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This paper explores the evolution of a quantum matter field on a gravitational instanton, investi-
gating in particular the fact that this evolution results oftentimes in an end state which is “nearly
thermal.” The key features leading to this systematic evolution are the facts (a) that evolution on an
instanton entails a systematic suppression of any initial excitations and (b) that an initial vacuum
evolves oftentimes to an end state which, albeit pure, is characterized by a nearly thermal expecta-
tion value for the number N, of particles in each mode k, the temperature being determined by the
duration (in imaginary time) of the instanton. Both these facts are a direct consequence of the
nonunitary evolution implicit in an imaginary-time Tomonaga-Schwinger equation. The “nearly
thermal” character of the end state may also be manifest by the expectation value of other functions
f(Ny), but significant discrepancies arise when considering mode-mode correlations or other prop-
erties of the field that probe the “phase information” complementary to the “number information,”
a fact interpreted within the context of work by Hu and Kandrup on information-theoretic mea-
sures of entropy for a quantum field. These results are established rigorously for the special case of
homogeneous tunneling, using a straightforward analogue of techniques developed by Parker and
by Zel’dovich and Starobinsky, and are motivated in more general settings, allowing in particular
for topology-changing instantons, using the functional integral approach of, e.g., Lavrelashvili, Ru-
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bakov, and Tinyakov.

I. INTRODUCTION

Over the past several years, much interest has focused
on the possible role of gravitational instantons in the ear-
ly Universe. Practical interest in such instantons has in-
cluded both the bodacious idea that the Universe may
have “tunneled into being” as a quantum fluctuation, !
and the more tame issue of understanding tunneling be-
tween various “vacua.”? From a more pedagogical point
of view, there has also been interest in the question of
whether changes in the topology of space could perhaps
be mediated via instantons,’ it being by now well under-
stood that topology change in the context of Lorentzian
gravity leads to serious difficulties.*

Given this interest, it is natural to ask whether it be
possible to make sense of quantum field theory for test
fields propagating on such instantons. Is it, e.g., possible
to proceed with as much (or as little) confidence in for-
mulating such a theory as is the case for ordinary
Lorentzian field theory in a curved, dynamical spacetime?
One knows, of course, from the pioneering work of Park-
er’ and of Zel'dovich and Starobinsky® how a time-
dependent gravitational field can induce the net creation
or destruction of particles in the context of field theory in
a Lorentzian spacetime. And one would like to under-
stand how to address similar processes for fields defined
on a Euclidean instanton.

These are questions of practical, as well as conceptual,
importance. Indeed, one might try to argue’ that the
basic particle content of the Universe was in fact generat-
ed primordially as the Universe “tunneled into being” (al-
though there will also be subsequent, albeit less robust,
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particle creation and/or destruction as the Universe ex-
pands in a Lorentzian manner).

The basic objective of this paper is to investigate the
qualitative features of particle creation on a gravitational
instanton, so as to extract the salient underlying physics.
Specifically, it will be seen that particle creation on a Eu-
clidean instanton is rather similar to, but yet fundamen-
tally different from, particle creation in a Lorentzian
spacetime.

In achieving this improved understanding, the primary
focus will not be on the development of new computa-
tional tools. Most of the necessary ingredients have al-
ready been developed by Rubakov and his co-workers,
both in the language of nonunitary Bogoliubov transfor-
mations® and in the more general setting of a functional
integral approach,’ this latter approach being further
generalizable to the consideration of particle creation on
manifolds with “handles.”'® Rather, the primary focus is
on understanding what it is that these formal tools are
trying to say.

From a purely technical viewpoint, the crucial
differences  between  Lorentzian and  Euclidean
space(time)s are largely a reflection of the fact that what
were irrelevant phase factors in a Lorentzian field theory
are converted into highly nontrivial exponential factors
in an analogous Euclidean setting. This in turn is a direct
consequence of the fact that the imaginary-time
Tomonaga-Schwinger equation defining the Euclidean
field theory implies a nonunitary evolution for the quan-
tum fields.

An added twist in this regard is provided by the fact
that, in this cosmological setting, the correct form of the
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imaginary-time Tomonaga-Schwinger equation is not
completely obvious. If this equation be derived from the
Wheeler-DeWitt equation, e.g., in a Born-Oppenheimer
approximation, it comes equipped with a fundamental
sign ambiguity which reflects, at some level, a choice of
“ingoing” or “outgoing” instantons.!' A choice of either
sign leads inexorably to a preferred ‘““arrow of time,” but
these two arrows are fundamentally opposite one anoth-
er.

The fact that propagation on an instanton leads to a
preferred ‘“arrow of time” might immediately suggest
connections with the problem of entropy generation. The
question of entropy generation on an instanton leads,
however, to its own set of nontrivial issues, these basical-
ly reflecting the fact that the evolution is nonunitary. In
a Lorentzian spacetime, the value of the “entropy”
S(t)= —Trp Inp constructed from the density matrix p of
an isolated Hamiltonian system on a t =const surface is
necessarily conserved. On a Euclidean instanton, this is
no longer true.

The basic aim of this paper is to consider particle
creation on a Euclidean instanton in the closest possible
analogy with particle creation in a Lorentzian spacetime,
so as to see precisely where and why differences arise. In
particular, it will be seen that the choice of an appropri-
ate sign in the imaginary time Tomonaga-Schwinger
equation implies an evolution entailing a systematic
suppression of any nontrivial initial conditions for the
quantum fields. It will, moreover, be seen that, in many
cases, this systematic evolution results in a final state
which, in terms of its particle content, is “nearly
thermal” in a physically and mathematically well-defined
sense. The “temperature” associated with this “nearly
thermal” distribution is determined by the duration in
imaginary cosmic time of the instanton. Its presence
traces to a term which was, in a Lorentzian setting, a
phase factor of unit modulus, but which, in a Euclidean
manner, becomes an exponential ‘“Boltzmann factor.”

As hinted already, this analysis could be effected in ei-
ther of two ways: namely, in the language of Bogoliubov
transformations between “initial” and “final” states or in
terms of a functional integral. The latter alternative is
more general in that it does not require the assumption of
a product topology =X R and, as such, makes sense even
in the presence of changes in topology. The former alter-
native has, however, the important advantages of being
much simpler and more easily understood in terms of or-
dinary quantum-mechanical models. For this reason, all
but the last section of this paper will be formulated com-
pletely in the language of nonunitary Bogoliubov trans-
formations.

