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Statistics transmutation in Maxwell-Chem-Simons theories

Toyoki Matsuyama*
Research Institute for Fundamental Physics, Kyoto University, Kyoto 606, Japan

(Received 19 March 1990)

We study (2+1)-dimensional Abelian gauge theories in which the gauge field has both Maxwell
and Chem-Simons topological terms as the action and is coupled to a generic matter field. It is

shown that the statistics of the matter field is transmuted into an anyonic one when a suitable basis
for the field operators is chosen. The redefined matter-field operator with transmuted statistics has

a local intrinsic fiux.

I. INTRODUCTION

The observation that spin and statistics may transmute
into an exotic one due to topological terms' in (2+1)-
dimensional space-time has attracted much attention re-
cently. It has been argued that the statistics transmuta-
tion has an important experimental consequence in the
physics of high- T, superconductivity.

Wilczek considered the possibility of exotic statistics
appearing in 2+1 dimensions. The object obeying the
unusual statistics is called an anyon. Wilczek and Zee
studied the CP' model [O(3) nonlinear 0 model] with the
Hopf term The to. pological soliton contained in this
theory, discovered first by Belavin and Polyakov some
time ago, is anyonic and becomes fermionic in a special
case. The theory of the anyon was examined further by
several authors. '

Dzyaloshinskii, Polyakov, and Wiegmann ' studied
the CP' model with the Chem-Simons term. ' This theory
may be regarded as a low-energy effective theory of the
model of Wilczek and Zee. They demonstrated the
change of statistics, so-called Bose-Fermi transmutation,
in this effective theory. The statistics transmutation can
be shown in a more elegant fashion in the path-integral
method. ' These inspiring works ' have suggested a
possible connection of the gauge theory with the Chern-
Simons term to high-T, superconductivity and have led
to extensive study of the statistics transmutation in 2+ 1

dimensions. "
It was suggested in a series of papers ' that the

charged fermions coupled to the U(1) Chem-Simons term
will be transmuted to bosons and the Bose condensation
leads to a superconducting state. Inspired by these
works, we investigated the Chem-Simons CP' model cou-
pled to charged fermions. ' We constructed the general-
ized Hamiltonian formalism of this theory and quantized
the system by using the canonical method and the path-
integral method. The Gauss-law constraint in this theory
can be solved by expressing the gauge potential in terms
of a multivalued function. This vector potential can be
absorbed in the matter field by passing to a new operator
basis. The canonical (anti)commutation relations of the
matter-field variables become anyonic in this new basis.
In particular, for a special value of a parameter that is

the coefficient of the Chem-Simons term, commutators
are changed to anticommutators and vice versa. Thus
the transmutation of the statistics is understood in terms
of the canonical commutator algebra. The quantum-
mechanical version was also considered and we found
some interesting aspects. '

A similar result was obtained in a general way for the
U(1) Chem-Simons theory. We were able to show that
the statistics transmutation occurs in the U(1) Chern-
Simons theory coupled to a generic matter field. ' We ap-
plied the symplectic geometrical method to construct
the generalized Hamiltonian formalism in this theory.

The Chem-Simons CP' model (coupled to fermions) is
believed to be obtained from some statistical model as an
effective theory. ' "" The Chem-Simons term (which
is the first-derivative term) is expected to appear as the
leading contribution in the long-wavelength limit of this
model. As the next to leading order, there can arise the
usual Maxwell term of gauge field (which is the second-
derivative term). The canonical structures of the theories
with and without the Maxwell term are vastly different.
It is an interesting question whether the statistics
transmutation due to the Chem-Simons term will disap-
pear or it will be unaffected by adding the Maxwell
term. '

