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L. P. Grishchuk*
Shternberg Astronomical Institute, Moscow University, 119899Moscow, V-234, Union of Soviet Socialist Republics

and California Institute of Technology, Pasadena, California 91125

Y. V. Sidorov
Shternberg Astronomical Institute, Moscow University, 119899Moscow, V-234, Union ofSoviet Socialist Republics

(Received 29 May 1990)

The close relationship between the theory of particle creation in external fields and the theory of
quantum-mechanical squeezed states is clarified. It is shown that relic gravitons (and other primor-
dial perturbations), created from zero-point quantum fluctuations in the course of cosmological evo-

lution, should now be in strongly squeezed states. The statistical properties of the stochastic collec-
tion of relic gravitational waves are investigated, Some other examples of particle creation, and in

particular Hawking's process of black-hole evaporation, are considered in the context of the theory
of squeezed states.

I. INTRODUCTION

Relic gravitons can be created from zero-point quan-
tum fluctuations of the gravitational field in the course of
cosmological expansion. ' They may provide extremely
valuable information on the physical conditions in the
very early Universe (see Ref. 2 for recent reviews). Until
recently, only quasiclassical characteristics of relic gravi-
tational waves, such as their spectral energy density, have
been discussed. The primary concern of the present pa-
per is a very important new feature of the created parti-
cles. It will be shown that they must exist now in specific
quantum states known in quantum optics and measure-
ment theory as squeezed quantum states (for a review of
squeezed states, see, for example, Ref. 4). Generally
speaking, one can say that the variable gravitational field
of the cosmological evolution is a "phase-sensitive
amplifier which squeezed the vacuum. "

Usually, it is said that relic gravitational waves should
form a stochastic collection of waves with randomly dis-
tributed amplitudes and phases. The important feature
of this stochastic background of relic gravitational waves,
attributed to the phenomenon of squeezing, is that the
variances in the amplitude distribution are very large,
while the variances in the phase distribution are practi-
cally equal to zero. As a result, one must now deal with a
collection of standing waves rather than with a collection
of traveling waves. The discovered property applies
equally well to the states produced from zero-point quan-
tum fluctuations of other fields, say, a massive scalar
field. It is believed that the primordial density fluctua-
tions, which have led to the observed large-scale struc-
ture in the Universe, may have been produced by the
same process of amplifying {"squeezing") the zero-point
quantum fluctuations of some scalar field.

The squeezed vacuum states under discussion are the
many-particle quantum states. The mean number of the
given particles in this state is much larger than 1. From
this point of view the resulting field can be called classical

or, better to say, macroscopical. However, the statistical
properties of this field differ greatly from those corre-
sponding to the coherent quantum state (in a sense, most
classical of all possible quantum states) with the same
mean number of particles. From this point of view the
produced field is highly nonclassical. The actual statisti-
cal properties of the produced fluctuations can be re-
vealed observationally. In the case of gravitational
waves, this may allow us to distinguish the relic stochas-
tic background from other sources of stochastic waves,
such as the huge number of binary stars which indepen-
dently emit overlapping gravitational waves.

Production of relic gravitons and primordial density
fluctuations is covered by the theory known as particle
creation in external fields. A seemingly unrelated sub-
ject is the quantum-mechanical theory of squeezed states
and, in particular, quantum optics. However, it turns out
that these two areas of research are intimately related.
Their mathematical formalism and physical concepts are
very similar. Yet there is a difference in final results. It is
known how much experimental effort is required to
achieve a modest squeezing in the case of light generated
under laboratory conditions. In contrast with this, the
squeezed relic gravitational waves are produced, in a
sense, for free and with a much greater amount of squeez-
ing. Unfortunately, the electromagnetic waves cannot be
squeezed in the course of cosmological expansion in a
similar way since they do not interact with the external
gravitational field in the same manner as the gravitational
waves do.

The theory of squeezed quantum states is well
developed. One of the motivations of the present paper is
to show that every case in the classification of the
squeezed states has a counterpart in the theory of particle
creation. In the case of gravitons (Sec. III) we encounter
one- and two-mode squeezed states with the same squeez-
ing parameters. For completeness we will also consider
here a pair of scalar fields which yield the most general
squeezed states (Appendix B). The similarity between
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particle creation and squeezing (Sec. II) goes even fur-
ther. It applies not only to the time-variable gravitation-
al fields, such as cosmological expansion, but also to such
geometries as black holes. From this perspective we will
briefly consider (Appendix C) Hawking's well-known pro-
cess of black-hole evaporation.