Section II discusses more carefully, and in some detail,
precisely why, both physically and mathematically, the
problem of particle creation on an instanton is fundamen-
tally different from particle creation in a Lorentzian
spacetime. Section III then illustrates these conceptual
points explicitly by considering the evolution of a free
field on two different sorts of instantons: namely, the Eu-
clidean analogues of the Lorentzian spacetimes first stud-
ied by Parker® and by Zel'dovich and Starobinsky® and
the more general case of “‘time-homologous” instantons
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which are static up to an overall conformal factor ) de-
pending only on imaginary time. Section IV endeavors to
interpret the results of Sec. III in terms of appropriate
measures of “field entropy.” Finally, Sec. V concludes by
indicating which of the results derived in Secs. III and IV
are generic and which seem instead to reflect the special
symmetries of the concrete models considered therein.

II. PARTICLE CREATION ON EUCLIDEAN,
RATHER THAN LORENTZIAN, SPACES

One can of course write down an imaginary time
Tomonaga-Schwinger equation “by fiat,” and use it to
define a field theory on a Euclidean space, just as one can
write down a real-time Tomonaga-Schwinger equation
and then use it to define a field theory in a Lorentzian
spacetime. However, it is more illuminating to under-
stand both these equations as arising (at least formally)
from a more complete description which takes as its
starting point the Wheeler-DeWitt equation (cf. Ref. 12),
i.e., the quantized Hamiltonian constraint of classical
general relativity.

This can be done, at least to lowest orders, in a Born-
Oppenheimer approximation. Unfortunately, however,
the extension of this analysis to higher orders, with the
incorporation a self-consistent back reaction, has not yet
been achieved. The program advocated by Halliwell,'* as
further developed, e.g., by Padmanabhan,'* has been
shown by Brout and Venturi'® to be unsatisfactory (be-
cause of a Berry phase) except for special minisuperspace
models with trivial homotopy. Be this, however, as it
may, one can (neglecting such problems as regularization)
easily ‘“derive” Tomonaga-Schwinger equations by as-
suming a wave function ¥ which is “dominated” in its
gravitational sector by some vacuum solution to the Ein-
stein equation.

Following the approach introduced by Gerlach!® and
extended by Lapchinsky and Rubakov,!” start with the
Wheeler-DeWitt equation, which takes the form
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Here A, R, and G,-j,d denote, respectively, a possible
cosmological constant, the three-dimensional scalar cur-
vature associated with the three-metric h,-j, and the su-
perspace metric,'? and #,, represents the matter Hamil-
tonian associated with some matter field(s) ®. The expli-
cit presence of the Planck mass mp manifests the obvious
fact that general relativity is a dimensionful theory, and
that gravitational physics above and below the Planck
scale may be expected to be fundamentally different.

In general, this Wheeler-DeWitt equation clearly treats
the gravitational and matter sectors on an equal footing.
If, however, one is interested in energy scales much below
the Planck mass mp, one can effectively “freeze-out” the
gravitational degrees of freedom. Specifically, suppose
that the solution for W can be written in the form
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Y= |det W ,-j,(b]. (2)

One then discovers that, to order m3, S will satisfy an
equation
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which is nothing other than the Hamilton-Jacobi equa-
tion of vacuum classical Einstein gravity. This implies
(modulo a good deal of technical work) that S may be
identified as the action associated with a classical vacuum
spacetime, and that the new wave function y may be in-
terpreted as referring to matter evolving in that classical
spacetime. Indeed, to next lowest order, namely, O(mp),
one sees that y satisfies
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By interpreting the left-hand side of this equation as
defining a many-fingered time, this may then be viewed as
a Tomonaga-Schwinger equation of the form

. Ox
—A =4
lér(x) TH (X)) . (5)

The sign ambiguity in either Eq. (4) or (5) traces back
to the two possible choices exp(+im3S) in the semiclassi-
cal ansatz (2), these essentially reflecting, in the language
of Teitelboim,'! the choice of “ingoing” or “outgoing”
solutions. At the lowest order, semiclassical level of the
Hamilton-Jacobi equation, which is quadratic in S, this
choice is immaterial; but, to next order, where the matter
is treated quantum mechanically, the choice does in fact
leave an imprint. However, in this Lorentzian setting
that imprint remains irrelevant in computing physical
amplitudes: it is clear that solutions y to the two equa-
tions with opposite signs will differ only by overall phases
of unit modulus.

One can equally well look for solutions to the
Wheeler-DeWitt equation which are dominated in the
gravitational sector by a vacuum solution to the Euclide-
an Einstein equation.'® Indeed, the ansatz
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leads to lowest order to the Euclidean Hamilton-Jacobi
equation
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so that |Sg| may be interpreted as the action associated
with a vacuum solution to the classical Euclidean field
equation. To next lowest order, one then concludes that
the matter wave function y satisfies
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which, in analogy with Eq. (4), can be interpreted as an

imaginary-time Tomonaga-Schwinger equation

dx 5
=+
57(x) TH (X)) . (9)

Once again the Tomonaga-Schwinger equation manifest a
sign ambiguity, but in this case the ambiguity actually
has important physical content. Because one is dealing
with an imaginary-time diffusion equation, what were
phases in a Lorentzian mode have been converted to real
exponential factors which, no longer being of unit
modulus, do impact on physical amplitudes.

More abstractly, the obvious point, both physically and
mathematically, is that the evolution is no longer unitary.
There is no notion of probability conservation. This im-
plies in particular that the ‘“‘ordinary” textbook entropy
S (t)=—Trp Inp, associated with a density matrix p con-
structed from some matter wave functions Y, is no longer
guaranteed to be conserved. For an evolution described
by a real-time Tomonaga-Schwinger equation, unitarity
implies that, for any f, the value of the quantity Trf(p)
must remain constant as the field evolves. But, for the
imaginary-time Tomonaga-Schwinger equation, this is no
longer true.

Another important point is that the choice of either
sign in Eq. (6) or (9) necessarily leads to a preferred ‘“ar-
row of time.” At this purely formal level, one is not con-
strained to make one choice as opposed to the other, but
one must recognize that either choice, once made, neces-
sarily leads to such an arrow. Diffusion, or antidiffusion,
equations, unlike Schrodinger equations, clearly have a
preferred direction of time.

This is well illustrated by considering the simpler (non-
functional) imaginary time equations

o _

3 +Hy , (10)
which, for a time-independent H, admit solutions
« exp(t Ht). The obvious point then is that, if H is real,
one infers either a systematic suppression or a systematic
amplification of any initial excitations above the
minimum energy E ;.

