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The relic abundance of a particle species that was once in thermal equilibrium in the expanding
Universe depends upon a competition between the annihilation rate of the species and the expansion
rate of the Universe. Assuming that the Universe is radiation dominated at early times the relic
abundance is easy to compute and well known. At times earlier than about 1 sec after the bang
there is little or no evidence that the Universe had to be radiation dominated, although that is the
simplest—and standard—assumption. Because early-Universe relics are of such importance both to
particle physics and to cosmology, we consider in detail three nonstandard possibilities for the
Universe at the time a species’ abundance froze in: energy density dominated by shear (i.e., aniso-
tropic expansion), energy density dominated by some other nonrelativistic species, and energy densi-
ty dominated by the kinetic energy of the scalar field that sets the gravitational constant in a Brans-
Dicke-Jordan cosmological model. In the second case the relic abundance is less than the standard
value, while in the other two cases it can be enhanced by a significant factor. We also mention two
other more exotic possibilities for enhancing the relic abundance of a species—a larger value of
Newton’s constant at early times (e.g., as might occur in superstring or Kaluza-Klein theories) or a
component of the energy density at early times with a very stiff equation of state (p >p/3), e.g., a
scalar field ¢ with potential V' (¢)=p|¢|" with n>4. Our results have implications for dark-matter
searches and searches for particle relics in general.
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I. INTRODUCTION

The existence of the cosmic-microwave-background ra-
diation (CMBR) with a temperature of 2.74 K is very
strong evidence that the Universe was both radiation
dominated [for times earlier than fgy,>~4.4
X 10'%Qyh?) 72 sec] and very hot [T ~MeVI(t /sec)”'/?]
at early times.! Because the temperatures reached early
on were so high, there is every reason to believe that
essentially all the known particle species and possibly
other species yet to be discovered were present in great
numbers. If equilibrium thermodynamics were the entire
story, these facts would be of little interest, as today the
equilibrium abundance of any massive particle species
would be exponentially small, proportional to
exp(—m /T). However, it has long been realized that be-
cause of the expansion of the Universe, the actual abun-
dance of a stable particle species cannot track its equilib-
rium value forever, and depending upon the strength of
its interactions, the abundance per comoving volume
eventually ceases to decrease and freezes in at some con-
stant value. ‘“Freeze-in” of the particle’s abundance
occurs when the annihilation rate can no longer keep
pace with the expansion rate of the Universe: Roughly,
the abundance ceases to decrease when the annihilation
rate falls below the expansion rate—when annihilations
are said to freeze out.? (The reactions that regulate the
number of a particle species are pair production and an-
nihilation; the pair creation rate is related to the annihila-
tion rate by detailed balance, or time-reversal invariance.)
Moreover, the weak shall dominate—the relic abundance
of a particle species is inversely proportional to its an-
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nihilation cross section.

Calculating the relic abundance of a particle species
that was once in thermal equilibrium is a routine chore
for the particle cosmologist. The differential equation
governing the abundance of a species follows from the
Boltzmann equation and depends upon two pieces of in-
put physics: the expansion rate as a function of tempera-
ture and the annihilation rate as a function of tempera-
ture.? Once the particle species and its interactions are
specified, the annihilation rate is precisely determined in
terms of the number density of the species and the tem-
perature of the Universe. The expansion rate as a
function of temperature is another matter. In the stan-
dard, radiation-dominated Friedmann-Robertson-Walker
(FRW) cosmology, the expansion rate at early times
(t Stgg) is given by
* gpG 4T

3 P 45m},

R

HZ
R

) (1)

where R is the scale factor of the Universe, p is the total
energy (for a thermal bath of relativistic particles
p,=g,.mT*/30), and g, counts the effective number of
ultrarelativistic degrees of freedom (one for each relativis-
tic bosonic degree of freedom and  for each relativistic
fermionic degree of freedom). Having made this assump-
tion, the path to determining the relic abundance—
usually expressed as the ratio of the number density n of
the species to the entropy density s =2g‘77'2T3/45—is a
tried and true one.

The crucial uncertainty in determining the relic abun-
dance is the assumption that the Universe is radiation
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dominated at freeze-out. The concordance of the predic-
tions of primordial nucleosynthesis with the observed
light-element abundances provides strong evidence that
the Universe was indeed radiation dominated at an age of
about 1 sec.” However, there is little or no evidence that
requires the Universe at times earlier than about 1 sec to
be radiation dominated. Moreover, most of the interest-
ing thermal relics would have decoupled at such early
times.

Given the importance of relic particles both to cosmol-
ogy and to particle physics (particle relics may provide
the bulk of the mass density of the Universe thereby ex-
plaining the nature of the dark matter,* and they might
provide the first evidence for new physics beyond the
standard model of particle physics), we decided to study
in detail three nonstandard, but plausible, possibilities for
the expansion rate of the Universe around the time of
freeze-out. Our first example involves the geometry of
spacetime: If the expansion of the Universe is not isotro-
pic, then the volume-expansion rate at fixed temperature
exceeds that for the standard case and freeze-out occurs
at higher temperature, leading to a larger relic abun-
dance. Here we explore a particularly simple and in-
teresting example: a Bianchi I model where the effects of
the anisotropy on the volume-expansion rate can be
quantified in terms of an anisotropy-energy density that
decreases as R % For this model (and other similar
models) the anisotropy simply decays without leaving a
trace, and the only lasting effect is to enhance the abun-
dance of the thermal relic.