The paper is organized in such a way that the detailed
discussion is present only for the gravity-wave equations
in the Friedmann-Robertson-Walker (FRW) cosmologi-
cal background. All the subtleties of the theory are illus-
trated for this case. However, the theory can be easily
generalized to other cases, some of which are explicitly
spelled out below.

tion. ) The same general solution can be decomposed over
other base functions g and g*:

p=cy+d y* . (5b)

Since (Sa) and (5b) represent the same solution, their
coefficients are related:

a =uc+ v4

b =mc+zd
(6)

where the complex numbers u, v, w, and z satisfy the con-
ditions

u=z V =W

Uh(g, x}=0 . (2)

The general solution to Eq. (2) can be presented as the
sum over the independent h „-mode functions,
n=(n', n, n ):

h(g, x)=g h„,

h„=—p„(g)U„(x) .
1

(3)

(We will make this presentation more accurate later on. )

For the time-dependent functions p„(ri), one obtains from
Eq. (2) the second-order differential equation (index n is
omitted)

p,"+[n V(ri)]p=—0, (4)

II. PARTICLE CREATION VERSUS SQUEEZING

We begin from the simplest FRW metric

ds =incr a (ri)[dri (dx—') —(dx ) —(dx ) ], (1)

where a(ri) is the dimensionless scale factor. For easier
comparison with the quantum-cosmological treatment of
the spatially finite geometries, we have introduced into
Eq. (1) the Planck length lz and the dimensionless nor-
malizing constant o, o =4m/3U, .

v = J d x The
volume U can be finite even for the metric (1) due to a
nontrivial topology. Each polarization component
h(ri, x) of the classical gravity-wave field satisfies the
curved-space-time D'Alambert equation

W(1.', Y*)
u u v v=z z w N=

W(g, g')
and W(f, g) =f'g f—g' is—the Wronski determinant. Re-
lations (6) and (7) can be verified by considering (Sa) and
(Sb) at arbitrary point g and by joining p(ri) and p'(ri) at
that point continuously.

Below we will use the normalized basic solutions, such
that

W(g, g*)= W(X,X*)= i . —

This allows us to introduce the new parameters r, y, and
0.

u =e ' coshr, v = —e ' +'sinhr,

w = —e' 9'sinhr, z =e' coshr,

where r, y, and 0 are real numbers, and r & 0.
Until now we were considering the classical solutions

to the classical Eq. (4). In the quantum theory the same
equation governs the operator-valued function p(g). The
complex coefficients a, b, c, and d become the operators
satisfying the standard commutation relations

[a,a"]=[b,b ]=[c,c ]=[d,d ]=1,
with all other commutators equal to zero.

Let the potential V( ri ) vanish asymptotically for
ri~ —oo (in region) and for ri~+oo (out region). The
basic solutions g=g;„and y:—g,„„valid for all g, can be
chosen in such a way that

where V(g)=a "/a, n =(n') +(n ) +(n ), and a
prime denotes d/dpi. Let us first analyze Eq. (4) which
determines the temporal dependence of h (g, x). and

g;„(g)~ e '"" for ri~ —oo,
2n

A. Temporal dependence

V=ak+b'4* (5a)

where g, (' are the complex-conjugated linearly indepen-
dent base functions, and a, b are arbitrary complex con-
stants. (For the time being the dagger means the complex
conjugation, but later on, for the operator-valued
coefficients, the dagger will mean the Hermitian conjuga-

The function h (g, x} must be real, but the functions
p(g) and U(x) may be complex. The general complex
solution to Eq. (4) has the form

g,„,(g)~ e '"" for g~+ ao .
2n

Because of this choice (see, for example, Ref. 5) the
operators (a, b) and (a, b } can be interpreted as the an-
nihilation and creation operators for in particles a and b.
Similarly, the operators (c,d) and (c,d ) can be inter-
preted as the annihilation and creation operators for out
particles c and d. Since the positive- and negative-
frequency solutions in in and out regions are defined with
respect to the same time parameter g, the in and out par-
ticles are indistinguishable in their physical properties
(not in their total particle numbers, of course); that is, c
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particles are the same as a particles, and d particles are
the same as b particles.

The operator-valued relations (6} are called the Bogo-
liubov transformations. They are the primary concept in
the theory of particle creation. On the other hand, by
taking into account Eq. (8), one can rewrite Eq. (6}:

ginning, to the real solutions p'=p, the notion of the
one-mode squeeze operator appears. In this case one
deals with only one sort of particles, since a =b and
c =d. Instead of (9), one will have

a =-R ]S]cS]R),
a=R S cSR,
b =RSQSR,

where S and R are the unitary operators

S(r,y)=exp[r(e "~cd e""c—d )],
R(8, , 8z)=exp( i8, c—c i8id —d), 8, =8i=8.