If, in analogy with ordinary quantum-mechanical tun-
neling, one chooses the minus sign in Eq. (9), one infers a
systematic tendency for a suppression of any initial exci-
tations as the system evolves. This means that, if one
starts from an initial ‘““vacuum,” one will in fact get a net
creation of particles, but that, if one starts instead from a
highly excited state, one would anticipate a systematic
decrease in the average particle number.

The physical picture is very different from the case of
evolution in a Lorentzian space where, for free fields in
“time-homologous” spacetimes, one can actually identify
special classes of initial configurations which, irrespective
of their particle content, necessarily evolve in such a
fashion as to increase the average particle number.'® As
emphasized in Sec. IV, the special role of “‘random
phase” initial conditions in Lorentzian spacetimes reflects
directly the unitary evolution that is encapsulated in Eq.
(5) but absent in Eq. (9). In a Lorentzian setting the ques-
tion of whether one gets a net creation or destruction of
quanta depends only on the initial phase coherence or
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decoherence of the field. Factors of exp(xiHt) do not
lead to any tendency for a net creation or destruction of
particles because of “‘energetic” considerations. In a Eu-
clidean setting one is confronted instead with factors
exp(+Ht) which do have nontrivial “energetic” implica-
tions.

The analysis in the remainder of this paper is predicat-
ed upon the assumption that, for “physical” reasons, one
has decided to work with an imaginary time equation

()
brx) MY 4y
where 7 is constrained to increase in value between the in-
itial and final boundaries of the instanton.

This requirement reflects the choice in Eq. (6) of an
“outgoing” instanton, and, in this sense, may be inter-
preted as implying semiclassically a certain sort of
boundary condition for the Wheeler-DeWitt equation.
Aside from the intuitive tunneling interpretation which
this choice facilitates, it will be seen that this choice is
satisfying in that it leads to interesting (and particularly
“physical?”) results for particle creation on an instanton.

One especially interesting fact about the imaginary
time Tomonaga-Schwinger equation (11) is that it tends
oftentimes to yield a final state in which the distribution
of particle number or energy is rather “thermal.” This
fact, to be demonstrated carefully in Sec. III, may be un-
derstood intuitively as a reflection of the factor
o« exp(— Ht) which arises if, in Eq. (10), a minus sign is
chosen: With that choice, an initial ground-state wave
function will in fact evolve to a final state in which the
relative amplitudes for various energies are characterized
by exponential “thermal” factors. If, alternatively, the
wave function is not initially in its ground state, this will
no longer be exactly true, but the minus sign will never-
theless tend to “damp” the initial excitations so that the
system will still tend to evolve toward, albeit not fo, the
same final state.

The quantum evolution described by a Tomonaga-
Schwinger equation with a plus, rather than minus, sign
is completely different in character, representing in some
sense a “‘time-reverse” of the sort of evolution implicit in
Eq. (11). Such an equation implies that any initial excita-
tions will be systematically enhanced, rather than
suppressed, and, moreover, that the final state should
tend to be dominated by high-, rather than low-energy
particles. That this should be the case follows trivially
from an examination of solutions to the equation
dy /0t =+ Ht, and has also been examined in a minisu-
perspace setting by Rubakov,! who, in the language of
this paper (cf. the discussion in Ref. 7), investigated the
particle creation associated with a Universe ‘“‘tunneling
into being” via an “ingoing,” rather than ‘“‘outgoing,” in-
stanton. Not surprisingly, this alternative choice of a
positive sign imaginary time Tomonaga-Schwinger equa-
tion leads to a prediction of ‘“catastrophic”' particle
creation, which seems rather unphysical. As illustrated
in Sec. I1I, the choice of a minus sign leads oftentimes in-
stead to the “more physical” prediction of a ‘‘nearly
thermal” distribution of quanta.

It should, however, be emphasized that, even though
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the final distribution of average numbers may be “nearly
thermal,” the final state is in general most definitely not
really thermal. Even though the evolution implicit in ei-
ther imaginary time Tomonaga-Schwinger equation is
nonunitary, it still entails a mapping from pure states to
pure states. It is therefore impossible that an initial vacu-
um, or any other initial pure state, be mapped into a final
thermal state, which is of course mixed. Indeed, that the
state evolved from an initial vacuum is nonthermal is
easily seen when one considers the expectation values of
operators that probe correlations among the modes of the
field or, more generally, the phase information that is
complementary to particle number.'”” That this is true
should be obvious intuitively, but will be better illustrated
in Sec. III, which considers two special classes of instan-
tons, where, for free fields, the modes decouple and one
can study the evolution problem trivially using Bogo-
liubov transformation techniques.

The only way in which to generate a mixed state for
the field(s) is (a) to introduce a “coarse-graining” that en-
tails a neglect of some information about the field(s) or (b)
to allow for the inevitable existence of correlations be-
tween the “nearly classical” gravitational sector and the
“fully quantum” matter sector. This latter alternative is
an obvious one to consider, but its correct implementa-
tion clearly requires a satisfactory understanding of how
to incorporate a self-consistent back reaction of the
matter fields on the gravitational sector.

III. PARTICLE CREATION DURING
COSMOLOGICAL TUNNELING

The objective now is to study particle creation for two
simple classes of models, treating the Euclidean and
Lorentzian cases on an essentially equal footing. In so
doing, it should be recognized that one is constrained to
work in the Schrodinger picture. The fact that the case
of Lorentzian evolution is unitary means that, in that set-
ting, the Heisenberg and Schrodinger pictures are
equivalent. This, however, is no longer true in a Euclide-
an setting. (This is manifest below in the fact that the
Bogoliubov transformation relating the definition of
“particle” at two different times is nonunitary.) Here one
is constrained to work directly with the imaginary time
Tomonaga-Schwinger equation, which is of course a
functional Schrodinger equation.

Consider first the evolution of a real, massive, minimal-
ly coupled free scalar field ® on a statically bounded
space(time) with a metric

ds?=+dt*+ Q*1)8,,dx dx "’ ,

Q—*Qx,ﬂz fOr t_)tl’ t“’tz . (12)

Here, as in subsequent equations of this section, the
upper sign refers to the case of a Euclidean space,
whereas the lower sign refers to the case of a Lorentzian
spacetime. The requirement that the space(time) be stati-
cally bounded, so that () tends to constant values at early
and late times, ensures that, in these limits, one can intro-
duce a meaningful Fock-space representation. This re-
quirement is particularly reasonable in the context of
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gravitational instantons, where the Euclidean solution is
presumably supposed to be matched onto Lorentzian
solutions at initial and final zero extrinsic curvature
boundaries. This analysis closely parallels Rubakov’s®
discussion of particle creation, but differs in that one is
expanding in complex plane waves rather than real
modes. This choice can obviously have no impact on the
basic physics, but, as will be evidenced below, it does lead
to interesting differences in interpretation.

