
PHYSICAL REVIEW D VOLUME 42, NUMBER 10 15 NOVEMBER 1990
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A spherical charged black hole in thermal equilibrium is considered from the perspective of a

grand canonical ensemble in which the electrostatic potential, temperature, and surface area are
specified at a finite boundary. A correspondence is established between the boundary-value data of
a well-posed problem in a finite region of Euclidean spacetime and the freely chosen thermodynamic
data specifying the ensemble. The Hamiltonian and Gauss's-law constraints are solved and elim-

inated from the Einstein-Maxwell action, producing a "reduced action" that depends upon two

remaining degrees of freedom (two free parameters), as well as on the thermodynamic data. The
black-hole temperature, entropy, and corresponding electrostatic potential then follow from rela-

tions holding at the stationary points of the reduced action with respect to variation of the free pa-

rameters. Investigation of an appropriate eigenvalue problem shows that the criteria for local

dynamical and thermodynamical stability are the same. The ensemble can be either stable or unsta-

ble, depending upon a certain relation involving mean charge, gravitational radius, and boundary

radius. The role of the reduced action in determining the grand partition function, the thermo-

dynamics of charged black holes, and the density of states is discussed.

I. INTRODUCTION

Progress in deriving black-hole thermodynamics from
the statistical mechanics of gravitational fields has re-
quired explicit recognition that self-gravitating systems in
thermal equilibrium are spatially inhomogeneous. In ac-
cordance with the principle of equivalence, intensive vari-
ables such as temperature and chemical potential vary in
the same way as does wave frequency in the gravitational
redshift. In setting up an ensemble, one must therefore
specify where such variables take their values. In this pa-
per we consider a grand canonical ensemble under the
condition of spherical symmetry and specify the bound-
ary radius rz of the system together with the values of
the inverse temperature p and chemical potential p deter-
mined by an observer at rest at rz. The thermodynamic
data can thus be viewed as boundary-value data, and
indeed they do play that role in the correspondence be-
tween statistical thermodynamics and certain well-posed
boundary-value problems in Euclidean spacetime. This
correspondence is fundamental in the present analysis.

With thermodynamic data such as IP, P, r& I given, the
appropriate Massieu function is lnZGC= —PQ, where

Z&c is the grand canonical partition function and
A(f3, g, rtt ) is the grand potential. Our method for obtain-
ing an approximation to lnZ~c is based upon finding the
stationary points of an action from which the constraints
have been eliminated. From lnZGC one can derive the
various thermodynamic quantities and response functions
by differentiation. Of special interest for self-gravitating
systems is the issue of the stability of equilibrium in a
given type of ensemble, that is, thermodynamical stability
with respect to certain fixed boundary conditions. This
question can be settled by an examination of the local and

global behavior of the appropriate Massieu function.
The main purpose of this paper is to generalize previ-

ous work ' on gravitational statistical mechanics to a
case in which gravity is coupled to a gauge field, namely,
the electromagnetic field. The system is described in a
grand canonical ensemble in which the boundary radius
and the temperature and chemical potential at that radius
are fixed. The chemical potential is conjugate to electric
charge and is therefore an electrostatic potential energy
difference per unit charge. The charge itself is not fixed.
Our main results are, first, a complete derivation from an
action principle of the temperature, entropy, and electro-
static potential of a charged black hole and, second, a
demonstration of the equivalence of local dynamical and
thermodynamical stability using the same action princi-
ple. We find that the ensemble can be either locally
stable or unstable according to an explicit relation among
the system parameters.

We have chosen the boundary conditions of a grand
canonical ensemble because, first, they are the ones corre-
sponding to the usual Einstein-Maxwell action in which
g„and A„are fixed on the boundary and, second, our
boundary conditions lead to a well-posed problem and a
stable ensemble. We are aware that particular problems
involving black holes may call for boundary conditions
other than the ones we have adopted here. But even
though different boundary conditions will generally yield
ensembles with inequivalent behaviors, it is nevertheless
possible to obtain the existence or nonexistence (stability
or instability) of the various ensembles from one well-
defined ensemble. For example, for Schwarzschild-like
black holes the usual canonical ensemble can be stable,
and this can be used to show that the petit canonical en-
semble in which pressure and temperature are fixed is al-
ways unstable. (This, in fact, is the unique sense in
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which a black hole in thermal equilibrium can be said
unambiguously to be unstable. )

In this work we do not consider the effects of the
equilibrating thermal radiation that must reside between
the surface of the black hole at r =r+ and the surface of
the cavity wall that encloses the system at r =rz, that is,
we do not consider the back reaction of the ambient radi-
ation near the hole. However, the added complexity en-
tailed by passing from the absence to the presence of elec-
tric fields will be seen to be nontrivial and very instruc-
tive.