(9)

where

S, (r, y}=exp —[e '"c —e"~(c ) ]

is the one-mode squeeze operator, and

R, (8)=exp( —i8c c)

ly.„,) =S(r, q )R(8„8,)lg;. ) . (10)

Since the in particles are indistinguishable from the out
particles, one can view Eq. (10) as a result of transform-
ing the initial quantum state into the final quantum state
in the process of evolution from in region to out region.
In particular, the initial vacuum state, ~0, 0) for a and b
particles, transforms into a two-mode squeezed state
ASS),:

~SS&,=S(r,y)~0, 0) .

Equation (10) can also be obtained from the
Schrodinger equation in the following way. The equa-
tions of motion (4) can be derived from the Lagrange
function

2a' —n p*p .

The associated Hamiltonian is
I

H =i *J'+ (i i +I i +i *i'*+a*&* }+n'i *i
2a

where p =—BL /Bp'. In a standard manner, 0 can be
presented in terms of creation and annihilation operators.
The solution to the Schrodinger equation

;"'~& =a(p),'dn
with the Hamiltonian derived above, is given by formula
(10).

The notion of the two-mode squeeze operator has ap-
peared because we were using the complex solutions to
Eq. (4},Iu*&p.. If we confine ourselves, from the very be-

In the theory of squeezed quantum states, the operator
S(r, y) is called the two-mode squeeze operator and the
operator R (8i, 8z) is called the two-mode rotation opera-
tor. 4

Let us consider a quantum state
~ P;„) and a function of

operator arguments F(a,a, b, b ). One can find the
mean value of F and show, with the help of (9), that

&y;.IF(a, a', b, b }I&;„&=&y;.IR S F(c,c,d, d )SR lg;. &

=
& y.„,(F(c,c', d, d ) ~P„„,),

where

I

(u ) (p p+pp'}+ p n p2 a a

The associated Harniltonian

1 2
a'0=—p +—(pp p+p) +np

2 a

defines the Schrodinger equation and its solution (11}.
The actual transition from the complex solutions of

Eq. (4) to the real ones (marked by index r) can be per-
formed as follows. One takes two complex-conjugated
solutions p, =a, g+ b; g* and p, z

=a z(+ b 2 (*, where

p] p2 tha i a2 b1 b 2 a i Then one constructs
two real solutions p", =a",g+(b, )"g* and
pz=azg+(bi)"(* according to the rule

1 r IVi= &- (Vi+Vz» S i= &- (Vi —
i 2) .v'2 v'2

This transformation generates the transformation be-
tween the annihilation and creation operators associated
with the complex and real solutions:

1 r—(a, +a2), a2= (a, —a2),v'2
(14)

By using (14) one can see that the operator S(r, ip) factors
into the product of two identical operators S, (r, cp), and
as a consequence, formula (11) follows from (10). From
the standpoint of squeezed states theory, transformation
(14) is generated by the mixing operator T

The physical meaning of the complex and real solu-

is the one-mode rotation operator. Further on, instead
of (10), one will have

[y.„,& =S,(r, q)R, (8) (y,„&,
so that the initial vacuum state ~0) transforms into a
one-mode squeezed state ~SS ),:

~SS &, =S,(r, ~) ~0 & .

Equation (11) can also be derived as a solution to the
Schrodinger equation. In the case of the real p field, the
equations of motion (4) follow from the Lagrange func-
tion
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tions and their associated operators will be better seen
when the spatial dependence of h(g, x) is taken into ac-
count. It will be shown that the complex solutions corre-
spond to the decomposition of the field over traveling
waves, whereas the real solution are over standing waves.
Both are equally good.

AU„+n U„=O . (15)

One can use either complex solutions to this equation,
such as Un, —e '" ", Un 2

—e '" ", or real solutions, such
as U„", -cosn x, U„"

2 -sinn x. (We will mark two

linearly independent components of U„by index I: U„J,
J=1,2.) The most general representation for every h„
component is

B. Spatial dependence

It follows from Eq. (2) that every spatial function
U„(x) satisfies the Laplace equation

l
U„" i

= —(U„,+ U„2),

1U„"2= —(U„2 —U„, ),

along with transformation (13). In this case one has, for
every n,

p", =a",g+(a, )"g*, p"=a" +(a )"g*,

U] =K&2 cosn x, U2 =K+2 sinn x .