Suppose now that the scalar field ® satisfies a field
equation V#V“d>—m2=0, which translates in com-
ponents to

9

3
Qat

19"3—6; P |+Q VP —m2P=0, (13)

d

where V2 denotes the flat-space three-dimensional Lapla-
cian. Because the t =const slices are flat, one can imple-
ment the usual plane-wave decomposition

@=2m) 22 [ d’k[ A ™ f (1) + Ale " ()],
(14)

where, in terms of a time d 7= Q™ dt, the temporal mode
functions f, and g, satisfy

v,
de +wk\Pk=O N (15)
with
k2 172
wk=Q3 ?)7+m2 (16)

Near the initial boundary, one wishes of course to
choose f, and g, as corresponding, respectively, to
positive- and negative-frequency solutions, be this with
respect to either real or imaginary time. Thus, e.g., in a
Euclidean setting one demands that

gi(m) = {explog (v r—7]} . 17

More precisely, the boundary conditions on f, and g
reduce in both settings to

gk(T])=fk(71)=[2a)k(7'1)]_1/2 ,

whereas the conditions on their time derivatives vary. In
a Lorentzian setting one must demand that

a,gk(T1)= —arfk(ﬁ)=i[wk(7‘l)/2]1/2 s
whereas, in a Euclidean setting,
3.8, (1)) =—03.fr(r)=[w(1)/2]'* . (18)

With these boundary conditions, 4 ,Z and A4, can be inter-
preted as creation and annihilation operators in the initial
Fock space.

The subsequent dynamics at 7> 7, leads to a mixing of
the temporal modes functions g, and f, so that, at later
times, the initial positive- (negative-) frequency functions
contain admixtures of negative (positive) frequency.
Thus, e.g., near time 7, the initial positive-frequency solu-
tion (17) will have evolved to a linear combination
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gk (1) = ay fexplay () —7)]} + By {exp[ —wy (1, — 7]}
(19)
in terms of two Bogoliubov coefficients a; and 8,. More

generally, in the Lorentzian case one can write

Ay

gk(Tz)-_—[Zcok(Tz)]‘l/z(akeA" +Bre *),

a,gk(‘rz)=i[a)k(72)/2]_1/2(akeA" —Bke—A"

) ’
and

fk(T2)=[2wk(Tz)]"]/2(uke_A" +vkeA") ,
8./ k ()= —ilwp(1) /2] e *—v,e™),

whereas, in the Euclidean case, one has instead

gk(rz)=[2wk(72)]'1/2(akeAk +Bke_A") ,
angk(Tz):[wk(Tz)/z]l/z(akeAk ‘Bke—Ak) )
and
- 172 —4 A
fi(m) =20, (75)] (uye +vee 7)),
5 (20)

3.f = —lwg(1)/2] e *—vie™) .

All of the mixing of the positive and negative frequencies
is now encoded in the four Bogoliubov coefficients «, B,

ti, and v,, and the additional quantity A,. In the
Lorentzian case, this
Ak Eziwk(Tz)(Tz—Tl) (21)

is purely imaginary, whereas, in the Euclidean case,
Ay =20, (1)) (1y— 1) (22)

is purely real.

At this stage, two fundamental differences between the
Lorentzian and Euclidean cases should be clear. First of
all, it is evident that, in the Lorentzian case, f; and g,
are complex conjugates, so that u, =aji and v, =p;.
This means that there are only two Bogoliubov
coefficients entering into the analysis for each k. In the
Euclidean case this is no longer true. There is no symme-
try to reduce the number of coefficients from four to two.
It is, however, true in both settings that there is a single
Wronskian condition a;u; —B;v,=1 relating these
coefficients, a condition which reduces, in the Lorentzian
case to the well-known |a; |*—|B,|>*=1. (This Wronski-
an condition ensures in both Lorentzian and Euclidean
cases that the formal commutation relations are
preserved for 7> 7,.)

The other, even more crucial, difference between the
Euclidean and Lorentzian cases lies in the fact that, in
the Euclidean case, A, is not just a phase. In the
Lorentzian case, the modulus Iexp(iAk )|=1, so that
exp(*A,) can simply be absorbed into a; and B, as an
additional phase. Indeed, for this reason it is customary
among workers on quantum field theory in curved spaces
to routinely ignore this factor, although it has been in-
cluded, e.g., by Brown and Carson? in the study of para-
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metric amplification for a quantum oscillator.

Given these Bogoliubov coefficients, it is straightfor-
ward, albeit tedious, to construct an ‘“‘evolution operator”
enabling one to map an initial wave function y(7) to a
final y(r,). Because the modes decouple, all that one
need do is focus on a single pair +k and then determine
the rule mapping an initial eigenstate |n,m ) with n quan-
ta in the mode k and m in —Kk to the final state to which
it evolves. This calculation may be effected by paralleling
Rubakov’s® analysis, only allowing for complex, rather
than real, eigenfunctions. What one finds is that this final
state can be written in the form ¢{|n,m ), where |n,m)
denotes a final eigenstate with n and m particles in the
modes +k and

§=6,6,63=:exp %[Dkaljaik

+Fk(a,‘:agk +a1;kak)

+Gkaka_k] Y (23)
with coefficients
B - _
Dkz_.ie ZAk’ Fk:'*l"e Ak_l’
ay ay
and (24)
Vi
G, =—.
k a

Here a,:" and a,; denote, respectively, creation and annihi-
lation operators as defined on the final Fock space, and
colons indicate normal ordering.

It is easy to see that in the Euclidean case, Eq. (23) im-
plies a systematic tendency of nontrivial excitations to be
damped away. A precise formulation of the precise sense
in which this is true will, however, be deferred to the
second, more general, class of instantons considered
below.