In the second example, at early times, the energy densi-
ty is dominated by a massive, nonrelativistic particle
species. Again, the expansion rate for fixed temperature
is increased, leading to an earlier freeze-out and a larger
relic abundance. Of course, there is every evidence that
the Universe only became matter dominated relatively re-
cently and so the nonrelativistic particles would eventual-
ly have to decay, producing entropy and diluting the relic
abundance. As we shall show, the net effect is to decrease
the relic abundance. (We note that this possibility is
different from the one involving particle decays in which
the only effect of the decaying species is to produce entro-
py, in which case the relic abundance is decreased pre-
cisely by the amount of the increase in entropy.°)

In the third example we use the Brans-Dicke-Jordan
theory of gravity instead of general relativity. Here the
analog of the Friedmann equation contains the kinetic
energy term for the Brans-Dicke scalar field, which de-
creases as R ~% and, of course, increases the expansion
rate for fixed temperature. As in the case of anisotropic
expansion, the only lasting effect is to enhance the abun-
dance of the thermal relic.

The motivation of this work then is to assess the relia-
bility of the standard estimate for the relic abundance of
a stable particle species that was once in thermal equilib-
rium by considering three nonstandard possibilities for
the evolution of the Universe at early times (¢t S1 sec).
The outline of our paper is as follows. In Sec. II we
briefly review the formalism for calculating the relic
abundance of a species and the standard result. In the
following three sections we consider the nonstandard pos-

sibilities mentioned above and how they affect the relic
abundance of a stable particle species. In the final section
we put our work in perspective with some concluding re-
marks.

II. REVIEW OF THE STANDARD RESULT

To obtain quantitative results for the relic abundance
of a stable particle species X (and its antiparticle X), one
solves the Boltzmann equation that governs the number
density of the species:?

n
%+3Hn=—(ov)(n2-—n%Q). (2)
Here n(t) is the number density of species X at time ¢,
ngq is the equilibrium number density at time ¢ when the
temperature of the plasma is T, {ov) is the thermally
and spin-averaged cross section times relative velocity for

XX annihilation, and H is the Hubble parameter. We as-
sume that there is no particle-antiparticle asymmetry so
that the number density of antiparticles is also n. (It is
easy to extend this formalism to apply to the case where
there is a particle-antiparticle asymmetry; see Griest and
Seckel.®) Exact solutions of this particular example of
the Ricatti equation do not exist; however, an approxi-
mate (accurate to ~5%) analytical solution is easily ob-
tained.” Since we will follow this approach in the non-
standard models, we will briefly review that solution here.
In the absence of entropy production the entropy per
comoving volume (S =R73s) is constant, and we use the
entropy density
_2r 3
S =5 8x T (3)
as a fiducial quantity and rewrite the Boltzmann equation
in terms of Y =n /s, which corresponds to the number of
X particles per comoving volume. [Actually, the g, in
Eq. (1) is in principle different from that in Eq. (3); how-
ever, in practice they are very nearly equal at tempera-
tures greater than 1 MeV. See Ref. 5, pp. 65-70.] Furth-
ermore, since the quantities of interest depend explicitly
on temperature rather than time, we use the quantity
x =m /T, instead of time as the dependent variable. Do-
ing so, Eq. (2) becomes

ﬂ:———-——--—<av>S(

dx xH Yi-Yio), @

where, of course, (ov ), H, s, and Ygq are all functions of
x. (Actually, there is another term involving the deriva-
tive of g, ;%% however, this term is small and to a good
approximation we can fix g, at its value around freeze-
out.) Here Ygo=ngq/s and in the nonrelativistic limit
(x >>3) is given by
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In the case of interest, at freeze-out XX particles are mov-
ing at nonrelativistic velocities and the cross section is
proportional to v2" (n =0 corresponds to s-wave annihila-
tion, n =1 corresponds to p-wave annihilation, etc.), and
so we can write {ov)=o0yx ~". Furthermore, s <x 3
and H <x ~? [cf. Eq. (1)], and so the Boltzmann equation
becomes
day _ A

dx——;ﬁ?(Yz—YéQ), (6)

where we have defined

<0’U>S

* H

=0.264g L *mpmyo, . (7

x =1

To solve Eq. (6) we follow Ref. 7 and consider the
differential equation for A=Y — Yg, the departure from
equilibrium:

' , A
x
where the prime denotes d /dx. At early times when the
annihilation rate I',, is much greater than the expansion
rate H (x <<x f), the X abundance tracks its equilibrium
value very closely so that A << Ygq and A’ << Yq, and
+2yr
amXYeo ©)
M2Ygq+A4)
At late times (x >>x,), Y tracks Ygq, very poorly; there-
fore, A~Y >>Ygq and Y;:_Q << A’, so that
A=—— g2 (10)

xn+2

Upon integrating Eq. (10) from x =x, to x = «, we ob-
tain’

_n+1
® A
where x is determined from Eq. (9) by A(x;)=cYgqp(x,)
and c is a numerical constant of order unity that serves to

define the epoch of transition between the regimes men-
tioned above. Solving for x r iteratively, the result is

x;~In[(2+c)Aac]—(n + Pin{In[(2+c)Aac]} , (12)

Y.=A xf 1 +0(xp), (11

where @ =0.145(g /g,). Note that the final abundance
only depends logarithmically upon the value of ¢. The
best agreement between the analytic result and a numeri-
cal integration of Eq. (4) obtains for c(c +2)=n +1.7
To obtain the present mass density contributed by the rel-
ic, Y is multiplied by the mass of the relic and the
present entropy density s, =2970T3 ;s cm >, where T, ;5
is the CMBR temperature in units of 2.75 K.