Formula (17) corresponds to the decomposition of the
field over standing waves.

Thus one encounters a two-mode operator or a pair of
one-mode squeeze operators, depending on whether one
associates the particles with a pair of traveling waves or a
pair of standing waves. Now we will consider in detail
the graviton production in an expanding universe.

1h„=—(P„]U„]+V„2U„2). (16) III. SQUEEZED QUANTUM STATES
OF RELIC GRAVITONS

=1h„= (p„" ]U„" ]—+p, „" zU„" 2) . (17)

Since h „must be real, one has U„* 2
= U„1 and p„* 2

=p„1.
Another possibility is to have all the functions real, so
that

It was shown in Sec. II that squeezed quantum states
arise inescapably whenever particle creation occurs. The
actual values of the squeeze parameters depend on a con-
crete model.

We will start from the complex solutions to Eq. (15).
One can choose a complete set of the normalized func-
tions

U =Ke In
n, 1

U Ke
—ln x

n, 2

where the constant K is equal to K=(2v) ' for the
finite volume v and K =(2]r) ' for the infinite volume.
If the temporal dependence in an asymptotic region is

chosen as

]u] = (a, e '""+b,e'""),
2n

where g„' means that the summation (integration) ex-

tends over half of the space of wave vectors n, for in-

stance, over a region n-x ~0, in order not to count the
components twice.

The transition to the real solutions is performed by the
transformation

]Li
= (a e '""+b e'""), p*=p, ,

2n

then a1=b2 is the annihilation operator for a particle
with the momentum n, b2 =a, is the creation operatort ~

for a particle with the same momentum n, and a2 =b1
and b, =a2 are annihilation and creation operators for a
particle with the opposite momentum —n. In terms of
classical waves, Eq. (16) presents a decomposition over
traveling waves.

The general solution to Eq. (2) can be written in the
form

2

h(q, x)= g' g p„J(ri)U„J(x),
a(g)

A. Squeezing in an inflationary model

We will consider a simple cosmological model which
includes the inflationary (i), radiation-dominated (e), and
matter-dominated (m) epochs. The scale factor a(g) has
the following g-time dependence:

a; = —(]re) ', rib ~ ri~ ri„ri(0,
a, =+(]re, ) '(ri —2ri]),

[4]~g](rip 2ri] )] ( q+ gp 4g] ) 7}—gp

where ~ determines the Hubble constant at the
inflationary stage. It is assumed that the total duration of
expansion from some gb until the present time go is

sufficiently long, so that the scale of order of Planck's
length has increased up to, at least, the present-day Hub-
ble radius.

Without any loss of generality we will use the presenta-
tion (17) so that, for every (n, J ) mode, the initial vacuum
state will go over into a one-mode squeezed state. This
transition is governed by the Schrodinger equation

i =HP,~ d

dn

where ]I} stands for every (n, J)-mode wave function and
H is the Hamiltonian (12).

It is known that the squeezed-state wave functions are
always Gaussian, so that one can seek a solution to Eq.
(19) in the form

[In order to avoid confusion we want to emphasize that
in our earlier paper we were using the coordinate
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y =a 'p and the function B(ri), which was equal to the
factor a times the B(il) used here. ] By substituting (20)
into (19) one can show that the function B(g) satisfies the
equation B'= —2(a'la)B —2iB +(i l2)n and can be
expressed in terms of solutions to Eq. (4) according to the
relation

B( )
i (P/a )'

vl
=

2 p/a

The initial vacuum state corresponds to the wave func-
tion (20) with B =n l2. This means that one will have to
choose a solution p(g) that satisfies the relation
((Mla)'=in(pla) initially, for i)~ —ca or i)=r)b.

The function B(ri) determines completely the squeeze
parameter r(ri) and the squeeze angle (p(i)) through the
relation

—2in( g, —
2&l )

where 5 = —e '- ' for v=10 —10 ' Hz and
5 = 1 for ~ = 10 ' —10 ' Hz. For these two frequency
intervals one obtains (p= n—ri —2n (gz —3', ) and
(p= —nri —n(g~ 4ri, ). In both cases one has

cp n '/++0, (22)

where cpo=const and the first term, —n g, just reflects the
free evolution of the squeezed state. The constant yo is
the same for both J=1,2, and for all unit vectors n/n.