Given that, in the Euclidean setting, initial excitations
tend to be damped, it is natural to investigate the ulti-
mate fate of an initial vacuum state. This is easy enough
to do, in both the Lorentzian and Euclidean cases. Be-
cause &, and &, act trivially on the state |0), one obtains
immediately an unnormalized wave function

lout) =¢£l0)=¢,/0)

=exp [3Daia’ ]|o> . (25)
k

One then computes trivially that {out|out)
=(1—|D,|*) 7}, so that the probability distribution ? for
finding n quanta in mode +k and m quanta in —k takes
the form

|Dk |2n

Pln,m)=———8,., (26)
1—|D,|

where §,,, denotes a Kronecker delta. The presence of
this delta emphasizes the crucial fact that, as is evident

already in Eq. (23), particles are always created in pairs
with opposite “momenta” k and —k.
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From this probability distribution one determines im-
mediately that, at late times, the average (unnormalized)
number (N, (7,)),=(a]a, ), generated from the initial
vacuum takes the form

D}

(N (15)) =
kY12 V l_Dlz

1
7 lay /By | Zexpldwy (1) T1—1

) 27

where T =7, — 7, denotes the duration of the instanton in
cosmic imaginary time. The last equality in this equation
holds only for the case of particle creation on a Euclidean
instanton. Were one considering instead the problem of
particle creation in a Lorentzian spacetime,
exp[4w,(7,)T] would be replaced by the quantity
lexp[2iw, (1,)T]*=1.

It should be observed that this result looks ‘“nearly
thermal.” Indeed, neglecting the contribution |a; /B3, |*
one has what is essentially a Bose-Einstein distribution
for the average number in each mode, with a temperature
©=1/4T. That this should be the case is actually rather
easy to understand by returning to the simple toy equa-
tion (11). An initial ground state evolved with that equa-
tion leads after a time T to a wave function y xe #7,
which implies a probability distribution «e ~2ET for each
energy E. This might naively suggest that the “tempera-
ture” in Eq. (27) should be ©=1/2T, but that inference
would be wrong because of the fact that particles are al-
ways created in pairs. If a pair is created with energy E,
each of the created particle must itself have only an ener-
gy E/2.

It should also be noted that, in many cases, one would
in fact anticipate a ratio |a, /B, |>*=~1. Physically, it is
clear from Eq. (19) that, when realized, this approximate
equality reflects a “‘strong mixing” of positive and nega-
tive frequencies. This would be expected to obtain quite
generally in the limit of “strongly nonadiabatic instan-
tons.” And indeed, it is straightforward to construct ex-
amples of instantons for which this “strong mixing” real-
ly does arise [cf. Eq. (4.11) in Ref. 8]. More speculatively,
when this ratio is not approximately equal to unity it may
be interpreted as providing an energy-dependent chemi-
cal potential. This possibility has, e.g., been raised in the
context of particle creation on an instanton by means of
which the Universe “tunneled into being.”’

It remains to see how ‘“‘nearly thermal” the fundamen-
tally nonthermal, pure state £|0) really is. If, in Eq. (26),
one traces over the mode —k, one ends up with a proba-
bility distribution

IDk 12n
Pln)=——> (28)
1—|D, |?

which, to the extent that |D,|* can be interpreted as a
thermal factor, is precisely thermal. This implies that
one will in fact compute thermal expectation values for
all functions f(N,). One also verifies further that, as for
a thermal state, (a,f"a,?) vanishes when p74.

One does, however, see clear evidence of the non-
thermal character of the final state when one probes
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mode-mode correlations. For a true thermal state, the
modes +k and —k are uncorrelated, so that
(N,N_,)=(N,){N_,), but, for the final state £[0),
this is simply not so. And, even more elementarily, a
thermal state implies a vanishing (a ,j al « ), whereas this
expectation value is nonzero for the state £|0). Indeed,
one immediately computes that

(ala_,)y={ala,),=(N) (29)
and (aja’ )t =(a,a_,),=D,, so that the product
(N;)
(azatk)ﬂaka—k)yzm (30)

It is also straightforward to write down a comparative-
ly simple formula for the generic expectation value
(NfN9,),. Specifically, let
p

(1—x)7", 31

d
x2_

o(p)=(1—x) dx

where x = |Dk |2. In terms of this o, one then computes

that, for a true thermal state,

(NfN'ik)chO'(p)O'(q) s (32)
whereas the final state £|0) leads to
(NfNL,)y=0(p+q). (33)

It is, moreover, easy to see that o(p +g)=o(p)olq), so
that Eqgs. (32) and (33) imply that number expectation
values are systematically larger for the final state generat-
ed on the instanton than for the corresponding thermal
state.  Thus, eg., (N;N_;)u,=(N,)? whereas
(N,N_;)p=2{(N,)>+{(N,). An “explanation” of this
fact will be provided in Sec. IV.

Turn now to the more general case of a ‘“‘time-
homologous” space(time) with a metric

ds?=1dt?+ Q% 1)y 4 (x)dx%dx? ,

Q—-Q,, Q,fort—t,, t—t,. (34

This corresponds to a space(time), the spatial sections of
which may be arbitrarily complicated at each instant, but
which are identical to one another at all times except for
an overall scale factor (¢). In this space(time), the field
equation V,V*® —m?*=0 reduces to

2 2
e +Q%Q AP —m?P)=+ 4

+
ar? ar?

+A(1)P=0,

(35)

where, again, d7=Q " dr and the operator A denotes the
covariant Laplacian associated with the three-metric y .
Because the space(time) is not homogeneous and isotro-
pic, one can no longer expand in plane waves. It is, how-
ever, natural and convenient to expand in the eigenfunc-
tions of A or A (cf. Refs. 8 and 22). Suppose for
specificity that these eigenfunctions form a discrete set
(i.e., that they are proper eigenfunctions rather than
eigendistributions). Then, at each instant 7, one can in-
troduce a complete set {£7} of real eigenfunctions of
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A (7) with corresponding eigenvalues w? (7) >0, orthogo-
nal with respect to the inner product

&m= [d*x(y)"%n (36)
and satisfying the normalization
(67, 6D =20, (1] 8y - 37

Note that the §,’s are functions of time only because of

the time-dependent normalization. (Allowing for this

time-dependent normalization facilitates the generaliza-

tion of this analysis® to more complicated spacetimes.)
Now introduce the mode expansion

D(7)=S[ 4,8 (1) + A f1(1)]EL (38)
k
where f, and g, are solutions to
i T _
de wk(T)\pk =0 (39)

Then impose the boundary conditions
ge(r))=fr(r)=1
and, in the Euclidean case,
9.8, (t)=—0.fi(T)=w, (1),
or, in the Lorentzian case,
0.8;(1))=—0.filr))=iw. (1)) . (40)

It follows that AZ and A, represent physical creation
and annihilation operators in the initial Fock space
defined at time 7,.