In this paper we extend our previous approach to the
case where both the Maxwell term and the Chem-Simons
topological term are present in the Lagrangian and the
gauge field is coupled to a generic matter field by minimal
interactions. We call such theories an Abelian topologi-
cal massive gauge theory' or Maxwell-Chem-Simons
theory. We construct the generalized Hamiltonian for-
malism of this theory using the symplectic geometric
method. We are able to solve the Gauss-law constraint
explicitly by dividing the gauge field into the transverse
and longitudinal components. We show that the statis-
tics of each matter field is transmuted to the anyonic one
when a suitable operator basis is chosen. The equal-time
(anti)commutation relations between the matter fields are
changed into the anyonic ones. The longitudinal part of
the gauge field is absorbed in the matter fields and the
statistics of the matter is transmuted. Different from the
case where the gauge field has only the Chem-Simons
term as the action, the dynamical degree of the freedom
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of the gauge field is remained. The equal-time commuta-
tion relations between the gauge field and the matter
fields also are changed in a nontrivial way, from which
we show that the intrinsic local flux is attached to the
transmuted matter fields.

This paper is organized as follows. We construct the
generalized Hamiltonian formalism following the sym-
plectic geometric method. The system is quantized
canonically in Sec. III. In Sec. IV, a new basis of the field
operators is introduced, and it is shown that the system
can have the anyonic statistics. We devote Sec. V to con-
clusions.

II. GENERALIZED HAMILTONIAN FORMALISM

and eliminate E~ to cast two terms in Eq. (3) into the
standard canonical term. Then Eq. (3) is rewritten as

T

r=rlJA + ' flj++~'&A,
2k 2

n ++a A"
kg

——8+AJ'k
2 I

g$i+F eV(j A +Jo0 ) 2 i J (4)

H and A are the phase-space variables that are conju-
gate to each other. Notice that the system is accom-
panied with the constraint

The Lagrangian density of the Maxwell-Chem-Simons
theory coupled to a generic matter field q is given by a n~++~'Ja A +J'=O.

J 2 I J (5)

F—F~—"+&~~"~A a A
k

4 pv 2 p v p

JP, +g mRttcl'( ~ A )

Here the second term in the right-hand side of Eq. (1}is
the Chem-Simons term, multiplied by a parameter p.
The parameter k is introduced in the first term in order
to trace the effect of the Maxwell term. We assume that
the theory is gauge invariant and the interactions are the
minimal gauge coupling, and we do not need to specify
the matter Lagrangian X ""'further.

We wish to construct the generalized Hamiltonian for-
malism of the theory described by the Lagrangian (1).
This can be made in a most transparent way by using the
symplectic geometric method recently advocated by Fad-
deev and Jackiw. In the present case, this method al-
lows us to solve all the constraints in terms of dynamical
variables and to cast the Lagrangian in the standard
canonical form.

First we rewrite Eq. (1) in the first-order formalism
treating A „and F„as independent variables:

L= ——(8 A —8 A —'F, )F""+~a"'~A—8 A
k

p v v p 2 pv 2 p v p

JP ++m st t ef
P

For the canonical method, it is convenient to use the
two-dimensional vector notation. Equation (2) now be-
comes

X=kE A ' —+e"A A + EE' 8+ A—J'——
J

+ A ( k r}E'+ pe') d A +J ) +X (3)

kEi &v g l2

where the overdot indicates the time derivative. We have
defined the electric field E' and the magnetic field 8 byE'=F' and 8 = —,'E'~F, , respectiv—ely (i",j =1,2). Here
we regard A ' and E' as independent variables and 8 is
expressed in terms of 3 '.

The first and second terms in the right-hand side of Eq.
(3) contain first time-derivative terms. We define new
variables

This is the Gauss-law constraint reflecting the gauge in-
variance of the system.