III. FREEZE-OUT
IN A SHEAR-DOMINATED UNIVERSE

As stated earlier, there is little or no evidence that the
Universe before the time of big-bang nucleosynthesis had
to be homogeneous or isotropic, although this is the stan-
dard assumption and is certainly well motivated. The
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simplest nonstandard cosmological models are homo-
geneous but anisotropic; these are the Bianchi (and
Kantowski-Sachs) models, which are classified according
to the Lie algebras of their isometries.”!® The metric of
the simplest of these models, the Bianchi type-I space-
time, is

ds?=—dt>+R3(t)(dx )2+ R3(1)(dx?)*+R2(1)(dx>)?
(13)

where the R; are the scale factors of the three principal
axes of the Universe. The Einstein equations for this
metric lead to the analog of the Friedmann equation for
the volume expansion rate H of the Universe:

2 2
1
H?’=—

9

_V 8

vV

(p,+p,) , (14)

R
3 2
R 3m Pl
where we assume that the matter content is the usual

thermal bath of radiation at temperature T and the shear
“energy density” is defined to be

ps=—-—[(H,—H,?+(H,—H,)*+(H,—H;)*] . (15)

Here ¥V =R ,R,R; is the “volume scale factor,” R=V""3
is the mean-scale factor, and the H;=(R,/R;) (no sum)
are the expansion rates of the three principal axes. As is
manifest from Eq. (15), the shear-energy density is pro-
portional to the amount of anisotropic expansion. Note
that since we are always free to relabel our comoving
coordinates, differences between the various R;’s have no
physical meaning; only differences in the expansion rates
are meaningful. From Eq. (15) it also follows that
iH,-[ =3H (we use absolute-value signs because at very
early times, when p, is negligible, the spacetime becomes
the Kasner spacetime, in which one of the spatial dimen-
sions must be contracting).

In general, the redshift suffered by a particle as the
Universe expands will be direction dependent. For exam-
ple, for a particle moving in the x direction, p <R '
Provided that the interaction rate of the thermal bath of
particles is much larger than H, particle distributions will
remain isotropic and the mean momenta will redshift as
R 7'. In this case, the remaining Einstein equations be-
come (for i )

d d . =

—In|H,—H;,|=—3H=—3—(InR) , 16

“inlH,~H,| o (InR) (16)
which implies that p, <R ~® Therefore, the shear-

energy density falls off faster than the radiation-energy
density and the anisotropy in a Bianchi I universe simply
decays without leaving a trace. !!

For the freeze-out calculation we are interested only in
the expansion rate H and not the detailed form of the an-
isotropy as given by the H;; therefore, we use the fact
that p, <R ¢ and constancy of the entropy per comov-
ing volume (g, R *T>=const) to express the shear-energy
density in terms of the plasma temperature 7. We define
the temperature at which p,=p, to be T,. For T>>T,
the Universe is shear dominated: H <R “3and R «¢!/3;
for T <<T, the Universe is radiation dominated:



42 THERMAL RELICS: DO WE KNOW THEIR ABUNDANCES?

HxR ~? and R «t'%. The temperature T, quantifies
the size of the anisotropy energy: Smaller values of T,
correspond to larger anisotropy energy density at fixed
temperature. We then write the shear-energy density in
terms of the radiation-energy density:

g, T?

gLT?

g. T’

g.T;

=Pr

ps(T)=p,(T,) ) an

where g¢ is the value of g, at T,.

In order to avoid interfering with the successful predic-
tions of big-bang nucleosynthesis, we must be sure that
the shear-energy density is sufficiently small at the time of
primordial nucleosynthesis. The shear contribution to
the energy density would speed up the expansion rate,
thereby increasing the *“He production.'? Assuming that
the only contribution to the energy density comes from
radiation, concordance of the outcome of nucleosynthesis
with the observed abundance of *He requires that
g.(T~1 MeV)<12.5. To assess the effect of the
shear-energy density, we write the total energy density as

2
=T eff (18)
P=398x >
where
2
8. T
eff
= 1+ ; (19)
8x =8« 2o T2
the primordial nucleosynthesis constraint is then

g <12.5. [In terms of the number of light-neutrino
species, this is equivalent to N, <4. Recent SLAC Linear
Collider (SLC) and CERN LEP results have confirmed
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this constraint, determining that the number of neutrino
species lighter than about 40 GeV is 3.2+0.2.'%] If the 7
neutrino is light (m,, < few MeV), we know that g, is at

least 10.75. Requiring that g<" <12.5 leads to the con-
straint 7, 2.5 MeV.