Given this general set up, it is straightforward (cf. Ref.
21) to play the same game as before, evolving the mode
functions to the final time 7, in terms of Bogoliubov
coefficients ay, By, i, and vy, and then determining the
particle content associated with the final Fock space.
Indeed, one can again encapsulate all of the dynamics in
terms of an evolution operator {. This is particularly
trivial in this setting since there exists no mixing of mode
pairs k. It thus suffices to observe that an initial state
|[p) with p particles in some given mode k, as defined in
the initial Fock space, will evolve to a final state &|p ),
where, in terms of a,j and a,, creation and annihilation
operators at time 7,

§=816,65

=:exp 2(%Dka:aZ+Fka,fak +1Grapa,) |1 . (41)
k
[This corrects a typographical error in Eq. (14) of Ref.
21.] Here the coefficients D, F), and G, once again take
the forms
Bk -, e O Vi

D, =— , F= -1, dG,=—, (42)
k ake k a, and Gy a,

and A, is again defined as in Eq. (21) or (22).
It is easy to see that Eq. (41) implies a systematic
suppression of any initial excitations above the vacuum
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|0). Since each mode evolves independently, focus simply
on an initial state |p) with p particles in mode k which
evolves to a final {|p ) =¢&,6,8:/p ) involving the quantity
&,&5(af P10). Now commute &, and &, past the creation
operators, exploiting the relations

_ i — t
a;§2—2k§2ak » 02§3—§3ak‘G§30k >

. (43)
a; 5=z §2ay , and @, 53=83a; .
The net result is an equality
§(a,j)"=aiexp[ —pw(1)T]
X &,(ay —agviexp[20, (1)) T la, Fl0) .
(44)
This result implies that £|p ) can be expanded out as a
sum of contributions involving &,|p),&,lp —2), ..., the

contribution proportional to &,lg involving a weight
exp[ —qwg(7,)T]. And thus, if the relative magnitude of
these different contributions is determined by this ex-
ponential factor, the final state will, at least for
wy(75)T >>1, be dominated by the lowest |g ) term in the
sum, namely, £,|0) or £,|1). Linear superposition then
implies that an initial state |in)=3 ,c, |p) will, unless c,
vanishes for all even p, be dominated at late times by a
contribution proportional to the state £;/0) =¢[0) which
would have evolved from an initial vacuum, corrections
thereunto being suppressed exponentially.

It is also easy to see that, once again, an initial vacuum
evolves to a final state with a ‘“nearly thermal” distribu-
tion for the average number of particles in each mode.
Indeed, one computes that the unnormalized final state

|out>=exp(%DkaZaZ)10) (45)

implies an average number

D}

<Nk(7'2)>y: 1—D,f

1
- la, /B |*exp[4w, (1) T]—1

(46)

It is, however, clear that, even neglecting all mode-
mode correlations, the final state (45) is not thermal.
Despite the fact that the space need no longer be homo-
geneous or isotropic, Eq. (41) or (45) still implies that par-
ticles can only be generated in pairs, in this case identical
particles in the same mode k. This means in particular
that, for the final state evolved from an initial vacuum,
the probability of there being any odd number of parti-
cles vanishes identically.

There is an important lesson in all of this. For the spe-
cial case of a homogeneous and isotropic space(time), the
physics derived here must of course agree with the phys-
ics derived above, but it is clear that the way in which the
physics has been formulated here leads to a rather
different picture. If, at the outset of this section, one
defines “‘particle” in terms of plane waves, the individual
modes tk behave “nearly thermally” but there will exist
correlations between the modes +k and —k. If, alterna-
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tively, one defines “particle” in terms of sines and
cosines, one infers that there will exist no correlations be-
tween the individual modes, but one finds that the proba-
bility distributions P(n) for the modes are not ‘‘thermal.”

What is, however, clear is that, as argued in Sec. II, re-
gardless of one’s definition of modes, the proportioning of
energy must be “nearly thermal.” For particle creation
on an instanton, the duration of the instanton serves to
define an effective “‘temperature,” and, to the extent that
lay /Bi1*~1, this implies that an initial vacuum will
evolve to a “‘nearly thermal” state.

One final point should be stressed. Both definitions of
“particle” introduced above coincide in the sense that,
with respect to either definition, there is no ambiguity as
to whether or not particles are present, and, moreover,
there will be complete agreement as to how much energy
is present in the form of particles. The ambiguity ob-
served here does not reflect a question of observers seeing
different amounts of energy in the matter sector: it is
fundamentally unrelated to the question of which is the
“right” observer. That was determined by the restriction
to a statically bounded instanton, and the use of the time
translation symmetry associated therewith. Rather, the
ambiguity reflects upon how the observer chooses to do
his or her bookkeeping, i.e., whether it is deemed con-
venient to use real or complex modes.

1V. ENTROPY GENERATION ON INSTANTONS

There are two absolutely crucial points to be under-
stood about the propagation of test fields on a gravita-
tional instanton. (1) At least to the extent that any back
reaction on the geometry is neglected, the matter wave
function Y corresponds to a pure state, so that one must
introduce some sort of “‘coarse graining’ in order to ob-
tain a nonvanishing measure of entropy. This is a generic
feature of both Lorentzian and Euclidean space(time)s.
(2) Because there is no notion of a unitary evolution for a
(pure or mixed state) density matrix p propagating on an
instanton, manifest probability conservation is lost, so
that, in a Euclidean setting, one can no longer conclude
that the quantity Trf(p) is conserved for any f.

The possible sorts of “coarse grainings” that one might
envision are essentially identical in the Euclidean and
Lorentzian settings. As will be evidenced below, it is
only when one focuses on the problem of evolution that
fundamental differences are manifest.

At least two different sorts of ‘“‘coarse grainings” have
been envisioned in the context of quantum field theory in
a cosmological setting. One of these entails the splitting
of the total field(s) into two pieces, a “system” and a
“bath,” and then defining a reduced density matrix pg for
the system by tracing over the bath variables. In this
context one can then define a “‘system entropy”

Ss=—Trspslnps
or, in principle, an analogous “‘bath entropy”
Sp=—Trgpglnpy , (47)

in terms of the reduced “bath” matrix pp. Note in par-
ticular that, in the context of quantum physics, Sg and
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Sp will in general be nonvanishing even for a pure state p,
this in sharp contrast to the situation arising in classical
physics.