Our next problem is to solve the Gauss-law constraint
Eq. (5). We separate each of the field variables A J and IP
into the transverse and longitudinal parts as
A'= Af+ A)( and EJ=EP+Ej. So Eq. (5) becomes

a n& = — +~'&a A '+J'
L

The longitudinal component HL can be expressed as
HL =O'X introducing a scalar function X. Then we get

8 BQ, = — +e'id A +J
2

7

which is the Poisson equation in two dimensions. The
solution is

k(x)= f d y(ln~x —
y~ +const)

1

4m

X +e"3,A, (y)+J (y)

We obtain the solution of the Gauss-law constraint (5):

O'L(x)= fd'y, +e™r)IA +J (y) . (6a)2n/x —
y
./' 2 ™

Further, the solution (6a) is formally rewritten in the
form of a total derivative by using a multivalued func-
tion. We introduce the angle variable A(x —y) between
the vector x —

y and the first axis in the two-dimensional
space, that is,

2 2

tanQ(x —y) = X

X

By noting the relation

O'„Q(x —y}=—ej
/x —y/'

we can represent Eq. (6a) as
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HjL(x)= d y e "t)i, Q(x —y) +e' t)i A +J (y)
~ 1

(6b)

i=wy= ——=J1- o

e

a H'++~'ja, A'1 ~

i L

As an important property of Q(x —y), we should notice
the relation

e—'jt)", t)"Q( x y—) =2vr5( x y—),
which indicates that we should consider e"t}";t)jQ(x—y)
as a distribution function reflecting the multivalued na-
ture of Q(x —y). Keep in mind that HjL is expressed in
terms of A and J and is not an independent field vari-
able any more.

After the separation into the transverse and longitudi-
nal parts, the Lagrangian Eq. (4) is written as

z=rv AL+
J L J

+ Hj + +E'~A'+Hj + &E'~A'1

2k 2 ' 2

= ——'a:- H'++~'jA'
L

L Hi ++&ij A T
i L 2 j

where the charge-density operator is given as J
ie—wry W. e notice that the term HL A in Eq. (11) is

canceled by the second term in the right-hand side of Eq.
(8). Finally we obtain

Hi + QEiJ AL A
'T

T 2 I J

+ Hj +&E'&A'+Hj +&E'jA'1

X H'++e A "+H'+&~ A"
2 "J & i 2 x

g 2+ ( A T+ A L)Ji+~matter
2 I I 7 B2+ A TJi +~ rnatter

2 1 (12)

where 8 = e' 8; A . The—second term in the right-hand
side of Eq. (8) is not the canonical form since rIL is given
as Eq. (6). We must reconstruct the standard canonical
term by changing variables and defining suitable new
variables.

We try to eliminate A by the phase change of the
matter fields. Now we are assuming the minimal gauge
coupling so that the interaction term appears in the form
of (t); ieA; —)tp, where e is the gauge coupling constant.
Under the change as q~e'=tp, the term is transformed as

(t), ieA, )rp
— e'=(t3, +it), :- ieA, )tp . —

H; has disappeared from terms containing the time
derivative. But A, remains and the form of the standard
canonical term has not been realized. To accomplish the
construction of the standard term, we define a new field
variable P) as

H~, +&a'&A'= Pj . —
2

Then the Lagrangian density becomes

X=PPA,T

py+ &zii A T+ Hi p T+ &~
1

In order to eliminate A;, the condition
g2+ A TJj +smatter

2
(13)

8, :-=eA,L (9)

:-(x)=— fd y{ln~x —
y~ +const)et}' A, (y) .

Now AL disappears from the interaction term. On the
other hand, this phase change of the matter field affects
the canonical term of the matter field like uy, where w is
a canonically conjugate variable of y. The term is
transformed as mjp~ my+i:"wg. The additional term is
rewritten using Eqs. (5}and (9) as

should be satisfied. We solve Eq. (9) using the same tech-
nique as we have solved the Gauss-law constraint (5}.
The solution is

We have completed the construction of the standard
canonical term. Remember that B is represented by A~,
and HjL is given by using AT and J as Eq. (6). In the
sector of gauge field, all of the constraints are solved and
the system is described by the true dynamical variables.
The matter sector denoted by X "'" might have some
constraints. If so, we repeat the above prescription of the
symplectic geometric method or we may rely on the
Dirac method if it is still hard to solve the constraints.
In any case, it is possible to obtain a canonical form of
the matter fields.