At this point, we can see how shear can increase the
relic abundance of a particle species. In Fig. 1 we plot
the expansion rate H in a shear-dominated universe as a
function of temperature T. At low temperatures (late
times), H ~ T2, while at high temperatures (early times),
H~T?3. The broken curve shows the expansion rate H std
with no shear. The equilibrium number density ngq of X
is proportional to T at high temperatures (T >>m) and
falls exponentially at low temperatures (7' <<m). For the
case that the thermally and spin-averaged cross section
times relative velocity, {ov ), for XX annihilation is con-
stant, the annihilation rate T',,,=ngq{0ov) < ngq is also
shown in Fig. 1. Roughly speaking, at the freeze-out
temperature 7, defined by I',,,= H, annihilations freeze
out, and the number of X’s per comoving volume “freezes
in,” at approximately its value at T,. If T, > T,, the ex-
pansion rate in the shear-dominated universe is much
greater than that in the standard radiation-dominated
model, and the annihilations freeze out earlier when the
abundance is greater. Since I',,, decreases exponentially
around freeze-out, the freeze-out temperature for the two
cases (shear and standard) is nearly the same. Moreover,
because ngq*T,,, the relic abundance in a shear-
dominated model (T, > T,) is enhanced roughly by a fac-
tor H(T()/Huy(T;)~T,/T,.

To obtain more quantitative results for the relic abun-
dance, we must solve the Boltzmann equation using the

T TTTTT T T

/Mg
=

2
e
Cl

Rate (in units of 1.67 g/* T

1072 Ll 1

lllllll T

lllllll 1

lJllllll

1 1

10 T, 100

Temperature T/T,

FIG. 1. Plot of the Hubble parameter in a shear-dominated universe (H) and in the standard model (H ) as a function of tempera-
ture T. Also plotted is the annihilation rate I',,, of a particle species of mass m. The annihilation rate becomes equal to the expansion

rate at a temperature T ;.
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expression for H which includes the effects of anisotropic
shear. In the Appendix we show that the Boltzmann
equation used in the standard cosmological model [Eq.
(2)] is also valid in the Bianchi I model as well. For an
anisotropic-universe model the expansion rate is con-
veniently written as H =H 4(x?+x2)'"*/x, where H,
is the standard-model expansion rate and

g, |12
Xe= e | = (20
T, 8«
Doing so, the Boltzmann equation [cf. Eq. (6)] becomes
dY _ A s 2
dx x"+1(x2+x2)‘/2(Y —Yio) . 21

The differential equation for A then becomes
A

xn+1(x2_|__x82)1/2

A'=—Ypo— AQ2Ygo+4A) . (22)

As before, at early times,

xn+1(x2+xe2)l/2YiEQ

A=~—
AM2Ygq+A) ’ 23
and at late times
A=— A A? . (24)

xn+1(x2+er)l/2

For a model with no shear (x, =0) we recover the re-
sults of the previous section. For a model universe where
shear is important at freeze-out (x, >xr), an exact
closed-form solution for Eq. (24) for arbitrary » is not
simple to write down. However, if x, >>x,, a good ap-
proximation for Y _ may be obtained by integrating in
the interval x, =x =x,, assuming H =H 4 /x, and in the
interval x, <x =< o, assuming H =H . Doing so, we
obtain
_nx.xf

X
S

Y R
* A

Xe

1+0 , (25)

for n#0, and

Xe

Y, ~——7, 26

* An(2x,/x/) (26)
for n =0. Assuming that freeze-out occurs while the
Universe is shear dominated (x, <<x,), the equation for
X is given by

x,=In[(2+clacAx, ']

—(n —DIn{In[(2+clacAx, ']} . 27)
We see that x, decreases roughly by only an additive fac-
tor of In(x, /x /), justifying our previous assertion that the
freeze-out temperature is nearly the same in a shear- or
radiation-dominated model.

Defining an enhancement factor

MARC KAMIONKOWSKI AND MICHAEL S. TURNER 42
172
g T
e= |2 =L, (28)
8« T,

we see that if the particle-antiparticle annihilation is pri-
marily s wave, the relic abundance in a shear-dominated
universe is increased roughly by a factor of £/In& over
that in the standard case. If the annihilation is primarily
p wave, which is often the case for Majorana particles, >
the enhancement is roughly 0.5§. This result is particu-
larly interesting for Majorana particles (e.g., Majorana
neutrinos, photinos, Higgsinos, etc.) since an enhance-
ment in the relic abundance due to a particle-antiparticle
asymmetry is not possible for self-conjugate particles.

As an example of current interest, we may apply our
results to a Majorana neutrino of mass 60 GeV. Since
such a neutrino is heavier than half the mass of the Z°,
the decay Z°—wvv is kinematically forbidden. Thus such
a fourth-generation neutrino is not excluded by the recent
SLC-LEP results.'* Furthermore, since it has only
“spin-dependent” couplings to nuclei, its elastic scatter-
ing cross section is too small for it to be ruled out by the
results of germanium ionization experiments.'® Even so,
it is not generally considered a candidate for the primary
component of the dark matter in the galactic halo since
its abundance, as determined by standard calculations, is
small (0, << 1) and cannot be increased by introducing a
particle-antiparticle asymmetry. !’

