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Arbitrariness of inflationary fluctuation spectra
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We find that the simplest model of inflation, a single scalar field undergoing slow roll, is con-
sistent with nearly arbitrary fluctuation power spectra, each corresponding to a unique family of po-
tentials which we determine. Deviations from a Zel’dovich spectrum become increasingly dramatic
in the limit that the slow-roll approximation breaks down. Examples are given. Possible features in
the power spectrum could reconcile galaxy formation theories with observations of large-scale
structure. We further derive new constraints on the reheating temperature.

I. INTRODUCTION

Inflation is possibly the most popular scenario for pro-
ducing large-scale fluctuations in the Universe. Perhaps
the simplest model (out of the many, reviewed in Ref. 1)
is chaotic inflation,? described by the dynamics (often as-
sumed to be friction dominated or “slow roll”’) of a single
scalar field ¢. Even within this subclass of inflationary
models, there is still great freedom since a potential V()
must be specified. It is frequently claimed that a
Harrison-Zel’dovich spectrum (HZS) is the generic out-
come of inflation. The standard examples involve simple
potentials of the form V(¢)=m?¢?/2 or V(d)= Ad*/4,
which do lead to a near HZS. However, there is no
particle-physics reason why the potential should be so
simple, or even renormalizable, and other potentials
should be explored. Nonstandard spectra have been
found in two models that go beyond the standard “‘slow-
roll” approximation, and use more complicated poten-
tials. The most general renormalizable potential
V()= A¢*/4+B¢>/3+Cd?/2+V, has been shown to
yield strong non-Zel'dovich features (valleys in the
HZS).> Also, power-law power spectra, of academic in-
terest only, can be generated in models that contain an
exponential potential.* For completeness, we mention
that interesting spectral features (a mountain, or possibly
a plateau, in the HZS) can arise in models with several
scalar fields.’ However, some of these models appear to
be unlikely within the standard framework of chaotic
inflation.®

Upon confronting the observations, it appears ques-
tionable that a HZS with Gaussian fluctuations could ex-
plain the large-scale structure in our Universe. Such ob-
servations include the galaxy and cluster angular correla-
tions, bulk motions, and other very-large-scale structures
such as voids or the “cosmic picket fence.”’ In one of the
most attractive theories of structure formation, the cold-
dark-matter (CDM) scenario, the HZS can be normalized
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to fit a great number of observations on small scales <10
Mpc, but the predicted large-scale features are not nearly
as prominent as the observations would suggest. Presum-
ably, the scenario could be rescued with a power spec-
trum that contains additional power on large scales.

The possibility that inflation might lead to a wide
variety of spectra is obviously of great importance, as
non-Zel’dovich spectra might help reconcile observations
of large-scale structure with theories of galaxy formation.
Here, we will show that a very large class of non-HZS
P (A) exists within one of the simplest models of inflation,
a result which goes well beyond the singular findings of
non-HZS in previous studies, by demonstrating the ex-
istence of potentials V(¢) that lead to such spectra. We
show through examples that the potentials corresponding
to interesting non-HZS do not appear to be terribly con-
trived. In addition, we use our formalism to provide a
transparent, and very stringent, constraint on the reheat-
ing temperature.

II. TRANSFORMATION OF A POWER SPECTRUM
INTO A POTENTIAL

A uniform scalar field, which is presumed to be respon-
sible for inflation, has the equation of motion

é+3HI+V'=0, 2.1

where overdots and primes denote derivatives with
respect to time and ¢, respectively, and the Hubble pa-
rameter H =R /R is given by

8w

2
mp

H?~ (V($)+d2/2+k /R *+pgl ,  (22)

where myp, is the Planck mass, R is the cosmic scale fac-
tor, k., is the curvature, and p_,q is the radiation energy
density. (Throughout we use units with i=c=kz=1.)
Inflation occurs if R >0, in which case scales move out-
side of the horizon and the curvature term becomes
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small. For a wide class of inflationary models, the poten-
tial energy density is the dominant contribution to the
Hubble parameter, and the motion of ¢ is friction dom-
inated and therefore given by the slow-roll equation of
motion

3Hé+V'=0. (2.3)
The slow-roll approximation is appropriate if®
V" <$24mV /m}y , |V'|SVA8aV /my, , (2.4)

and becomes increasingly worse as the inequalities ap-
proach equality. Inflation occurs (R >0), within this ap-
proximation, if

V' svV1erV /my, . 2.5

This is nearly (apart from a numerical factor of V'3) the
same as the second slow-roll condition in Eq. (2.4).