Since the mean number of particles in every mode is
determined by the relation ( X ) = sinh r, one can see that
( X ) &) 1 for all modes with frequencies lower than
v=10 Hz. It means that we will be dealing with the
many-particle states, and in this sense the generated field
is classical (macroscopical). However, its statistical prop-
erties are very unusual, as we will now see.

n coshr+e '"sinhr
B ri =—

coshr —e '+sinhr
(21) B. Amplitude and phase Auctuations

[One should note that r and (p are functions of time here,
whereas they are constants as discussed in Sec. II. This is
because in Sec. II we were interested just in the asymptot-
ic regions g~+~, where the positive- and negative-
frequency solutions were defined. Here we are interested
in the gradual evolution of the wave function that corre-
sponds to defining the positive- and negative-frequency
solutions at every current g. As a result, the parameters
r and y enter the general formulas as functions of time.
However, r(q) and (p(ri) approach some definite and
unambiguous values in asymptotic regions g~+ ~,
which we are interested in. In particular, for waves much
shorter than the present-day Hubble radius, the squeeze
parameter r has practically reached its asymptotic con-
stant value. ] In order to calculate r(q) and (p(i)) explicit-
ly, one has to use the solution p(ri) =y" (+y' ((* with
the appropriate initial conditions. The exact solution for
the base functions g(il ) and ("(il) has the form

—(n( q+ 9(

n (ri+8)

1 —5 e

1+5 e

—2in{p+ pp 4&
1

)

—Zin{g+g& —
4gi )

at all three stages (i), (e), and (m), where, at the i stage,
q; =1 and 0; =0, at the e stage, q, =0 and 0, = —2n],
and, at the m stage, q =1 and 0 =g2 —4g&. The
squeeze parameter r(r)o) was explicitly calculated in Ref.
9 for a reasonable cosmological model. This parameter
depends on n', that is, it varies with the frequency. It was
shown that r increases from r =1 and up to r =10 for
waves with the present-day frequencies ranging from
v = 10 Hz up to v = 10 ' Hz. These are the waves
which were amplified at the i stage only. For waves
which were additionally amplified at the m stage, that is,
for waves with frequencies v = 10 ' —10 ' Hz, r is fur-
ther increased and reaches r =1.2X10 at v=10 ' Hz.

The easiest way to find the squeeze angle cp{g) is just to
compare B(g) from Eq. (21) with the asymptotic behav-
ior of B(r)) (for r ~ ~ ) (Ref. 9):

Our next goal is to relate the rigorous quantum-
mechanical treatment developed above with classical
description based on the notion of the classical waves
with randomly distributed amplitudes and phases. In the
high-frequency limit ng)&1, every classical mode func-
tion p,„J(ri) can be presented in the form

(u
= A sin( nri+ —

P ), (23)

where A and (I) are randomly distributed numbers. Their
actual mean values and variances depend on a specific
quantum state.

In order to relate the quantum and classical descrip-
tions, it is convenient to use the Wigner function. This is
a function of the phase-space variables (p, ,p) and time il
and is defined as'"

P„(ri,p,p)= —f P'(p+e)P(p e)e ,
'~'de . —(24)

For the quantum-mechanical problem at hand [the vari-
able mass and elasticity oscillator governed by the Hamil-
tonian (12)], P„(ri,p,p ) satisfies the Liouville equation

P„
ag

BP„a' r)P„
p+ —p + n p+ —pa Bp a Bp

The Wigner function P„can be interpreted as the proba-
bility distribution for p and p.

It is instructive to first recall the form of the function
P„ for a coherent state:

]/2
nPW

' ]/2
2

exp —n p-
n

Reo.

2'

X exp[ —(p —&2n Ima) n '],
&m-n

where a is a complex number and ( X ) =a*a. It is clear-
ly seen that p and p obey the Gaussian distribution law.
The variances of the (dimensionless) p, n' and pn
are equal and their product is minimal. The same is true
for the variances of the amplitude and phase distribu-
tions. The quantum "noise" of a coherent state can be
visualized as a circle. In contrast with that, the quantum
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"noise" of a squeezed state can be described by an ellipse.
It is precisely the phase variances that will be severely
"squeezed" in our case under consideration.

Let us substitute the wave function (20) into Eq. (24).
One will get (see also Ref. 11)

P.(n 1 p) =&*(n 1 )4(n 1 )F(n 1 p) ~

where

F(rl, p, p ) =(27r ReB )

Xexp[ —(2ReB) '(2ImBp+p) ] .

We are interested in the limit r~oo. From (21) we see
that ReB~O, 1mB~i(n l2)coty in this limit. Hence
one obtains the remarkable 6-function-like behavior for
F.

The mean value of 3 is zero. The variance of 3 can be
easily related to the mean number of particles (N ) and
to the characteristic gravity-wave amplitude h for a given
mode.