In Fig. 2 we show the results of a numerical integration
for Y as a function of x for the cases of x, =0 (standard
model), x, =1300 (shear-dominated model with T, ~120
MeV), and x, =13 000 (T, ~12 MeV). For all three cases,
the numerical results agree with the analytic results [Eqgs.
(25) and (27)] to within 5% [using c¢(¢c +2)=n +1]. In
the standard cosmology, the resulting value of Q. A2 is
1.1X 1073 —too small for heavy neutrinos to be the pri-
mary component of the galactic halo. We find that for
T,~120 MeV the present mass density is increased to
thzz0.0ZI, a value comparable to that known to be
contributed by the halos of spiral galaxies; and for
T,~12 MeV the present mass density is Q,A4%~0.9,
which is about right to close the Universe.

From this we conclude that some stable particle species
that have not been considered dark-matter candidates be-
cause of their small relic abundances could indeed still be
dark-matter candidates. Only dark-matter search experi-
ments, such as germanium ionization experiments or fu-
ture bolometric detectors, can definitely rule out a parti-
cle species as being the primary component of the galac-
tic halo. Moreover, if an “unlikely” particle relic is
discovered, cosmologists would have to significantly alter
their current notions of the first second of the Universe’s
history.

Finally, we mention a possibility suggested by Misner
and others, the ‘“‘decay” of anisotropy into radiation due
to dissipative processes.!! If this occurs, then the
anisotropy-energy density at freeze-out could have been
much larger than the upper bound imposed from nu-
cleosynthesis (T, >2.5 MeV), provided that the dissipa-
tion took place before the epoch of nucleosynthesis.
Naively, one might expect that the enhancement of the
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FIG. 2. Plot of the abundance Y of a Majorana neutrino of mass m =60 GeV as a function of x =m /T in a radiation-dominated
universe (x, =0), and in shear-dominated models with x, = 1300 and 13 000.

relic abundance could be arbitrarily large; however, this
is not correct. The entropy produced by the dissipation
of the anisotropy will dilute the relic abundance. Ignor-
ing factors of order unity if the anisotropy is dissipated at
a temperature T, the ratio of entropy per comoving
volume after dissipation to that before dissipation is
(Tp/T, )32, the relic abundance is reduced by this factor.
The net enhancement over the standard result is about

T, 172 T,

Tp Tp

(29)

Since T, <Tp <Ty, this factor can be greater than I;
however, since 7, 2 1 MeV, the enhancement can never
be as great as the maximum enhancement allowed by our

previous analysis where there was no dissipation and
T,% 1 MeV.

IV. FREEZE-OUT
IN A MATTER-DOMINATED UNIVERSE

Next, consider a model where the energy density of the
Universe at the freeze-out of particle species X is dom-
inated by some other massive particle species © which
subsequently decays. Before the decay of ©, the Fried-
mann equation is

2 877'38*

—F(T4+MT3) , (30)
m p|

where M is a very large (M >>T) parameter with dimen-
sions of mass: Specifically, M =4mgng /3s, where mg is
the mass and ng is the number density of © particles.
Once again, since freeze-out occurs roughly when
I',,n=H and the number density is proportional to T’

ann’

the relic abundance is apparently enhanced by roughly
(M/Tf)l/z. To be more precise, since M >> TI,, the ex-
pansion rate in this model is H =H (Mx /m)'/%, where
Hg, is the expansion rate in the standard cosmology;
therefore, the Boltzmann equation for this case is given
by Eq. (6) with the substitutions A—A(m /M)!/? and
n—n +1. Making these substitutions, we can “read off”
the solution from Eq. (11); the result is
n+3)M
wz( }mi) _xfn+3/2+0(xfn+l/2), (31)

which agrees with our rough guess of the enhancement
factor.

However, this is not the whole story. The subsequent
decays of © particles occur out of equilibrium and pro-
duce a large amount of entropy, thereby lessening the
previous enhancement. In fact, the net result is a reduc-
tion in the relic abundance relative to the standard case.
To see this, suppose that the temperature at which the ©
particles decay is T, (which, of course, is less than Tf);
then the ratio of entropy per comoving volume after de-
cay to that before decay is roughly (M /T})*"* (see Ref.
5); therefore, the final relic abundance is roughly a factor

3 1/4
Tp

2
MT?

(32)

times that in the standard case, given by Eq. (11). Since
Tp <T; <M, no enhancement in the relic abundance is
possible; rather, the relic abundance is reduced. We
could attempt to circumvent the entropy-production
problem by supposing that © particles decay into some
noninteracting, inert species that does not contribute to
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the ‘““visible” entropy density. However, in any interest-
ing case, the additional relativistic degrees of freedom
would exceed those allowed by primordial nucleosyn-
thesis.

V. BRANS-DICKE-JORDAN COSMOLOGY

There has been renewed interest in alternative theories
of gravity, particularly those in which the gravitational
“constant” varies as it does in the Brans-Dicke-Jordan
theory. Much of this interest is owed to the advent of ex-
tended inflation, '® a variant of old inflation in which the
“graceful exit” problem is solved. Although it now ap-
pears that extended inflation in the Brans-Dicke-Jordan'®
theory is not viable, as the isotropy of the microwave
background requires the Brans-Dicke parameter o to be
less than about 30,20 while solar-system experiments re-
quire that 2 500,2! variants of the Brans-Dicke-Jordan
theory may still lead to successful inflationary
scenarios.?? In this section we will show that a cosmolog-
ical model based on the Brans-Dicke-Jordan theory with
@ 500 allows for significant enhancement in the abun-
dance of a thermal relic. Since many of the scalar-tensor
theories currently under consideration resemble Brans-
Dicke-Jordan theory (with a variable w), we expect that
our results may generalize to these theories as well.