Another possibility is to define a measure of entropy
relative to some complete (or less than complete) set of
observables {@}. The idea here is to compute the proba-
bilities P(@®;) for each possible outcome, and then to
define an informational or von Neumann entropy?*

So=—2P(O;)InP(O;) . (48)

The problem of defining a “‘system entropy” Sg has
been considered quite generally in the context of
Lorentzian field theory,?* and, as will be seen below, this
definition (if not its implications) carries over immediate-
ly to a Euclidean setting. One particularly subtle im-
plementation of this picture entails choosing the “sys-
tem” as corresponding simply to that piece of the wave
function or density matrix which does not reflect mode-
mode correlations.?’ In a certain sense, this is analogous
to defining a classical Boltzmann entropy in terms of a
one-, rather than N-particle, distribution function.

The informational S, construction has been considered
in a Lorentzian'® setting for the special (and particularly
physical?) case in which the observables of interest are
the numbers of particles in each mode of the field. The
obvious difficulty in implementing such a prescription is
that there exists no compelling definition of a “physical
particle” while the system is evolving, either in a Euclide-
an or Lorentzian manner, so that there can be no natural
notion of a continuous evolution for a “number” entropy
Sy. One does, however, have a natural physical definition
of particle at the initial and final boundaries, relative to
some given mode decomposition, so that it is meaningful
to compute and compare Sy (¢,) and Sy(¢,).

For the special case in which the initial and final boun-
daries are flat, one can also define Wigner functions via
three-dimensional Fourier transforms and then interpret
them as providing quantum distribution functions
f(x,p). The net result is a Wigner function entropy (up
to overall scale factors) of the form

SW:_dexfd3p[f1ﬂf—(l+f)ln(1+f)]_ (49)

By assuming that f is spatially homogeneous one then
concludes (cf. Ref. 26) that

f(x,p)=Trpa (plal(p)=(N(p)) . (50)

The Wigner function entropy Sy is just a probe of the
average number of particles in each mode.

One could of course also seek to exploit the quasilocal
construction of Wigner functions in curved spaces
developed by Calzetta, Habib, and Hu,?” but it is clear
that the Lorentzian evolution equation for their f will
be altered signifcantly in a Euclidean setting.

The aforementioned constructions all work equally
well at a given instant in either a Euclidean or a Lorentzi-
an setting, provided that one imposes suitable normaliza-
tions on P or p. Given, however, that probability is not
conserved in the Euclidean case, the behavior of these
“entropies” as the system evolves differs critically in
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these two settings.

Because the simple models in Sec. III entail no mode-
mode couplings, they cannot be used to study coarse-
grained “‘correlational” entropies as in Ref. 25. The basic
physical point can, however, be understood very simply
by considering an isolated system assumed to consist of
only two modes, (say) k and /, characterized by a density
matrix p(k,/). One “obvious” coarse graining then arises
by neglecting all mode-mode correlations and focusing on
the reduced matrices p(k) and p(/). In such a setting it is
natural to contrast the “true” entropy

S = —Trp(k,)Inp(k,I) (51)
with the “coarse-grained” entropy
S¢=—Trp(k)p(DInp(k)p(]) (52)

that obtains by neglecting the correlations embodied in
the “bath” contribution pg =p(k,I)—p(k)p(l). The cru-
cial point then is that, in both Lorentzian and Euclidean
settings, one can conclude that, for fixed reduced ma-
trices p(k) and p(/), the coarse-grained Sg=S, with
equality if and only if the total density matrix factorizes,
so that p, =0.%8

In a Lorentzian setting this fact has a beautiful impli-
cation: If there exist no mode-mode correlations at some
given time ¢, then

S¢(1)>Sg(ty) (53)

for all other times. That this be true follows as a direct
consequence of the unitary evolution of the field. The ab-
sence of correlations at ¢, implies that Sg(zy)=S(zy).
However, the “true” S is conserved, so that S(z)=S(¢,).
And thus, since Sg(#)=S(¢), it follows that
Ss(2)=2S(1)=8(t,)=S(ty). The physical implication of
this result is obvious: In a Lorentzian setting, the entro-
py S must grow if an initially uncorrelated configuration
evolves mode-mode correlations.

It is important to stress that this “natural” conclusion
does not remain valid in a Euclidean setting. The absence
of a unitary evolution means that there is no guarantee
that the ‘“‘true” entropy is conserved, i.e., in general
S(t,)#S(t,). In the Euclidean case, the growth of corre-
lations does not guarantee a commensurate growth of the
entropy.

Consider now the information entropy

Sy==3 3 PUNJIP({N})=3S, (54)
k N €k k

associated with the number of particles in each mode. It
is clear that the probabilities P({N,}) are nothing other
than the diagonal components of the density matrix in a
numbers representation. And thus, it is easy to see?® that
Sy =S if p is diagonal, but that, otherwise, Sy >S. A
simple variational argument shows that, for fixed diago-
nal components P({N,}), Sy is minimized by that partic-
ular density matrix p which is itself diagonal.

In a Lorentzian setting this has a striking implication.
If, at some instant, p is diagonal in a numbers representa-
tion, thus corresponding to a ‘“random phase” density
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matrix, the true entropy S(¢,)=Sy(t,), whereas, at all
other times, Sy(¢)=S(¢). Unitarity implies, however,
that S(z,)=S(t), so that Sy(t)=Sy(ty). This result may
be interpreted physically by saying that particles are
necessarily created with “phase correlations,” this imply-
ing that the field is losing its random phase character and
generating entropy.

This result can also be formulated in terms of the un-
certainty principle.!” Initially, the field is in a random
phase state characterized by a maximal uncertainty as to
the “phase information” complementary to particle num-
ber. The subsequent evolution implies a generation of
nontrivial phase information, so that the “spread” in the
N,’s would be expected to grow. This is manifest'® by an
increase in Sy as well as, e.g., the dispersion AN,.

In a Euclidean setting, one can still use the uncertainty
principle to “compare” two different states at some given
instant of time. However, because of the lack of a uni-
tary evolution, one cannot use it to compare states at
different times. There is simply no guarantee that, even if
the system is in a random phase state at ¢,, Sy (7) = Sy(t,)
for all other times.

The moral of the story is in fact quite simple: Compar-
ing states on some given t =const surface is equally
reasonable in either a Euclidean or a Lorentzian setting.
However, comparing states on different surfaces is much
less natural in a Euclidean setting because of the absence
of a unitary evolution.

The obvious point is that the aforementioned theorems
about the evolution of a quantum field in a Lorentzian
setting rely only upon properties of the field, such as a
“random phase” initial state or an absence of initial
mode-mode correlations. They do not depend upon how
“particle” is defined or on any special properties of the
background spacetime. It does not, e.g., matter whether
the Universe is expanding or contracting, i.e., in some
sense, whether time is running forward or backward.
This is of course fundamentally different from the case of
fields propagating on an instanton. Tunneling solutions
most definitely do care about the direction of time: it is
the choice of an “outgoing” instanton, i.e., one in which
the Universe is expanding, that leads to a suppression of
initial excitations and an evolution in the |a, | =~ |B,| limit
toward a “‘nearly thermal” end state.