Fluctuations on various scales are determined by mi-
crophysics, i.e., quantum fluctuations. In the slow-roll
approximation, horizon-scale density fluctuations after
inflation are simply related to the properties of the poten-
tial when the scale left the horizon during inflation:’

P\ 2(k)=8V6xV32/V'm3}, , (2.6)

where ¢ at horizon crossing can be expressed in terms of
the wave number k via the relation k ~H(¢)R ($). Here,
P=k3(£2) /2w <(8p/p)* is the power spectrum associ-
ated with the gauge-invariant variable {~8p/(p+p).

The physical scale of a fluctuation leaving the horizon
at epoch ¢ is just ~H ~!. To connect the value of ¢ at
horizon crossing with present-day length scales A, we
need to know how much expansion takes place between
horizon crossing and today. It is customary to describe
this amount of expansion in terms of the number of e-
folds N= fH dt <In(R). We shall split N into two
pieces: N =N, +N(¢), where N, is the number of e-
folds from the end of inflation (at ¢ =¢,,4) to now, and
N (¢) is the number of e-folds from ¢ to ¢.4. Using the
slow-roll approximation, N(¢) can be expressed in terms
of the potential:

8T o V
N(p)=— —dd . 2.7
¢ m %1 asend 14 ¢
The scale A(¢) is then determined from the relation
A=27H "(¢)exp[N,+N(s)] . (2.8)

We now invert Egs. (2.6)-(2.8) and derive an expres-
sion for the potential for any fluctuation spectrum
P'72()) consistent with slow roll. Equation (2.6) can be
rewritten as

V'm3 —
—1;3—/211d¢=8\/677d W __1 4.

ah PN (2.9
From Eq. (2.8) we find that
VampAPA(A)
dA¢) 87 V}\: Pl . (2.10)

dé  mi V' Vevi”2

In this expression, the derivative of the H ~!(¢) prefactor
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in Eq. (2.8) has been ignored, in accordance with Eq.
(2.5). If we substitute Eq. (2.10) into (2.9) and multiply
both sides of the equation by ¥ /2, then the right-hand
side of Eq. (2.9) becomes independent of V and integrates
to

48 rr odr |

VM= Vo' —— ,
M= 1ro mb, IR NP(L)

(2.11)

where V), is the potential energy density to be specified at
Ao- The expression for V(¢) is then parametrized by A,
and ¢(A) is obtained from integrating Eq. (2.10) and using
the above expression for V(A):

v'6 fk VY2A)d N

(M=o +
¢ ¢0 Ao )\'Pl/z(}\,')

Vg (2.12)
After one determines V(¢), the self-consistency of the
slow-roll approximation is easily checked via conditions
(2.4) and (2.5). A manifestation of the breakdown of
these conditions is that, if the integral in (2.11) becomes
too large, ¥ (A) may go negative. We note that other pos-
sible inconsistencies do not arise: (1) if P is finite, there
are no false vacua in V(¢); (2) V(¢) is a single-valued
function according to Eq. (2.12).

To show that a wide variety of interesting non-HZS are
possible we must further demonstrate that the slow-roll
assumption does not significantly restrict the form of
P(A) over 3—-4 orders of magnitude in A. A variation in
P'72()) by a factor of a few is sufficient to be of astro-
physical importance. Using (2.5) and (2.6) we find that

V(L) /mp SP(L)/24 (2.13)
and the first condition in (2.4) can be expressed as
172
24V A _dP T 1oy (2.14)
Pm},  3PY? dA

The first term in this expression is guaranteed to satisfy
the constraint if (2.13) is satisfied, so one of the slow-roll
conditions depends only upon the power spectrum:

dp'”?
dA

A
Pl/2

<3. (2.15)

If the slow-roll conditions are strongly satisfied, P(A)
should therefore correspond to a nearly HZS. However,
we presently assume (and later check) that the inequality
in (2.15) need not be well-satisfied, and hence that
significant variations in P(A) can be achieved within the
slow-roll approximation.

If one calculates P(A) from a potential V(¢), the struc-
ture of the potential during the last ~60 e-folds of
inflation is needed so that one can locate the regime cor-
responding to large-scale structure scales. Working in re-
verse, we are only interested in specifying the power spec-
trum over a limited range of astrophysical interest, e.g., 1
Mpc <A <3000 Mpc. Hence, we obtain a small piece of
the overall potential V(¢) upon using the transformations
(2.11) and (2.12). More precisely, there is a family of po-
tential pieces corresponding to different constants of in-
tegration V. This occurs because there is not enough in-
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formation to connect V', to a scale A. The constant of in-
tegration ¢, reflects the translation invariant properties
of any single-field potential, and is unimportant.