We work in the Euclidean picture corresponding to
regular black-hole topologies with static spherical
geometries and electrostatic fields, as described in Sec. II.
In Sec. III we consider the Einstein-Maxwell action ap-
propriate for fixing the metric and one-form potential on
the boundary, and show that these variables also fix the
thermodynamic data of the grand canonical ensemble de-
scribed above. We simplify this action using the
geometry and fields of Sec. II and verify that the resulting
simplified classical variational principle is consistent.

In Sec. IV we introduce the "reduced action" I, ,
which is obtained from the simplified classical action I in
two steps. First, the gravitational Hamiltonian con-
straint and the electromagnetic Gauss's-law constraint
are solved. The solutions depend on two constants of in-
tegration that are shown to be the gravitational radius r+
and a charge parameter e defined by the flux 4me of the
electrostatic field through the sphere r =rz. These two
free parameters represent the two physical degrees of
freedom for fields of the given geometrical and topologi-
cal type that are compatible with the constraints. The
second step in obtaining the reduced action is to insert
the solutions of the constraints into I and carry out the
integrations to obtain I, =I, (p, p, rs, r+, e), a function
of five independent variables. Variation of I, with
respect to the physical degrees of freedom r+ and e re-
veals that when I, has a nontrivial real extremum, the
previously arbitrary ensemble data p and p are the equi-
librium inverse temperature and associated electrostatic
potential, evaluated at r =rz, of a black hole of gravita-
tional radius r+ and charge e. (In Sec. V we show explic-
itly that the ensemble mean charge is ( Q ) =e.) Thus the
principle of stationary reduced action for the grand
canonical ensemble leads to a simple derivation not only
of the thermal equilibrium temperature, but also of the
electrostatic potential of a black hole.

Examination of the conditions for the existence of real
nontrivial stationary points of the reduced action leads to
a cubic equation that determines r+ as a function of p, p,
and rz. From this equation it follows that real local ex-
trema must occur in pairs and that they exist if and only
if a certain quantum electrogeometrical inequality is
satisfied. Mathematically, the inequality expresses the
nonpositivity of the discriminant of the cubic equation.
We determine the physical distinction between the two
solutions in Sec. V by studying an appropriate eigenvalue
problem.

In Sec. V we obtain an expression for the Massieu func-
tion of the grand canonical ensemble by introducing the
zero-looP aPProximation 1nZoc = I(P, P, rs ), where I—

is I, evaluated at an extremum in the parameters r+ and
e. From I all of the thermodynamic relations can be ob-
tained; in particular, we show that (Q) =e and we find
an expression for the mean thermal energy (E ). The en-
tropy is found to have the value mr+, as expected on the
basis of black-hole thermodynamics. This procedure
makes sense if the grand canonical ensemble is stable; we
demonstrate that local stability indeed holds when the
system configuration is described by a particular one of
the two solutions mentioned above. This is shown by ex-
amining the eigenvalue problem associated with the ma-
trix of second derivatives of I, with respect to e and r+
evaluated at a stationary point. Our demonstration es-
tablishes simultaneously the equivalence of local dynami-
cal and thermodynamical stability. ' We also give explic-
itly the criterion guaranteeing that the locally stable ex-
trernum is a global minimum of I, .

In Sec. VI we indicate how to obtain the canonical en-
semble in which charge, rather than electrostatic poten-
tial, is fixed at the boundary. We also give a brief discus-
sion of the density of states, whose principal features fol-
low from the existence of stable configurations in the
grand canonical ensemble.

II. TOPOLOGY AND GEOMETRY

We consider gravitational fields in the black-hole topo-
logical sector with metrics of the form

ds =b dd+a dy +r (d8 +sin28dp2), (2.1)

where b, a, and r are functions only of the radial coordi-
nate y G [0, 1]. The "Euclidean time" r is chosen to have
period 2m; the angles 8 and q are the usual coordinates of
the unit sphere. By "black-hole topology" we mean that
the four-geometries (M, g) are regular with product to-
pology 8 XS, boundary S XS at y =1, and Euler
number y=2.