In concluding this section we would like to comment
on the 6-function behavior of formula (25). One can see
that for a fixed time g the Wigner function is sharply
peaked near a line in the phase space (p,p). The factor
b*(p)P(p) gives the probability distribution for the ponts
on this line. Every point generates a classical trajectory
when time evolution is taken into account. The set of
these trajectories forms a two-dimensional surface in the
three-dimensional space (p, p, tl) (in this context, see also
Ref. 13). This behavior is totally different from a
coherent-state case where a "pencil" of trajectories is sin-
gled out.

F~6(21mBp+p)=6(np coty+@') . (25)
C. Relic gravitons: A stochastic collection of standing waves

Taking into account (22) and (23) when analyzing the ar-
gument of the 5 function, one arrives at the conclusion
that the distribution of the random variable P is highly
"squeezed" in the 5-function manner near the values

/=go+~1, 1=0,+I, . . . . (26)

The mean values should be computed with respect to the
one-mode squeezed state with the parameters r and cp:

~SS ), =S, (r, q ) ~0)

&(2m )!=(coshr )

rn =0

1——tanhr
2

X e'""~~2m ),
where ~m ) are the particle-number eigenstates (the Fock
basis).

One can show that

((cos~t) +') =((sinit)
' ') =0, k =0, 1, . . . ,

((cos4 )")

( (sing) ')

- (sing)

= (cosy)

These numbers define the distribution of the random vari-
able P, which shows up in the classical expression
p, = A cosP. Combining these formulas leads us again to
(23) and (26).

In a similar way the distribution of the operator ampli-
tude A =(p +n p )'~ can be computed. One can
show that

( ( g )2k +-1 ) ()

k

I+4n -'(ImB)' l (k+ I )((~)'")= (r~ ~).2Re8 I ( —,
' }

The same conclusion can be reached by direct computa-
tion of the mean values associated with the phase opera-
tor &f defined as'

e' =(a a+1) ' a, e ' =a (a a+1)

We have studied the time-dependent components
p„" J(tl) [Eq. (23)]. Now we can construct the h„modes
[Eq. (17)] and sum them to produce the total field h (il, x).
Let us first take the sum over all the modes with the same

7
number n, n =n n:

1
h„(il, x)= —g'gp„" (Ji)lU„" (Jx).

a

Since for a given n all the phases P„J obey the same con-
dition (26), one can get the time-dependent function from
under the summation symbol and write

1
h„(rl, x) = —sin( nil+go)g'g —3„"J U„" ~(x) .

a
n J

[This could not have been done if the statistical proper-
ties of Q„J did not obey (26).] The function h„(rl, x) de-
scribes a stochastic field in the form of a standing wave.
A characteristic feature of Eq. (27) is that h„(il, x) van-
ishes at some moments of time separated by a half of the
period. The spatial pattern is determined by the random
coefficients 3 „" z described above. It is worth noting that
this pattern does not depend on the kind of spatial base
functions U(x) chosen. If one changes to another set of
base functions, U ~ U, the random coefficients also
change, 3 3, but their statistical properties remain the
same.

The total field h(il, x) is obtained by summing over the
components (27). Of course, the total field loses the prop-
erty of vanishing at some moments of time since the vari-
ous sin( —n g+ y0) factors are shifted with respect to
each other in their arguments. However, this shift is not
random, but well prescribed, at least for a simple cosmo-
logical model considered above. For instance, if at some
moment of time g = q0 the component h, (g, x) vanishes,

1

then the same is true for all other components h„(q, x),
where n2 n [(1+0//) and k/I is an arbitrary rational
number. Perhaps this property can be somehow used in a
specific strategy for the observational discrimination of
this stochastic gravity-wave field from others.
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classical equation (4), being interpreted as the
Schrodinger equation, sheds some new light on the physi-
cal meaning of the squeeze parameter r.

APPENDIX B: PRODUCING THE MOST GENERAL
SQUEEZED STATE (AN EXAMPLE)

APPENDIX A: CLASSICAL WAVE
AMPLIFICATION AND THE PHENOMENON

OF SQUEEZING

The most general squeezed state is defined as

~SS) =S'i''(r, , g&)S'& '(r&, cpz)S(r, g)IO) . (Bl)

Classical gravity waves, obeying Eq. (4), amplify in the
course of their evolution. ' Let the gravity-wave field
have the form of traveling waves in the in and out re-
gions:

h;„= 1 1
(&e ( &n1+b ein&i)ein x

&2n

hOU1
= 1 1 (»+d 'g) 'x

a &2n

where a and a+ are scale factors in the in and out
regions, and n x & 0. Suppose that there is only one wave
traveling to the right in the in region; i.e., b =b =0.
Thus, in the out region, there will be an amplified wave
traveling in the same direction and the reflected"' wave
traveling to the left. The amplification coefficient Z is
defined as the ratio of the actual amplitude of the
transmitted wave to the amplitude the wave would have
if it behaved adiabatically, that is,

Z, = ~, b b=0.
a a

We will give an example of the quantum-cosmological
problem where this state appears naturally.