III. EXAMPLES

At present, there are a limited number of analytic ex-
pressions for both V(¢) and P(A). They were found by
taking simple forms of the potential, which allowed one
to calculate the fluctuation spectrum, e.g., V «¢?, ¢*
which leads to nearly HZS (up to logarithmic terms).
There are a number of analytic cases in which the trans-
formations (2.11) and (2.12) can be used to calculate
V(¢). Rather than amassing a large table of such solu-
tions, we consider only the simplest analytic case which
involves simple powers of A, i.e., P2x ) ™" We first
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FIG. 1. (a) Plotted are fluctuation spectra as a function of
scale, that we chose as examples to transform into potentials.
The derived potential for the “mountain spectrum” was used to
generate a spectrum (heavy-weight curve) with slow roll relaxed.
(b) The potentials ¥V (#), where ¢ is in Planck mass units, corre-
sponding to the fluctuation spectra in (a). The initial value of
the potential, for each of these examples, was taken to be
Vo=V(1 Mpc)=10""m$,. Only the range of P'/%(1) shown in
(a) is converted into V(¢), to illustrate the mapping of A space
into ¢ space.
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note that condition (2.15) restricts the power n in which
the slow-roll approximation is valid: |n| $3. The case of
n =0, a pure HZS with P!/2=¢, yields the potential piece

Wy -

V($)/ Vo= |1— ————($—d)

(3.1

The case of negatively sloped spectra [P'/2=e(A/Ay) "
with n > 0] can also be written analytically:

V(g)=B"‘{cos[2Vmn (¢—dy)/mp,
+arcsin(e 'mp2V24/nB)]} 2,
3.2)

where B=V ' +24/ne*m$,. This potential has the oddi-
ty that there is a wavelength cutoff A, (corresponding to
where the potential approaches infinity) determined from
the relation A, /A,=(Bmye€*n/24)1/2". This merely
reflects a breakdown of the slow-roll condition (2.13),
which must occur at some point since P(A) decreases
with wavelength while V(A) increases with A (similar
reasoning can be applied to the pure HZS, where a cutoff
also occurs). This solution remains valid as n —0 (where
it reduces to 3.1) and as n becomes negative. When 7 is
negative, Eq. (3.2) corresponds to a generalization of the
exponential potential discussed in Ref. 4, where essential-
ly a specific choice of V|, was made.

It is also rather easy to evaluate Egs. (2.11) and (2.12)
numerically, either by direct numerical integration or by
differentiating them and numerically solving the resulting
two coupled first-order equations. Although A, is arbi-
trary, we have set A,=1 Mpc and solved the equations
over the range 1 Mpc <A <3000 Mpc corresponding to
large-scale structure scales. For each solution, one must
specify a value for the potential V=V (A,). We chose
Vo=10""m$,. In Fig. | we show a number of examples
of power spectra that we have converted into potentials.
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FIG. 2. The valley spectrum of Fig. 1(a) is transformed into
potential pieces V(#), where ¢ is in Planck mass units, for
several choices of Vy: 1072 m$, 6 X107 2m$), and 10™ ''m3,.
The qualitative features of the potential appear to be the same
in each case.
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In each case, we verified that the slow-roll conditions
were satisfied, and hence that our analysis was self-
consistent. We further checked our results by calculating
the spectra from the potentials in Fig. 1(b), with slow roll
relaxed (see Ref. 3 for the techniques used here), and
comparing them with the original spectra. All cases
agreed rather well—in Fig. 1(a) we have plotted one of
the worst “matchups.” An important point is that the
transformations (2.11) and (2.12) applied to interesting
spectra lead to reasonable looking potentials. We also ex-
amined how the potentials changed with different choices
of V,. Qualitatively, there was not much difference.
Larger choices of ¥, typically correspond to expanding,
in both the ¢ and V(¢) direction, potentials derived from
smaller choices of V. In Fig. 2 we illustrate how the po-
tential corresponding to the ‘‘valley spectrum” in Fig.
1(a) changes with V.