The boundary at y = 1 has a standard round two-
sphere S with area 4nrs, where r. s =r(1). This sphere
may be thought of as a cavity wall at r~ enclosing a
spherical system with a black hole at the center and
through which heat can flow in either direction to main-
tain a temperature at the wall of T= T(rs ) =p '. The
inverse temperature is related to the proper length of the
round S' of the boundary by

P=T '= J b(1)dr=2mb(1) . (2.2)
0

(We use units with G =fi=k~ =c =1 unless otherwise
noted. ) Of course, there must be radiant energy between
the surface of the hole at r+ =r (0) and the cavity wall rs
in order even to speak of a temperature P ' describing
the system. The explicit effect of this radiation ("back re-
action") will be neglected in the present work, but this in
no way affects the statement of the boundary conditions,
the method of analysis, or the qualitative conclusions.
We see that these boundary conditions specify the three-
geometry of the boundary S'XS and furnish the ther-
modynamic data P and rs that are needed for a canonical
or grand canonical description.
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The center y =0, r(0)=r+, which represents the hor-
izon of the black hole, is not a component of the three-
dimensional boundary of M; rather, it is a regular two-
sphere with nonzero area 4vrr+. We can think of y =0 as
a degenerate leaf of a foliation of M by three-dimensional
hypersurfaces y =const. These leaves have topology
S'XS . As y~0, the S' shrinks smoothly to zero to
give the S at the center; thus we have

b(0)=0 . (2.3)

This description in the context of a smooth geometry re-
quires that the y-~ plane near y =0 be isometric to a Hat

disk. The corresponding regularity condition is

(a 'b')~y 0=1, (2.4)

f a dy -=b (y ) . (2.5)

The regularity conditions (2.3) and (2.4) will not be varied
in the action principles.

From the Gauss-Bonnet-Chem formula applied to the
metrics (2.1), the Euler number of M is deduced to be

g=2[(a 'b')[1 —a (r') ])

=2[1—a (r') ] (2.6)

where (2.4) was used to obtain the second form of (2.6).
In order to have g =2, the condition

[a '(r')']y=o=0 (2.7)

must hold. This condition will be used in Sec. IV. Con-
dition (2.7) is not used in the variational principles.

The electromagnetic field will be described by the one-
form A„dx". With static spherical symmetry we have
A„dx"=A, (y)dr+ A~(y)dy. The second term plays no
essential role and can be removed by a gauge transforma-
tion to yield the form we shall employ: namely,

A„dx"=A, (y)dr .

Let us examine the regularity condition on A„aty =0.
Note that the proper orthonormal frame component of
the potential one-form is A =b 'A, . From elementary

physics it follows that A will be the electrostatic poten-

tial multiplied by a constant k. If we require that this po-
tential be bounded, then because b(0) =0, we must im-

pose the regularity condition

where a prime denotes BIBy. Combining (2.3) and (2.4)
shows that for a point y =y very near y =0, the proper
radial distance is

will show that k = —i. Therefore, the boundary condi-
tion is

27TI
(2.10}

with P fixed. Both A, (0) and A, (1) are held fixed in our
variational principles.

Fixing both the three-geometry and the electromagnet-
ic potential one-form at the boundary y =1 gives the
thermodynamic data [P, rz, g] required for a discussion
of the grand canonical ensemble. The regularity condi-
tions (2.3), (2.4), and (2.9), together with (2.7), correspond
to the topology of a black hole that can be electrically
charged. [By contrast the case of "trivial" topology
R XS' (with the same boundary and boundary condi-
tions) would correspond to the conditions r (0)—:0,
r'(0)—:a(0), and A ', (0)=0.]

III. ACTION AND FIELD EQUATIONS

The Euclidean gravitational action suitable when the
three-geometry of the boundary is fixed is given as in pre-
vious works by'

where the subtraction term (the boundary term with K")
leads to the "normalization" I =0 for fiat spacetime
with the given boundary data. It should be emphasized
that the subtraction term does not a8'ect the derivation of
temperature, electrostatic potential, or entropy. As we
shall see, however, the subtraction term does affect our
expression for the mean thermal energy (E), ensuring
that (E)~M as r~~ac, where M is the Arnowitt-
Deser-Misner (ADM) mass of the black hole.