The Brans-Dicke-Jordan theory of gravitation!® is the
scalar-tensor theory that can be derived from the action

33,

—OR+
q)?qu)

=1 g v
16‘n'fdx g

F167L e } , (33)

where & is the curvature scalar, and the real scalar field
® has dimensions of mass squared and sets the value of
the gravitational constant G =®!; for this reason, ®
must necessarily be greater than zero.?? Since ® is a
dynamical field one expects the gravitational constant to
evolve with time. The quantity  is the dimensionless
Brans-Dicke parameter; in the limit that w— o, the
scalar-tensor theory reduces to general relativity. While
the scalar-tensor theory becomes much less attractive for
w>>1, it still provides a simple example of the kind of
different gravitation theory that might arise as the low-
energy limit of superstring models. >

Specializing to the Robertson-Walker line element and
for simplicity to a spatially flat model, the equations of
motion for the scale factor R (¢) and for ® are

d 3 d 3
~(pR3*)=—p—R?, 34
a PRI= 7Py, (34
d 3 8 3
hadiy i p— R s
dt(q) ) EE (p—3p) (35)
.12 . )2 .
== | =22 — | —H |— 36
H R 3P 6 | o |’ (36)
b 2wt3 [ || 8 o 2
_ 1) T
=—— — | + 37
H 2P 3 pL K] ’ 37
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where as usual p is the energy density (of all the fields
other than ®) and p the isotropic pressure. In going from
Eq. (36) to Eq. (37), we have considered only the positive
root, as we are interested in expanding universe models.

Note that in Brans-Dicke-Jordan cosmology there are
two additional boundary conditions that must be
specified: the values of & and @ at some epoch. Since
the theory must closely resemble general relativity today,
the present value of ® must be equal to G ~! (for large w;
see Weinberg, Ref. 19):: ®,=G . That effectively
specifies one of the boundary conditions. The other, in-
volving the value of ® at some epoch, still remains to be
specified.

The Brans-Dicke-Jordan analog of the Friedmann
equation [cf. Eq. (37)] differs from the usual one in two
regards: First, the gravitational constant is given by
@ !; second, there is an additional contribution to the
energy density that involves the kinetic energy of the ¢
field. It will be useful to consider the ratio of the ®-
kinetic term to the usual energy density term:

8mp _ Qw+3)P°

20+3 .
3P R2rdp

3

&
20

(38)

¥

I

as we shall see, the ratio » decreases with time: r <R —2
(when p is radiation dominated), and r «const/(Int)?
(when p is matter dominated). Having defined r, we can
rewrite Eq. (37) in a very suggestive form:

1/2 3 1/2
H=83—1;R (425 |3 ] (39)

where the upper sign applies for & >0 and the lower sign
for & <0. In Eq. (39) the two modifications to the usual
Friedmann equation are manifest: For r#0 the presence
of the @ field speeds up the expansion rate; and if
®+#G ", the expansion rate is also changed.

A. Energy density dominated by relativistic particles

To begin, let us consider the case where the energy
density of the Universe is dominated by relativistic parti-
cles, which is what one expects at very early times. In
this case, p =p/3, so that

4 $RY=0 — SR=B,
dt

4 prR)=—L DR3 — ,Ri=4,
dt
where A4 and B are numerical constants. (We will neglect
the slight variation of A that occurs because g, evolves.)
In terms of 4 and B, ris given by
20+3)B?
y = (_w___)B_Z_ . (40)
327 APR
We see that the ® boundary condition can be set by
specifying the value of B, or equivalently the value of 7, at
some epoch. During the radiation-dominated epoch, the
value of ® does not change very much, so that r <R ~%
stated another way, the additional energy density associ-
ated with the & field redshifts as R ~°.
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It is simple to integrate the equations of motion [Egs.
(35) and (37)] to obtain ® as a function of R :*°
+V'3/(20+3)

—1y1/2_
Q+r ) 7"=1 ’ @1)

®(R)=C
(1+r~H124+1

where the upper sign applies if B >0 and the lower sign if
B <0, and the constant of integration C manifests the
freedom one has to specify the value of ® at some epoch.
At early times, corresponding to small R and large 7,

dC4r) " V3/(2w+3)
while at late times, corresponding to large R and small 7,
d->C(1=2V7r )i\/3/(2m+3) )

Since w>>1, at early times when r >>1, the value of ®
slowly increases for B >0 (decreases for B <0); once
r~1, the value of ® asymptotes to the value ®=C (re-
gardless of the sign of B). When r << 1—dynamics con-
trolled by the energy density in radiation—®~C, and
r<R ™% And, of course, the scale factor of the Universe
grows as t'”2. In this regime the expansion of the
Universe behaves as if there is an additional form of ener-
gy density that decreases as R ~°, just like shear.