IV. CONSTRAINTS ON THE REHEATING
TEMPERATURE

When there is a constraint on the power spectrum, the
assumption that the slow-roll approximation is appropri-
ate allows one to derive bounds on the energy density
during inflation. Equation (2.13) provides such a con-
straint, and it has frequently been used in conjunction
with limits on P based on the microwave background di-
pole or quadrupole anisotropy constraints,'® and on esti-
mates of the power needed to get rms mass fluctuations of
unity on scales of 84 ~! Mpc (h is the present Hubble
constant divided by 100 km/sec Mpc.!! The potential
V(¢) should monotonically decrease from values of ¢
corresponding to our present horizon, down to where
inflation ends, in order to avoid problems that would
arise with a false vacuum. Then, the maximum possible
temperature T, of the Universe after inflation can be cal-
culated by taking the energy density associated with ¢,
corresponding to some scale A where a constraint on P is
applied, and equating it to the thermal radiation density
Praa=g(T)T*/30, where g is the effective number of
particle degrees of freedom.

The inversion Eq. (2.11) can provide even stronger con-
straints than Eq. (2.13). The potential, for values of ¢
corresponding to A < A, is bounded by

fll dr

A A'P(N")
where A, is an arbitrary wavelength with A, > A,. If one
then assumes that the power is constrained so that

P <P}, =const over the wavelength range Ay <A <A,
then the constraint (4.1) yields

-1

4
m
L , 4.1)
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Vig)=

m ‘lilPlimit
V(L=<1Xy) <0.009

—_— . 4.2
log oA /Ay) @2

For a wavelength range of only one decade, (4.2) provides
about a factor of 5 stronger a constraint than does Eq.
(2.13). For example, if one uses the microwave con-
straints of Ref. 12, i.e., P'”2 <1073 on scales a tenth of a
horizon up to the horizon, Eq. (4.2) yields V(A <600k !
Mpc) $5.7X 107 °m 3},

HARDY M. HODGES AND GEORGE R. BLUMENTHAL 42

It was pointed out in Ref. 11 that a stronger bound
may be obtained from estimates of P when the normaliza-
tion scale reentered the horizon. The normalization of
the HZS in the standard CDM scenario is P,,l 2=10"*/b,
where b is a biasing factor thought to be in the range
~1.4-2.5. For the constraint, we take P,}/zi 1074
Since this constraint operates over a very small range of
wavelengths, Eq. (4.1) provides a weaker constraint on
the potential than does Eq. (2.13), even including the fact
that Eq. (2.15) limits the rate at which P(A) can rise.
However, if the standard CDM scenario is valid over at
least three decades in A, with an assumed HZS over this
range, Eq. (4.2) yields

V<3X107"p " 2m},
and (4.3)
T,53X10'%/g!* GeV .

In the standard model g =106.75, and at the tempera-
tures under consideration one would expect further con-
tributions from GUT physics, and possibly supersym-
metry. However, if we let g assume its lowest possible
value, one finds that 7, S9X 10" GeV. Assuming a HZS
over all scales, or P(A<A,)=<P, (which occurs in a
wide class of models), leads to the constraint 7,=<6
X 10'3(106.75/b%g)'/* GeV.

In general, astrophysical observations provide con-
straints not on the power spectrum directly, but on an in-
tegral of the power spectrum over some appropriate win-
dow function. This is certainly the case for constraints
based on the microwave-background isotropy, the fluc-
tuation amplitude at 82 ~! Mpc, and bulk streaming
flows in the Universe. Then, the appropriate way to limit
the reheating temperature is to minimize the integral in
Eq. (4.1) while satisfying (1) all integral constraints based
on the observations, and (2) the requirement that P rise
no faster than A*% from Eq. (2.15).

V. DISCUSSION

We have reposed the problem of inflationary density
fluctuations in terms of specifying a power spectrum, and
then calculating a potential. When the fluctuation spec-
trum on very large scales is determined, it can provide a
window to very early particle physics, and yield a family
of potential pieces that represent a portion of the overall
potential V(¢)—assuming inflation is described by a sin-
gle scalar field. A number of examples, both analytic and
numerical, were given to illustrate that, in fact, nearly
any spectrum is possible given the freedom to choose the
potential V(¢). It is necessary to invoke an ill-defined
concept of naturalness, that potentials must be simple
and featureless, in order to obtain Harrison-Zel’dovich
inflationary spectra. Non-Zel’dovich spectra have been
advocated as a possible solution to problems encountered
in models of galaxy formation. For example, the cold-
dark-matter theory is very successful on scales <10 Mpc,
but predicts less large-scale structure than is observed.
This could be fixed by putting more power on large
scales, e.g., cluster scales, and then having the spectrum
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dip to evade the microwave constraints. Observations of
large-scale structure and constraints on the anisotropy of
the cosmic microwave background impose strong con-
straints on the energy density during, and hence after,
inflation. We have presented a new, stringent, way to cal-
culate such constraints.
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