III. CANONICAL QUANTIZATION

Based on the Lagrangian density (13), we quantize the
theory by imposing equal-time (anti}commutation rela-
tions as



3472 TOYOKI MATSUYAMA 42

[A, (x),P, (y)] =i A5,,(x —y);
[q(x),qHy)]+=( ),
[~(x),~(y)]+=( ),
[y(x),~(y)]+=( ) .

(14)

(15)

8(x)= f d'y 0(x—y)J (y)
27Tp

(18b)

B=—e"t};X + —J (x)o
I J

where Q(x —y) is defined in Sec. II. On the other hand,
8 = —e'JB; 3 is rewritten as

5, (x —y) is the transverse delta function which satisfies

t},'5;, (x—y) =t}j~5;,(x—y) =0
by using Eqs. (7) and (17). So, we obtain the Hamiltonian
density

The empty parentheses represent terms that arise from"'"and we do not need to specify them for the present
purpose. The index —(+) means the commutator (an-
ticommutator). The Hamiltonian density of the system is

(PP+ije"X; )(P +pek, X&)+ 8—
1XT+ gx8(x) Jj +~matter
e

(19)

Pj++, etjA r+Pi Pr++e
2k i L j 2 kj T j

g2 A TJj+~matter
2

(16)
y—:e'"g, co=coe (20)

The multivalued function still remains in the interaction
term of Eq. (19). Let us perform the phase transforma-
tion of the matter fields as

IV. STATISTICS TRANSMUTATION

Now we present the statistics transmutation of the sys-
tem. In the Hamiltonian density Eq. (16}, IIj contains
the multivalued angle variable as shown in Eq. (6b). We
wish to eliminate II by transforming the operator field
variables. First, we introduce a new variable X; as

e' A . + IIj =pe' XL— (17)

The transversality of X; is kept consistently in the
definition of Eq. (17). Using the Gauss-law constraint Eq.
(5), we can rewrite Eq. (17) to

pe""rj(A —X )= —JJ J

If we introduce a scalar function P by A, —X, =ejkt}"tt}
noticing that A - —X is transversal, we have
t};t}'P=(1/tM)J, which can be solved as before. The solu-
tion is

tt(x)= — f d y(lnlx —
yl +const) —J (y)2 2 & O

4m p

The equal-time (anti)commutation relations, Eqs. (14) and
(15), and the Hamiltonian density, Eq. (16), describe the
quantum theory on the true phase space consistently.

It should be noticed that we arrived at the quantized
theories without specifying the gauge-fixing condition.
This is the superior feature of the algorithm of the sym-
plectic geometrical method. We have solved the con-
straint explicitly in the construction of the generalized
Hamiltonian formalism. The remaining variables are the
true phase-space variables. So we have not needed the
gauge-fixing condition. The result obtained in this paper
is independent of the gauge choice.

where the variables with the hat are newly defined. The
interaction term has the form

t} ie X—+—t}"8(x)J J e J

Under the definition Eq. (20), the term is rewritten as
e (Bj ieXj —

)qr so that the inultivalued function is elim-
inated. (The phase factor e' is canceled by e ' from
to.} Finally we obtain the Hamiltonian density

(P)+pe"X, NP, +pe„,Xrk)

g 2 X rJj + re'matter

2
(21)

[g(x),J (y)] = —etP(x)5(x —y),
[~(x),J (y)] =e~(x)5(x—y)

(22a}

(22b)

hold. [Equation (22) and the current-conservation law
lead to the Ward-Takahashi identity. ] From Eqs. (18b)
and (22), we obtain

The multivalued function has been eliminated complete-
ly.

How about the canonical equal-time (anti)commutat-
ion relations? The transformations Eqs. (18) and (20) in-
clude the quantum operator J and the multivalued func-
tion 0 so that they may change the commutation rela-
tions. In fact, we show that the commutation relations
are modified in a nontrivial way.