In order that the successful predictions of primordial
nucleosynthesis not be upset, » must be less than about
0.2 when t~1 sec and T~1 MeV;!3 this constrains the
initial value of ®. (Moreover, we must also ensure that
the value of ® does not differ from its present value by
more than about 20%:; as we shall see below, this only re-
quires that © * 50.) The constraint is

P2 12 R ! BEN
< ~__BBN 4
e 20+3 |TBNT 50045 +3) (422)
or
| Dppnl S (Pppn/ppn )/ V 220+ 3) . (42b)

B. ®-dominated expansion dynamics

Since r evolves as R ~2, at early times the dynamics of
the expansion will necessarily be dominated by the &
field. For r >>1, the equations for the expansion rate of
the Universe becomes

172
H':ii
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20+3
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Z 4
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where B=[V(20+3)/3F1]/2>0, and the upper sign
applies if ® >0, while the lower sign applies if d <0.
Assuming that the energy density of the Universe is still
dominated by relativistic particles, this equation is sup-
plemented by =B /R°.

These equations are straightforward to solve:

Rx B, R o B/OBE @ocy /361

.2
2] wy 2R OFUB LR -2TVB
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Since B~V w/6 is expected to be large (greater than
about 10), it follows that R«t!/3, &?/@ =R S,
r<R 2 and @ increases slowly with time for ® >0 (de-
creases for ® <0). That is, during the ®-dominated
phase, the Universe behaves like a FRW model whose ex-
pansion dynamics are controlled by a form of energy den-
sity that decreases as R ~ 9, just as in a shear-dominated
model.

C. Energy density dominated by nonrelativistic matter

At an age of about 1y ~4X 10'" sec and temperature
of about Tgp~ 10 eV, the Universe becomes matter dom-
inated. Based upon the nucleosynthesis bound, we can
infer that rgq~ 107 % ppy 107 and
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[Peo—Cl 107"
C Vo

_3
20+3
To a very good approximation, the Universe will behave
as an ordinary matter-dominated FRW model and
R/Rgq=(t/tgg)’*?. During the matter-dominated
epoch, pR*=const, and it is convement to express the

value of that constant as pEQR gQ- Thus the evolution of
® is given by

d 3 3 877' 3
—_ = 4
. . 4‘1>EQIEQ 1 4 d)EQ 1
PO=1Pelte T 35,53 |, T3 2003 0 @Y
4dy, ;
D(1)=Dpy+ —— L
W=®Peet 35,75 " 'q
. 4P, EQ
Gpptpn——2 | [1- 2
EQEQ 3120w +3) t (46)

From Eq. (46) we can find the value of @ at the present

epoch (t =ty = 107tEQ):

Do t .
Q=P+ ——— |In |— | =1 | +dgotpo; @47
0 TEQ T 3(29+3) tEQ EQ"EQ @D

from our constraint to <1>EQ it is simple to show that the
term involving CDEQ is negligible: QEQtEQ 10~ <DEQ/
2(20+3)"2. In order that ®, not differ from Py by
more than about 20%, » must be greater than about 50,
which is not as stringent a bound as that provided by the
solar-system experiments. Finally, it is simple to see from
Eq. (45) that in the matter-dominated epoch,
r «<const/(Int)’>, while ® grows logarithmically with
time.

To summarize, primordial nucleosynthesis constrains r
to be less than about 0.2 at the epoch of nucleosynthesis
and o to be greater than about 50. The constraint to r
provides information about the initial value of ®. At
very early times the dynamics of the Universe are neces-
sarily controlled by @ since r <R ~2, The transition to
®-dominated expansion dynamics will occur at a temper-
ature of about Ty ~rgg® MeV, which could be as low as
3 MeV. During the phase when @ controls the dynamics



3318

of the expansion, the Universe behaves like an ordinary
FRW model whose energy density is dominated by a
form of energy that decreases as R ~% R «<t!/3, This has
implications for the relic abundance of a thermal relic
that freezes out at a temperature greater than about 3
MeV, which we will address below, as well as for
coherent axion production and for baryogenesis, which
we will address elsewhere. %

The analysis of the “freeze-in” of the relic abundance
of a stable particle species that freezes out at a tempera-
ture T,> T4 is identical to that in the previously dis-
cussed shear-dominated model. That is, the relic abun-
dance is increased, relative to the standard case, by a fac-
tor of £/In§ for s wave, or 0.5 for p wave, where

E=(g, /g2

T,

and g? is the value of g, when r =1. We should point
out that for the simplest Brans-Dicke-Jordan extended-
inflationary model, the Universe enters the radiation-
dominated epoch directly at the end of inflation bypass-
ing a ®-dominated epoch so that no enhancement in the
abundance of a thermal relic can occur.?®> However, the
details of extended inflation are far from being completely
understood, incluc}ing whether or not inflation took
place, and so a ®-dominated epoch is an interesting
cosmological possibility.

As is clear from this section and the previous two,
what is required to enhance the relic abundance of a par-
ticle species is that the Universe at early times be dom-
inated by a form of energy density that decreases faster
than R % In this case, this component of the energy
density can dominate the energy density at freeze-out and
then conveniently disappear before primordial nucleosyn-
thesis without leaving a trace. Shear in a Bianchi I model
and the kinetic energy of the Brans-Dicke field provide
two examples where the additional energy density is pro-
portional to R ~%.