Using the metric (2.1), one can show that

2A=-
+br

b' —2G', , (3.2)

where

G7r
(r')

r —1
a

(3.3)

The other nonvanishing components of the Einstein ten-
sor are

2

Gy 2b r r
o.~br er r 2

(3.4}

I = — f d x&gR+ f d xv'y(K IC ), —
16m 8m aM

(3.1}

A, (0)=0 . (2.9)

Our boundary condition on the electromagnetic field is to
fix A, (1) to some constant value. The discussion above
and (2.2) show that

A, (1)=b(1)A (1)=kPP(2m)

where k is a constant and P is the difference of potential
between y =0 and 1, i.e., P=P(0) —$(1). In Sec. IV,
from an examination of the Gauss's-law constraint, we

6 =6~= 1

b z

r b' b r'+-
+br

I

+
cxr

(3.5)

The trace of the extrinsic curvature of a y =const hyper-
surface is

1
(br )' .

abr

Upon substitution, simplification, and integration over 0
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and y, we obtain

I = —— d~dy r—r'b'+ —(r') +ab —2(br)'1 '2, , 6
2 a a

dr (b—r )' 2b—r
1 1

2 y=0 a
(3.6)

functional derivatives (3.7)—(3.9) and (3.15)—(3.17) show
that this simplified Einstein-Maxwell action produces the
correct field equations and is stationary when the field
equations hold and the boundary and regularity condi-
tions are fixed. This demonstrates that we have a con-
sistent framework from which to pass to the reduced ac-
tion.

Variation of (3.6) with respect to b, a, and r yields

I
=mar G, ,

6I
=~br G~,

5a

(3.7)

(3.8)

IV. REDUCED ACTION AND STATIONARY POINTS

To obtain the reduced action I, from the simplified ac-
tion described in Sec. III, we begin by solving the con-
straints. The Gauss's-law constraint is given by (3.11). It
is evident that the first integral is

5I
=2~abrGg .

5r
(3.9)

2

A ', =const .
ba

(4.1)

The Euclidean action for the electromagnetic field with

A„fixed on the boundary is

I = x g F F"' (3.10)

with F„,=d„A,—B,A„.Because A„dx"=A, (y)dr, the
only nontrivial Maxwell equation is the Gauss's-law con-
straint

r 2

A,' =0 .
ab

(3.11)

TP~= Fs &F~ &v~F F~P1 1

4n. 0'
4 0'p

are

The nonvanishing components of the Maxwell stress-
energy tensor E~=a (

—g ) A, =
r

(4.2)

However, from dr=i dt, it follows that

A, (y) = i A, (y—), (4.3)

The constant can be obtained from the physical con-
sistency requirement that the analytic continuation of the
fields A„and metric g„ from Euclidean to Lorentzian
spacetime should yield the elementary integral form of
Gauss's law with a real charge, say e, and electric flux

4me through a sphere surrounding the center. For static
field configurations, the passage from Lorentzian to Eu-
clidean variables can be realized by the analytic continua-
tion t = —i~ between Lorentzian time t and Euclidean
time v.. In this way, it is readily seen that the only
nonzero physical component of the real Lorentzian elec-
trostatic field is the familiar radial Coulomb field

'2
A,'T'= T~= —T = —T& =

8 b
(3.13)

so that A,d~= A, dt is invariant. Combining (4.2) and

(4.3) and noting that ( —g«)' continues to b shows that
(4.1) becomes

The Maxwell action can be simplified as was the gravita-
tional action, and we find

2

A = le
ba

(4.4)

1
2I„=—fdrdy A', A', .

2 ab
(3.14)

Variation with respect to A„respecting the boundary
and regularity conditions, yields correctly the Gauss's-
law constraint (3.11). Variation of the metric functions in

(3.14) yields

G, —8+T,'=0 . (4.5)

Using (3.3), (3.13), and (4.4), this constraint becomes

A similar argument fixes the same multiplicative constant
( i ) in A, (1)—that we wrote down in (2.10).