Let us consider two coupled massive scalar fields

$,(t),M, and iti2(t), M~ at the FRW cosmological back-
ground metric (1) with the scale factor a(t). The La-
grangian of the system is

J = d x~ —g — + — '-, —M) )+,—M2

—12i~R gati, iti~+ T

where R is the four-curvature scalar, v is the coupling
constant, and T is the term describing some matter
source which governs the FRW evolution. We assume
that this term has a simple form J d x & —g T = —,

' V(a ).

By assuming li, =1 and introducing the dimensionless
variables

(t) 3/2 I/2 y (r) +3/2 I/z

From relations (6)—(8) one can get

Z, =cosh r=l+(N, ),
we can reduce L to the form

L = —
—,'aa -+ i V(a)+l, +l, +l„. , (B2)

where r is the squeeze parameter of the two-mode
squeezed state arising in the quantum treatment, and
(N, ) is the mean number of the created a particles. A
similar conclusion holds for the waves traveling initially
to the left, i.e., for b particles:

Zb =cosh r =1+ (Nb ), (Nb ) = (N„) .

Thus the classical amplification coefficient determines the
squeeze parameter of the second-quantized theory.

The classical equation (4) can also be viewed as the
Schrodinger equation for the wave function p(g), which
describes a "particle" having energy n and moving in
the presence of the external "potential barrier" V(g). '

From this point of view the transition from in to out re-
gion has the meaning of the tunneling through the bar-
rier. The tunneling coefficient D can be defined as
D, =c c /a a, d d =0 for the right-traveling waves in the
out region and Db =d d /b b, c c =0 for the left-
traveling waves in the out region. From Eqs. (6)—(8) one
derives, for both cases,

D, =Db 1

cosh r

In the limit r~ oc, one has D —e -". Thus, again, the

where

3 a 9 a

t2 is obtained from l) by the replacement p) ~p&,
m) mq, and

a
1 a

l il
2

—,(l il 2)—
From the Lagrangian (B2) one can derive the equation of
motion for p) (t),

2 3 a 3 a
p)+ m)

2 a 4 a

~ ~

2 a a' p, =0,

and the equation of motion for p&(t), which can be ob-
tained from the previous one by the replacement p)~pz,
m) ~m2. These two coupled equations of motion gen-
eralize the single Eq. (4).

In a standard way one derives the Hamiltonian of the
system:

2' --'v( )+-'(p-', +-', p-', +p'+-,'p-,'),
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where

M =a + )M,p + —(p, +)M )
a

pa
P(P)pl +P2p2 )++(Plp2+P2pl ) )

2a
2

'

KPg 2 2+, p)p2+ 4 (p)+@2)
2a

where p, = —aa. One can check that the equations of
motion for p~ and p2 derived above also follow from H
Finally, we introduce the creation and annihilation
operators

1/2

Pj
+2m,

m,
(b, +b, ), p,

=' (b, b, ), —

and similarly for b2 and b2. This allows us to write H
in the standard form

pi P2P =p, + (3)M) +a(u2)+ (3p2+ 1~@) ) .
2a 2a

P„p, , and p2 are the momenta canonically conjugated to
the coordinates a, p~, and p2.

We are interested in quantizing the lowest (homogene-
ous) mode of the scalar fields p, ) and )M2, not the gravita-
tional field a (i) itself. We will also neglect the "back ac-
tion" of the scalar fields to the background geometry.
For these reasons we expand P /2M in a series and retain
only the term (2 'p, [which governs, together with V(a),
the quasiclassical behavior of the background geometry]
and the terms quadratic in the scalar field variables p and
p. Then the Hamiltonian H for the scalar field com-
ponents acquires the form

H =
—,'(p, +m, p, +p2+m~p2)

yields Eq. (Bl) for the most general squeezed state. All
the squeeze parameters entering Eq. (Bl) are determined
by the parameters of the system and by its time evolution.
Since they all are different, the product
SI"(r, , p() )S') '(r2, (p2) cannot be reduced to a two-mode
squeeze operator, so that the model presented here is
more general than the one considered in Secs. II and III.