For a Lorentzian field theory defined on a fixed back-
ground, any effective “‘arrow of time” that is observed
reflects entirely the choice of initial conditions for the
quantum field. However, in a Euclidean field theory this
“arrow’ must reflect properties of the background space
as well, as manifest, e.g., by a sign choice in the ansatz
exp(+m2S) leading to an imaginary time Tomonaga-
Schwinger equation.

The final question is to ascertain ‘“how thermal” the
end state of the field really is. Does one, e.g., obtain a
thermal entropy in the |a;|=|B;| limit? As a concrete
example, consider a homogeneous and isotropic instanton
of the form given by Eq. (12). In this case, one finds that,
in terms of a complex plane wave decomposition, the in-
dividual probability distributions P(N, ) and P(N_, ) are
thermal but that the joint probability P(N,,N _,) is not.
Indeed, one sees that
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S(k,—k)=—SP(N,,N_k)InP(N,,N_,)

=3STh » (55)
whereas
S(k)+S(—k)=—3FP(N)InP(N,)InP(N,)
—>P(N_;)nP(N_;)
=S - (56)

The end state has correlations between the modes k and
—k, so that any probe of such possible correlations will
yield a lower entropy than that attributable to a true
thermal state. That such correlations exist is of course
indicative of nontrivial phase coherence among the creat-
ed particles, so that, in view of the uncertainty principle,
one might also anticipate a higher than thermal particle
constant. This is indeed manifest [cf. Egs. (32) and (33)]
by such quantities as the expectation value (N, N _; ).

If instead one were to consider an expansion in real
modes, even the individual probabilities P(N,)’s would
no longer be thermal since particles are always created in
pairs. And thus, one would conclude again that the en-
tropy is smaller than the thermal value S .

The Wigner function entropy does of course yield a
precisely thermal result. As noted already, the “distribu-
tion function” f(x,p) only probes (N, ), and is thus
guaranteed to reproduce the correct thermal result when-
ever (N, )={(N, ). In this sense one might argue that,
since the “‘nearly thermal” results for particle creation on
an instanton reflect energetic considerations, which are
manifest directly by the average number of particles in
each mode, the Wigner function entropy may be the most
natural measure of entropy to consider for particle
creation on instantons.

V. GENERIC PROPERTIES OF PARTICLE
CREATION ON INSTANTONS

The preceding sections of this paper are somewhat re-
stricted, in that they have considered the problems of
particle creation and entropy generation on instantons
only for some rather specialized models. It is therefore
important to ascertain the extent to which the con-
clusions are in fact generic, rather than model dependent.

In this connection, the first important point to observe
is that the assumption of a scalar Bose field was not cru-
cial. The basic picture works equally well for a spinor
field, the only difference being that, as one would antici-
pate, the ‘‘nearly thermal” results now reflect a Fermi-
Dirac, rather than Bose-Einstein, distribution. Consider,
e.g., a spinor field propagating on an instanton of the
form considered in Sec. III. Here an initial vacuum will
once again evolve to a final state of the form?%3°

lout) =Cexp(D,a a’ ;)0), (57)

where D, is defined as in Eq. (24). However, because the
field now satisfies anticommutation relations, one finds
upon expanding out the exponential that only the first
two terms will contribute. This means that, in contrast
to Eq. (26), the joint probability distribution
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|Dk |2n
7’(}1,m)=’—*‘2 m (58)
1+|D, |
when both n and m <1, and vanishes otherwise. One
thus infers that
D;;
(N (1)) =
Y 14 p?
L ) (59)

- ). /By IPexpl 4wy (1) T ]+ 1

which is the appropriate ‘“near thermal” form for parti-
cles obeying Fermi-Dirac, rather than Bose-Einstein,
statistics.

Rather than the choice of particle statistics, the really
special feature of the simple models considered in Secs.
IIT and IV was that one could speak of a single fixed
duration (in imaginary time) for the instanton. It was
this fact that implied the possible existence of a uniquely
defined temperature inversely proportional to this dura-
tion. If different “parts” of the instanton last for different
lengths of (imaginary) time, there is no obvious sense in
which one can hope to speak of a single temperature for
the tunneling process.

It is, however, clear that, despite this difficulty, there
are certain generic properties of particle creation on an
instanton that are independent of the assumption of one
single duration. Most obvious, perhaps, is the fact that
the choice of a minus sign in the Tomonaga-Schwinger
equation always implies that the system is trying to ““for-
get” its initial conditions. This conclusion relies only on
the assumption that 7(x) is systematically increasing for
all x during the tunneling.

Less obvious, but still most likely true, is the expecta-
tion that, even for a (mildly) inhomogeneous instanton,
one should be able to speak of a “‘nearly thermal” state
for modes with wavelengths short compared with the
scale of the inhomogeneity. Physically, one can think of
evolution on the instanton as involving a continuous
creation and destruction of virtual pairs until the final
boundary, at which point the pairs become real. And, to
the extent that these virtual pairs see a spatial environ-

ment that is nearly homogeneous and isotropic, one
might anticipate that they would once again end up man-
ifesting a “‘nearly thermal” distribution. The basic ‘“‘near
thermal” behavior derived here should be robust with
respect to at least small deviations from homogeneous
tunneling.

In this regard it is worth emphasizing explicitly that
the formal problem of calculating particle creation on an
instanton works quite generally, regardless of any as-
sumptions regarding the metric or topological properties
of the instanton. The nonunitary Bogoliubov transforma-
tion technique® works for any instanton with product to-
pology 2 X R. And, for more complicated instantons one
can always use a functional integral approach.’ !°

When allowing for the possibility of more complicated,
topology-changing instantons, where this functional in-
tegral approach becomes essential, one can of course en-
vision all sorts of new possibilities. Thus, e.g., there is
the possibility of “fluctuations” in topology, as reflected
by “handles” on a basic instanton of product topology
3 XR; and there is even the possibility of a single
Universe ‘“‘bifurcating” into two or more separate enti-
ties, which a priori need not contain matter fields at the
same temperature. The nature of particle creation on
such instantons is clearly far more complicated than for
the simple models considered in this paper, but, whatever
the complications that arise, it is clear that the basic
physics necessarily manifests an “arrow of time” that re-
sults from the very fact that one is considering an instan-
ton.
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