The Hamiltonian constraint is

5IA r2
( A,')

b a
r'

(A', )5a ba

(3.15)

(3.16)

'r
r r'

r e—1 + =0
a r4

which is integrated easily to yield

(4.6)

r=2m (A', )
6r ba

Taking the total action to be

(3.17)
'2

r e2=1——+
r r2

(4.7}

I=I +I~, (3.18)

with I in the form (3.6} and I„in the form (3.14), the

The integration constant C is found from the demand
that the Euler number is g=2. With r+ —= r(0), enforc-
ing (2.7) implies
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2

C=r +
+

(4.8)
BI, = —P 1—
B1'+ 2

—1/2
e21—

r+ rB

' 1/'2

so that
2

r =1-
+

2r + e 2

r r+r2

1 e "+——P- 1—
2 y rB

1/2

1—
r+ fB

—1/2

(4.14)
2

1— (4.9)

r =M+(M —e )' (4.10)

Then, substituting (4.10) into (4.9) reveals the familiar
form

To relate the above result to the more familiar form of
the radial contravariant metric component of a charged
black hole, it may be helpful to recall the relation be-
tween the gravitational radius and the ADM mass:

Setting (4. 13) to zero yields
' 1/2

r+1—
rB

2

1—
r+ rb

—1/2

(4.15)

which is the difference in electrostatic potential between
r+ and rB "blueshifted" from infinity to rB. Letting
rB ~~, one easily recovers the usual electrostatic poten-
tial of a charged black hole, 4=er + '. Recalling that
charge is not specified in the grand canonical ensemble,
we shall show in Sec. V that at equilibrium the mean
value of the charge is indeed given by (Q) =e. Setting
(4.14) to zero yields

2M e
r r2

(4.11)
p=4irr+

2

1—
2r+

r+1—
rB

1/2
e1—

1/2

It is interesting to note that M plays essentially no role in
our work; we have displayed (4.11) only to make the nat-
ural variables of the problem seem more familiar. Also
note that we have not yet established any relationship
whatever between the unconstrained dynamical degrees
of freedom r+ and e and the freely prescribed thermo-
dynamic boundary data IP, P, rs I.

The reduced action I„=I,(P, P, rs;e, r+ ) can now be
obtained by substituting the solutions (4.4) and (4.9) into
the sum Ig+I„and performing the integrations over y
and ~. After a straightforward calculation we find, using
also PP=2iri A, (1) from (2.10),

I,A '=G 'Prs

1/2
2

1/2-
Ge

and

(1—
P )x —x +(1—P ) 0 =0, (4.17)

cr(1 —P )
(4.18)

(4.16)

This is the inverse of the temperature of a charged black
hole as found by Hawking, " blueshifted from infinity to
rB.

Using (4.16) and (4.15), r+ and e can be written as
functions of P, $, and rs, as required in exPressing a

thermal equilibrium configuration in the grand canonical
ensemble. Combining these equations yields

—(Gfi) 'irr+ —Pge .

r+rB

(4.12)

where
r+

x =-
rB

and

eq=
rB

(4.19)

Note that in (4.12) we have temporarily restored
Newton's constant G and Planck's constant fi (keeping
kii =c = 1). It is evident from the appearance of the term
(Giri) 'irr+ that the "classical" action of the topological-
ly nontrivial Euclidean fields produces a decidedly
quantum-mechanical term —the term that will be shown
to be the entropy of the system. [Observe that no other
expression on the right-hand side of (4.12) contains
Planck's constant. ]

To obtain the stationary points of I, with respect to e
and r+ is a simple matter of dilferentation with p, p, and

re held fixed. We find (reverting to absolute units)

(4.20)

3v'3''(1 —GP ) & 8irrs, (4.21)

where G and R have been restored. These two solutions,
denoted x . and x &, can be expressed as

0 =
4~rB

We assume that the free parameters satisfy e &r+ and
that the specified potential satisfies Pi(1. The cubic
equation (4.17) has two real and positive solutions satisfy-
ing the inverse temperature relation (4.16) if and only if
the discriminant of the cubic is nonpositive. ' This con-
dition yields the quantum electrogravitational inequality

"r}I* pe r+1—
1/2

2
1—

—1/2

P$, (4.13)—x (1—P )=—1+2cos—1 a
3 3

(4.22a)
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2 1 cz
x&(1—P )=— 1 —2cos —+—

3 3 3

where

cosa = 1 ——2,
' cr (1—P )

(4.22b)

(4.23)