Before that, we derive important formulas for later
convenience. We are now considering the gauge-
invariant theories so that the commutation relations

and we obtain 1, ejk(» —y)" 1 oA (x)=XT(x)— fd'y, —J'(y)
2ir lx —yl' p,

=X'(x)+—a"8(x),1

J e J

e2
Q(y —x)ttt&(x),

27Tp

e
[co(x) 0(y)] = Q(y —x)co(x) .

2&IM

[g(x) 8(y)] (23a)

(23b)

(18a}
We should notice that Eqs. (22) and (23) are guaranteed
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2

e ''" co(y)e''"'= exp i Q(x —y) co(y),
277@

(24b)

which are very useful later.
Now we derive the equal-tiine (anti}commutation rela-

tions in the transformed system, which is described by
the variables X;, P;, cp, and co. The commutation rela-
tions between the gauge-field variables are

[X, (x),X, (y)] =[P, (x),P, (y)] =0,
[X, (x),P, (y)] =iR5,, (x y),—

(24c)

which are the usual ones. Between the gauge-field vari-
ables and the matter-field variables, we obtain commuta-
tion relations as

[j(x),P, (y)] =[co(x),P, (y)] =0, (25a}

[f(x),X; (y)] = c},"Q(y —x)g(x),
27Tp

(25b)

[co(x),X; (y)] = — c}~Q(y—x)co(x),
2 7Tp

(25c)

by the gauge invariance of the theories. Equation (23)
gives us important relations as

2

e ' (x)g(y)e' (x)= exp i — Q(x —y) y(y),
27Tp

(24a) co(x)co(y)+co(y)co(x)=( ),
g(x}co(y)+co(y)g(x) =( ) .

(ii) When e /2p = (2m + 1 )m., we obtain

g(x)g(y)+( —1)g(y)y(x)=( ),
co(x)co(y)+ ( —1)co(y)co(x)=( ),
j(x)co(y)+ (

—1)co(y)j(x)=( ),

(27)

(28)

where m is integer.
In case (i), the (anti)commutation relations of the

transformed variables Eq. (27) agree with the original
ones Eq. (15). The case (ii) is specific where the commu-
tators (anticominutators) of the original variables are
changed to the anticomrnutators (commutators) of the
transformed variables. This is just the Bose-Fermi
transmutation. In the other region of the value of the pa-
rameters, the interpolating statistics between the Bose
and Fermi statistics is realized. Such an exotic case cor-
responds to the anyon statistics.

The commutation relations between the gauge field and
the matter fields also give us an interesting interpretation.
We can find that the transformed matter variables have
an intrinsic magnetic flux. In applying —e c}& to Eqs.
(25b) and (25c), we have

Then Eq. (26) gives us the following two cases for typical
values of the parameters.

(i) When e /2p=2mm. , we obtain

j(x)j(y)+ j(y)j(x)=( ),

where Eqs. (25b) and (25c) are nontrivial. The commuta-
tion relations between the rnatter field variables become

2

P(x)f(y)+ exp i AQ—(x—y) j(y)j(x)=( ),
27Tp

[q (x),B(y)] =—5(y —x)g(x),
p

[co(x),B(y)] = ——5(y —x)co(x),
p

(29a)

(29b)

(26a)

2

co(x)co(y)+ exp i —bQ(x —y) co(y)co(x)=( ),
27Tp

(26b)

2

q&(x)co(y)+ exp i AQ(x —y) a}(y)p(x)=( ), (26c)
2&@

where the difference of the angle variables is defined as

b,Q(x —y)=Q(x —y) —Q(y —x) .

