studying the ker-
nel of 2)', we were only interested in normalizable solu-
tions of this equation, which in general we expect to be
absent. Here we must consider a broader class of solu-
tions, since a non-normalizable solution for h may give a
normalizable 5lpl. If

h (r, e)=ho(r)+ g [hJ"'(r)cos(JH)+hJ '(r)sin(J8)],
J=l

0=( —V + Pl )g (5.15)

[It is easy to see that there are no nonzero solutions to
Gr) =0, and so all solutions to Eq. (5.13) do in fact lie in
the kernel of S".] Using the equations satisfied by the
unperturbed solution, we find that Eq. (5.13) becomes

then the h~" obey

0=—1 d d (/)r hJ'
r dr dr

(5.23)

J2

r
+m g (2g —1) hj" .

2
o= —v'+, (2lyl' —U')lyl' y3,

0= lpl'q, +(y,v, y,v, )y, (y,—v, y,v, )—q, ,
—

(5.16)

(5.17)

~2 ({ 1V2+42V1)03+(elVl 42V2) P4 '

The first of these implies that for any square-integrable
solution g4 must vanish. The last two equations then
determine il'j, and $2 in terms of $3. We are left with the
second equation for $3, which tells us that 2)' has a
nonzero kernel only if that Schrodinger equation has a
normalizable eigenstate with zero energy. We would not

(5.24)

Near the origin, the solutions of this equation behave as

P"r + Q"r, JWO,
h (i)

PJ +QJlnr, J=0, (5.25)

provided that g(0) is finite. This is also the behavior as
r~ ao ifg(ao )=0, while ifg( ~ )=1

hJ PJ IJ(mr)+QJ KJ(ml ) (5.26)

Of course, the P and Q coefficients are all different in the
various asymptotic regimes.

Not all of these solutions are acceptable. Near the ori-
gin, 5lpl —gh -r h must certainly be finite. This implies
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that QJ" must vanish unless J ~ n, and furthermore that
Q0=0 if n =0. We constrain the solutions at spatial
infinity by requiring square integrability, so that the
terms in the energy which are quadratic in the Auctua-
tions are finite. Thus we require that 5~/~ =gh —r h

tend to zero faster than 1/r. For the vortex solutions,
where g ( ~ ) =1, this means that the QJ" must all vanish,
while for the solutions which approach the symmetric
vacuum, QJ' can be nonzero only if J (a —1.

If for a given choice of J and a both solutions are well
behaved at both r =0 and ~, then there are clearly two
linearly dependent acceptable solutions of Eq. (5.24). If
both are well behaved at the origin, but only one at r = ~
(or conversely), then there is one and only one acceptable
solution. This leaves only the case in which both J) n

and J ~ a —1, where there is only one well-behaved solu-
tion at each limit. In general, we would not expect to be
able to match these solutions to obtain a globally accept-
able solution. If they can be matched, the result is a nor-
malizable solution of Eq. (5.22) and, thus, of Eq. (5.16).
Thus, these extra solutions exist if and only if 2)' has a
nonvanishing kernel.

Once we have a solution for 5~/ ~, Eqs. (5.19) and (5.20)
must be used to determine 6A and the phase of 5$.
When JWO, the singularity in Vh can be canceled by
choosing a singular solution of Eq. (5.20), so that the final

5P and 5 A are nonsingular. This cancellation cannot be
carried out for the J =0 modes, which correspond to de-
formations of the original solution that change the values
of n and a. The former type of deformation is unexpect-
ed, since n should be quantized. Indeed, although this
mode gives a nonsingular solution of Eq. (5.22), it cannot
be extended to a solution of the full set of equations (5.5),
since 5 A has a 1 ir singularity at the origin which cannot
be removed by a gauge transformation. The mode corre-
sponding to a change in n is nonsingular near the origin,
while at large distances 5A falls as 1/r This b.ehavior is
consistent with finite energy, and this mode is evidently
counted by 2(2)). Nevertheless, since a change in a
changes the energy, this mode does not correspond to a
parameter. Subtracting both this mode and the gauge
mode, alluded to above, which is present when P( &n ) =0,
we find that the number of parameters is

2n, /$(oo)/=v
number of parameters = ' „() 0

(5.27)

The result for the upper case, ~$( ~ )
~

= v, is the same as
for the case of Landau-Ginzburg vortices. '- For that
case the parameters specify the positions in the plane of n

independent vortices. " We expect that the 2n parame-
ters in our case similarly specify the positions of n in-

dependent topological vortices.
To seek a multisoliton interpretation where 4 asymp-

totically approaches the symmetric vacuum, we first con-
sider the case n =0, +&0. One might expect solutions
consisting of some number A "lumps, " each resembling a
spherically symmetric nontopological soliton, surrounded
by a region of approximate vacuum. For each of these
lumps there would be two position parameters x, and y, ,
an a; specifying its fiux and a U(1) phase 0, . These 4N
parameters should be reduced by 1 because a simultane-
ous shift of all the 0, is simply a global gauge transforma-
tion and should again be reduced by 1 because the sum of
the a, is constrained to be equal to a. Since each of the
a; must be greater than 2, N must be less than a/2, so
that for 2k &a ~ 2k+2, the generic solution should con-
sist of N =k lumps. The enumeration above would then
give 4k —2 parameters. This agrees with Eq. (5.27) for
2k (a~2k+1, but falls short by 2 for 2k+1(@~2k
+2. We do not have an understanding, of these extra two
parameters. The 2n additional parameters when n is also
nonzero presumably can be interpreted as the positions of
n vortices superimposed on a rnultinontopological soliton
solution.

VI. CONCLUSION

In this paper we have described a novel type of self-
dual system. It occurs at the transition point between the
asymmetric and symmetric phases of the theory and has
soliton solutions appropriate to each. In the former case
there are topologically stable vortices, carrying a quan-
tized charge, while in the latter case the solutions are
nontopological in nature and (at least classically) have a
continuously variable charge. The existence of these
solutions even when the gauge-field kinetic energy con-
tains no Maxwell term vividly demonstrates the
effectiveness of the Chem-Sirnons interaction. Without
stabilization by gauge-field dynamical effects, scalar fields
cannot support static, finite-energy excitations. Thus,
contrary to occasional assertions in the literature, ' the
Chem-Simons interaction does more than merely change
statistics.

While some aspects of the classical theory, such as a
complete description of multisoliton solutions and their
behavior away from the self-dual point, remain to be
clarified, perhaps the most interesting open questions are
associated with the quantum theory. Upon quantization,
the classical solutions give rise to quantum particle states,
in a fashion familiar from previous studies. ' The proper-
ties of these states, including their statistics and the
quantization of charge, await further investigation.
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