I„(P,P, rs, e, r+ ) and evaluating the result using
e(P, rtr, rs) and r+(P, g, rs) as determined through Eqs.
(4.15) and (4.16). Other derivatives of I are evaluated
similarly. For the charge (5.1) we obtain

(5.2)

with 0~ a~ vr. These solutions generalize Eqs. (3) and (4)
of Ref. 1. When equality holds in (4.21), the discriminant
vanishes and the two solutions coincide. Studying this
case reveals that P (—,

' is necessary in order that x & & 1,

which is required in order that it can be interpreted as a
black hole inside a thermal cavity, that is, r+ &rz. J.
Louko has pointed out to us that the third root of (4.17)
can also be interpreted as a solution of our boundary-
value problem. However, r+ &0 for this solution, and so
the corresponding metric must be complexified in order
to avoid a curvature singularity at r =0. The action of
this solution is real, but because it is greater than that of
either (4.22a) or (4.22b), we shall not consider it further in

this paper. (A solution with similar features also arises in

the canonical ensemble, discussed below in Sec. VI.)

When the inequality (4.21) is violated, the reduced action
has no real positive stationary points. However, (4.17)
does possess a conjugate pair of complex solutions and a
real negative solution with the given real values of p, p,
and rz. We shall not consider solutions other than
(4.22a) and (4.22b) any further in this article, although
they could ultimately prove to be of interest.

Having obtained the two real solutions x & and x & as
indicated above, we can now substitute them into (4.18)
to obtain q

=ere ' T—hus on. e finds r+ =r+ (P, g, rs) and

e = e (p, p, rz ) when re, ir3e =0 and dI, /Br+ =0 at equi-
librium.

V. DYNAMICAL
AND THKRMODYNAMICAL STABILITY

We consider here an approximation to the statistical
mechanics of gravitational fields in the black-hole topo-
logical sector —the level of approximation that corre-
sponds to black-hole thermodynamics. These results are
obtained by what can be called a "zero-loop approxima-
tion" to the partition function calculated as a path in-
tegral in which back-reaction effects are ignored. This
corresponds in the present case to adopting as the Mas-
sieu function for the grand canonical ensemble the ex-
Pression 1nZoc = I(P, P, re ), w—here I is I, evaluated at
a locally stable stationary point. We show below that one
of the two stationary points is indeed locally stable.

The mean value of the charge is found from the stan-
dard expression

B(lnZoc )Q=P'

(5.1)

Because BI, /Br+ =BI, /Be =0 at equilibrium, the
derivative in (5.1) is easily obtained from differentiating

as anticipated. The entropy is obtained from

S =P I =a—rr+,
$, r~

(5.3)

where it is understood that r+ =r+(p, p, rs). This of
course is the result expected from black-hole thermo-
dynamics, "' as expressed in the grand canonical ensem-
ble.

The mean thermal energy in this ensemble is defined by

(E) re
8 $, r~

BI
Bp /3rb, ~

(5.4)

This produces a new expression for the thermal energy of
a charged black hole, namely,

1 /2

(E)=re r& 1
—— (5.5)

where again r+ and (Q) =e are functions of p, p, and

r~. The significance of this quasilocal energy' is perhaps
best seen by recalling (4.10) and solving (5.5) for the
ADM mass M. This results in the physically natural re-
lationship

M=(E)- "'+ 'Q'
2' 2rB

(5.6)

asserting that the "mass at infinity" is the thermal energy
plus the (negative) gravitational binding energy plus the
(positive) electrostatic binding energy.

From (5.5) and the previous results, one can now estab-
lish the thermodynamic identity

d(E) =TdS —
A, dA +Pd(Q), (5.7)

X 1 —"' 1+ (Q)'
2rB r+

(5.8)

Observe that, if A and (Q ) are fixed, a transfer of a
small amount of "heat" determined locally at r =rz is

given by d ( E ) = T dS—:T ( rs )dS. (This experiment
could be done with a calorimeter. ) This reversible pure
heat transfer corresponds directly to a small change of
the quasilocal energy (E ), and so, indirectly, by (5.6) will
also lead to a small change in the ADM mass M. One
finds that d (E ) is dM divided by the square root of (4.9)

where T =p ', A =4m r~, and the non-negative "surface
pressure" k is given by

' —1/2
f+1—
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or, equivalently, divided by the square root of (4.11), as
expected. Observe that the square root of (4.9) or (4.11) is
simply (1—&E)rz ').