APPENDIX C: SQUEEZED QUANTUM STATES
AND BLACK-HOLE EVAPORATION

An important peculiarity of the black-hole gravitation-
al field, as opposed to the cosmological solutions con-
sidered above, is the black-hole event horizon. A remote
observer can only register the particles defined outside
the horizon. Since the particles defined inside the hor-
izon are unobservable, one should average over them.
This procedure leads to a density matrix.

Let us consider a system consisting of two sorts of par-
ticles: 1 and 2. Let the state of the system be a two-mode
squeezed state:

1y & =s(r, q )1 o, &1o, & . (Cl)

p=(1 —tanh r) g (tanh r) 1m) &(m)1 .
m=0

(C2)

In the case of a quantized field this assumption applies to
every mode n of that field. If one is interested in the
mean value of the operator Q, , which refers to the 1-

particles only, then one gets

((t g, 1(t &=tr(pg, ),
where the density matrix p, in the case (C 1) under con-
sideration, has the form

H~ =co,(t)b,'b, +co2(t)b2b2+ f) (t)b,

+f2(~)bz+g) (t)b) bz+gz(~)b) b +zH. c. , (B3)

For every mode n this density matrix appears as a
"thermal" density matrix if one defines the temperature
T„as'4

where
—n/I

e "=tanh r„. (C3)

1 K Pg
co)(t) = —m, +

Sa4m,

K 3

16a m, 4a

KPa irp, (m) +mq)
g, (t)= +i

4a /m)m2 4a /m)m2

and co&(t), fz(t), and gz(t) are obtained by m (~mz.
The Hamiltonian (B3) shows clearly that the quantum

states in the in and out regions are related by the general
transformation

1(t..(& =s',"(r),q ()s',"(r,,q, )S(r,q )

x T(q, y)R(0„8~)1(t);„& .

If the initial state 1()I);„& is the vacuum state, this formula

(It is interesting to note the relation

—n IT„R„=e

where R„ is the "above-barrier" reflection coefficient
R =1 D; see Appendix—A. ) In general, T„could have
been different for different modes n, but for the black-
hole geometry (as well as for some other geometries with
horizons), all T„are the same. Now we will see this in
more detail.

The quantized scalar field y can be represented in the
form' '

—f d (& (1)f(1) +& (3)f(3) + & (4)f (4) +H

where the base functions f'„",f„', and f,', ' satisfy the
conditions
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e'' onJ
(1)

0 on&

0 one
p(3)

ttJ I Ntl +e on&
0 one

p(4)J ttJ lMEl+
e on

Here the following conventions have been used:

v =t+r+2M ln(r/2M —1), U=+4Me
—K 'ln( —U) for U&0,
—K 'lnU+im. K ' for U &0.

E =(4GM )
' is the surface gravity and (t, r) the Schwar-

schild coordinates. The in-vacuum state is de6ned by the
requirements

a(&I
~p ) —a(3)

~p ) —a(4)
~p ) p

The same scalar field q can be expanded over another
set of the base functions:

y= f dto(g to„+h„y„+j z +H. c. ),
where

r

0 on,V

tv,„= 0 on %, U&0,

e ' on%, U&0,

0 onJ
l tsJQ +

y = 'e on JY, U&0,
0 on&, U&0,

e' " one
0 on%

The out-vacuum state is defined by the requirements

g.10, &
=h. Ip &

=j„Ip & =0 .

It has been shown' that the in and out operators are
related by the Bogoliubov transformation:

a'„' =j, a '=(1 —x) ' (h —x' g+ ),

(4)( 1 x)1/2(gx 1/2h+)

where x =exp( —8n GMeo). We would like to emphasize
a consequence of this transformation: The connection
between the states ~0 ) and ~0+ ) involves a two-mode
squeeze operator:

) —= IPI(i) & IPI(3I & IPII4, &

= ~0, &S(r, ~) ~0. & ~0, &, (C4)

tanh r =exp( —8~GMto) . (C5)

As a result, one obtains from Eqs. (C5) and (C3) the
universal Hawking temperature TH = (8srGM )

where tanh r =x. This is the fact which should have
been expected according to Eqs. (6)—(10).

A remote observer has access to the y particles only.
One should average over the unobservable eo particles.
According to Eqs. (C4), (Cl), and (C2), this leads to the
density matrix p. The striking property of the black-hole
geometry is that tanh r factor has the universal depen-
dence of co for all the modes ~:
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