We call Eqs. (24) —(26) anyonic commutation relations.
We find some marvelous features of the transformed

system from the anyonic commutation relations derived
above. In Eq. (26), there appears the novel phase factor
under interchanging the order of the product of the
matter variables. The EQ(x —y) is the angle between
the antiparallel two vectors so that we have
b, Q(x —y)=(2n +1)m (n is an integer). The phase factor
becomes

. e 2

exp +i (2n +1)
2p

where we have defined the magnetic field operator in the
anyonized system as k(y)= —e"'c}&X, and used the rela-
tion Eq. (7). Equation (29) gives us

[g(x),4] =—f&(x },
p

[co(x),4] = ——co(x),
p

where 4= —f d y e' d;X Equation (29. ) means that the

anyonized field variables qr(x) and co(x) have local mag-
netic flux —(e/p)5(y —x) and (e/p)5(y —x), respective-
ly. We can say that the phase factor appeared in the
anyonic commutation relations between the rnatter fields
are induced by a local Aharonov-Bohm effect that is due
to these local magnetic Aux attached to the anyonized
matter field variables.

V. CONCLUSIONS

In conclusion, we have studied (2+ 1}-dimensional U(1)
gauge theories, which have both the Maxwell term and
the Chem-Sirnons topological term as the action of the
gauge field and are coupled to the generic matter field.
By using the syrnplectic geometric method, we have con-
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structed the generalized Hamiltonian formalism and have
quantized the system. The Gauss-law constraint has been
solved and the longitudinal part of the vector potential
has been represented by the matter variables using the
multivalued function. We have changed the basis of the
field operators so as the multivalued function has been el-
iminated. Then the commutation relation of the
transformed system has become anyonic. Thus the
anyonization has been accomplished. A transverse part
of the gauge field has remained dynamically. From the
commutation relations between the gauge field and the
matter fields, it has been shown that the anyonic matter
fields have the intrinsic flux. Thus the appearance of the
exotic statistics has its origin in the local Aharonov-
Bohm effect due to these flux attached to the anyonized
matter fields.

In our previous paper, ' we showed that the Chern-
Simons U(1) gauge theories, which have only the Chern-
Simons term as the action of the gauge field and include
the generic matter field, can be anyonized. In this paper,
we have shown that the Maxwell-Chem-Simons theories,
in which the gauge field has both the Maxwell and
Chem-Simons terms as the action and is coupled to the
generic mat ter field, can be anyonized. The Chern-
Simons term is the first-derivative term and Maxwell
term is the second-derivative term, so that the canonical
structure of these theories is vastly different. After the
careful analyses, we found that in both theories, the
statistics transmutation can occur. Intuitively saying, the
mechanism of the statistics transmutation is that the
matter field can absorb the effect of the Chem-Simons
term by changing the basic of the field operators. This is
the essence of the statistics transmutation. More general-
ly, we can anyonize almost all U(1) gauge theories in 2+ 1

dimensions by taking the effect of the Chem-Simons term
in and out matter fields. Theories with the Chem-Simons
term in the action can be transformed to theories without
the Chem-Simons term and vice versa.

In the Maxwell-Chem-Simons theories discussed here,
the dynamical degree of freedom of the gauge field
remains. It is interesting to study a dynamics of the
theories, in particular by using anyonic field operator
basis. The description of the anyonic model by using the
anyonic field operator basis is important because it will

make possible the analysis of the model beyond the
mean-field approximation. There are some open ques-
tions. How can we construct a Fock representation of
the anyonic field operator? Is the anyonic state realized
in asymptotic physical states? The anyonic state may be
confined. What kind of a bound state appears? These
analyses progress now and will appear elsewhere sepa-
rately.

In the practical application of quantum field theories
containing the Chem-Simons term to high-T, supercon-
ductivity, we might consider the theories with the
Maxwell term in addition to the Chem-Simons term. It
is plausible that the fundamental statistical model may
induce the second-derivative term as the next to the lead-
ing contribution in the long-wavelength limit. So, it is
important that we have shown the statistics transmuta-
tion can occur in the Maxwell-Chem-Simons theories.
We hope that the general argument presented here will
encourage investigations based on the more concrete
models.

Finally, it seems that at present we encounter a new
type of quantum field theory, which is the anyonic quan-
tum field theory. We need more deep studies in order to
understand what it is.

Note added. After completing this work, I was in-
formed of closely related work. I would like to thank
Professor G. W. Semenoff for sending me their paper
and giving me encouraging comments on my work.
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