The above results make sense if e (P, P, rz ) [equivalent-
ly, & g ) (P, P, rs )] and r+ (P, P, rs ) [equivalently
S(P,P, rz)] correspond to a locally stable solution. This

can be decided by examining the signs of the eigenvalues
of the real symmetric matrix I. .. at the stationary
points, with the indices i,j ranging over & g ) and S (or e
and r+ ).

First, note that at equilibrium we have [using
x =r+rs '—= (S!n)' rs ' and q=er~ '=&g)r~ ']
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by which we avoid, respectively, the case in which r+
and rB coincide and the case of extreme charged holes
hei =r+. The two pivots of

The eigen values could be calculated by a standard
straightforward method. This produces unwidely expres-
sions. There is a much better procedure, however, be-
cause only the signs of the eigenvalues are needed. For
this purpose, it suSces to compute the pivots of the ma-
trix I. . . that is, the ratios of its principal minors.
These, it turns out, are precisely the thermodynamic
response functions that are relevant to the thermal stabil-
ity of the grand canonical ensemble.

Thermal stability in an ensemble with a black hole
must apply to the entire system, because such systems ob-
viously cannot be subdivided into spatially separate parts
as is usually done in treating questions of thermodynamic
stability. The response functions relevant to the thermal
stability of a given type of ensemble, therefore, are those
which can be obtained by variation of the extensive vari-
ables that are not fixed by the boundary conditions
defining the given ensemble. Accordingly, for the grand
canonical ensemble, we consider second variations of the
action with respect to the charge and entropy. We do not
vary the size of the system, as defined by the area 4m.rB.
By relating the relevant response functions to the pivots
of the matrix I. .., we can treat simultaneously the issues
of local dynamical and thermodynamical stability. '

Observe that the physical range of our variables is

which is positive by inspection of (5.9), and, second,

1
det(I, ;i ):— 1
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(5.15)

where C&
„

is the heat capacity at constant electrostatic

potential difference and cavity radius. The heat capacity
(5.15) can be computed directly from the standard
definition

BSCq„—= —P (5.16)

from which we find
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From (5.14) and (5.17) it follows that when

3x —2x —
q )0, (5.18)

the eigenvalues are both positive, for the signs of the
pivots are in one-to-one correspondence with the signs of
the eigenvalues. ' The condition (5.18) for local dynami-
cal and thermodynamical stability generalizes earlier re-
sults for a canonical ensemble with a black hole and
/=0. " The stability requirement (5.18) holds for the
solution (4.22a) denoted by x ) .

The solution (4.22b) denoted x ( violates the inequality
(5.18) and is therefore unstable. Also, when

QQ +, QS

Ie, QS Ie,SS
(5.13) 3x 2x q —0 (5.19)

are, first,

a&g), ,, (5.14)

one of the eigenvalues of I, , is zero, and the corre-
sponding heat capacity is +~. This corresponds to

(5.20)
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and

(5.21)

where we assume the measure dp(e, r+ ) is not exponen-
tial in either variable. If the local minimum of I, is posi-
tive, Zzc is dominated by points near the origin
(e =O, r+ =0). But these points do not describe thermal
equilibrium as it is normally understood, precisely be-
cause they are not stationary points of the action. %e ex-

pect that the correct physics for such a situation would
be described in another topological sector. The locally
stable stationary point x & would describe in this case a
metastable black hole.

However, for some boundary data the local minimum
of I, is indeed a global minimum, as illustrated in Fig. 1.
These cases, in which I, is negative at its local minimum

and the black hole dominates Z&c, can be characterized
as follows. Let the data [P,g, re I be such that the locally
stable solution satisifes 0&x & & 1. Then the correspond-
ing local minimum I is negative, and is also a global
minimum, if and only if

(5.23)

When /=0, this reduces to the result P/4vrrz & —,', found

in Refs. 1 and 4. Combining x & & 1, (4.22a), and (5.23),
we see that for I, to be a global minimum, we must have

P & —,
' and o & =,'. Restoring G and fi, we can state these

necessary conditions as

G p2

PA' & —3n.re .

(S.24)

(5.25)

The infinite discontinuity as one passes from x & Ix„;,
and C&„~—~ to x & Ix„;,and C& „~+Oo does not

correspond directly to a phase transition. It signals the
conditions under which locally stable contact between the
system containing a charged black hole is, or is not, pos-
sible when it is in thermal and "diff'usive" (charge-
nonconserving) contact with its environment. We
reiterate that because r& is fixed in the grand canonical
ensemble (and in the canonical and microcanonical en-

sembles as well), any mechanical response functions
("compressibilities") are irrelevant to present issues of
stability. '

The stationary points corresponding to x & are the lo-

cal minima of I, , but not necessarily the global minima,
over the space of variables [e, r+ I for fixed data

j 13,P, rs I . One can see this from the fact that I, ap-
proaches zero as e and r+ approach zero, whereas I, can
be positive at the local minimum corresponding to the
given data [P,g, re I. In such cases we would not expect
the zero-loop approximation to Zzc to be accurate.
Thus, following Ref. 4, suppose that the grand partition
sum is written as

Zoo(p, y, rs }=f dp(e, r+ )exp[ —I„(P0 ra'e r+ ))

(5.22)
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VI. CANONICAL ENSEMBLE
AND DENSITY OF STATES

In the canonical ensemble the charge Q = (Q ) =e is

fixed, rather than the potential difference P. The simplest
way to treat this problem and relate it to the analysis car-
ried out above is to calculate the canonical partition func-
tion Z& in the zero-loop approximation, where

lnzc = /3F, with F—the Helmholtz free energy. That is,
employ the approximation lnZ& = —IC, where

Ic(P, re, Q) is a suitable action evaluated at a stable sta-

tionary point of a corresponding reduced action
I,c(P, rB, Q;r+ ). This reduced action is obtained just as
before, by elimination of constraints and integration of an
appropriate action functional, but in this case the action
functional should be tailored to the changed boundary
condition on the electromagnetic field. Thus the canoni-
cal action from which one begins is

I~ Ig +IF (6.1)

where I is the same gravitational action as before, but IF
is the usual Maxwell action I~ augmented by a boundary
term:

d4& F FI + d3y P g
16m M " 4' aM

(6.2)

The action IF is stationary when the Maxwell equations
hold and when the electromagnetic field F", rather than
its potential A„,is fixed on the boundary. This action al-

lows us to fix directly, as given thermodynamic boundary
data, the flux of the electric field, that is, the charge Q.

Simplifying and reducing the action (6.1) gives
1/2

Q
2 1/2

1— 7Tr ~r+ rg

r+I,c =Pre 1 — 1—
rp

(6.3}

FIG. 1. Action I~(4m.rz) ' as a function of x =r+ /r~ and

q /x, where q
=e /r&, for given thermodynamic data

P/4~rs=0. 25 and /=0. 1. Note the presence of the unstable
saddle point at x =0.29 and q/x =0.12. The local minimum at
x =0.94 and q /x =0.38 is a global minimum.
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This reduced canonical action I~&(P, rtt, Q; r+ ) has r+ as
its only degree of freedom. Extremizing I,& with respect
to r+ yields the black-hole inverse temperature P given
just as before by (4.16). To produce Ic(P, rtt, g), one
must invert (4.16) to obtain r+ =r+(P, rtt, g), which in-

volves solving an algebraic equation of seventh order.
(Recall that the analogous problem produced a cubic
equation in the grand canonical ensemble. } We will only
remark about this equation that it has two physically ac-
ceptable solutions, of which at least one is stable (that is,
for which I,c has a local minimum with respect to r+
and the relevant response function C& „

is positive). One
B

can show that the canonical ensemble has greater stabili-
ty than the grand canonical one in the sense that a larger
set of the (r+, Q) plane corresponds to locally stable solu-
tions. This result is expected because the canonical en-
semble has a conserved charge Q, while the grand canoni-
cal ensemble does not.

From IC one obtains an expression for the quasilocal
energy (E ) =BIclt)13 equivalent to the previous one [Eq.
(5.5)], except that now r+ depends on P, rtt, and Q, and
Q—= (Q) is a given conserved constant. Finally, in the
canonical ensemble one obtains the electrostatic potential
diff'erence P from

(vE, g, r, )=exp(~r', ), (6.5)

where r+ is expressed in terms of E, Q, and rtt using
(4.10) and (5.6).
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