There are more. The energy density of any fluid for
which the pressure exceeds the energy density divided by
3 will decrease faster than R ~*. The extreme case is
p =p, which used to be discussed as an equation of state
for the Universe at very early times.?’ A homogeneous
scalar field with Lagrangian density

L=(3,4)/2—Bl¢|"

behaves like a perfect fluid with equation of state
p=(n—2)p/(n+2) as it oscillates about the minimum
of its potential (|¢|=0). In so doing the associated ener-
gy density px R ~67/(n*2) 28 For n >4, the energy densi-
ty of such a field decreases faster than R ~*. For B=0 or
n— o, ¢ is a massless, free scalar field and p< R ~°. [An
interesting example of a massless scalar field is a Gold-
stone mode. Consider a complex scalar field ¢ =1 exp(i0)
with a “Mexican-hat” potential, where ¥ and 6 are real
scalar fields. Suppose that the magnitude of ¥ is fixed by
spontaneous symmetry breaking; the phase 0 is a mass-
less Goldstone mode, which can spin around the brim of
the hat. In fact, this is precisely what occurs in a recently
suggested scenario for baryogenesis. 2’|
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Along similar lines as the Brans-Dicke-Jordan theory
is the possibility that the gravitational constant varies be-
cause it is related to the size of some extra, compactified
dimensions. In many Kaluza-Klein and superstring
theories, the gravitational constant G varies as
G =Gogay(L /L 1o4ny )2, where L is the scale factor of D
compactified dimensions.*® If one assumes that all 3+ D
spatial dimensions were of comparable magnitude at ear-
ly time, then it is plausible to expect that early on the
gravitational constant was larger than it is today. The
strongest constraint to the variation of G is that imposed
by primordial nucleosynthesis,®! which implies that by
the epoch of nucleosynthesis the value of G differed from
that today by less than about 20%. However, there are
no stringent constraints to the value of G at earlier times.
If it were very different than its present value, and larger,
then the expansion could have been faster than in the
standard cosmology. Since Y <mp' < G!/? [cf. Egs. (7)
and (11)], we would expect the relic abundance to be in-
creased.

VI. CONCLUDING REMARKS

While much of the activity in cosmology these days in-
volves the study of the earliest moments of the Universe,
we have precious few probes of those early times. A class
of potential probes are thermal particle relics—stable
particle species that were once in thermal equilibrium.
Already such relics have received a great deal of atten-
tion, particularly as candidates for the dark matter.
Thermal relic dark-matter candidates include heavy neu-
trinos, neutralinos, and light neutrinos, to mention three
of the most interesting possibilities. It goes without say-
ing that the discovery of such a relic would be of enor-
mous importance to cosmology; in addition, the
discovery of any of the aforementioned particle species
would be of equal importance to particle physics, provid-
ing evidence for new physics beyond the standard model
of particle physics.

The calculation of the relic abundance of a particle
species has become a very routine task for the particle
cosmologist. In this paper we have addressed the crucial
and untested assumption in the calculation: the tempera-
ture dependence of the expansion rate of the Universe.
In nonstandard cosmological models where the energy
density of the early Universe is dominated by nonrela-
tivistic matter, anisotropy, or the kinetic energy of a sca-
lar field, the relic abundance can be significantly different.
In the case of the energy density being dominated by non-
relativistic matter, the relic abundance is ultimately
smaller than in the standard case, because of the entropy
produced by the eventual decays of the nonrelativistic
particles. In the case of a universe that is shear dominat-
ed, or ® dominated, early on, the relic abundance can be
greatly enhanced owing to the fact that the expansion
rate for a given temperature is larger, which leads to a
freeze-out at a higher temperature and a larger abun-
dance. We remind the reader that in spite of the fact that
the standard, radiation-dominated FRW model is very
well motivated, there is no direct evidence that excludes
the possibilities that we have discussed here. (We do
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mention that the levels of shear that are interesting for
our purposes are definitely incompatible with the
inflationary universe. *?)

The fact that the relic abundance of a particle species
can be greater than the canonical abundance is of no
small interest to those involved in dark-matter searches.
It is well known that the results of the standard relic
abundance calculation can be decreased by phenomena,
such as inflation, an electroweak or quark-hadron phase
transition, or out-of-equilibrium decay of a massive parti-
cle, that produce a significant amount of entropy after
freeze-out. If the canonical calculation indicates that the
relic abundance is too small for the species to be the pri-
mary component of the galactic halo, any of these
entropy-producing processes only make the conclusion
that much stronger. However, if freeze-out occurs in a
shear- or ®-dominated epoch, the relic abundance is
enhanced. Thus some particle species that are not in-
teresting dark-matter candidates according to the stan-
dard calculations may indeed be interesting dark-matter
candidates. Perhaps one should take the empirical view
that a particle dark-matter candidate should only be
ruled out by null results in dark-matter searches or ac-
celerator searches. Our work also implies that the rates
for indirect signatures, such as high-energy neutrinos
from particle dark-matter annihilations in the Sun or
Earth, or positron-line or y-ray-line radiation from parti-
cle dark-matter annihilation in the halo, could be
significantly larger than expected. Finally, the discovery
of one of these “unlikely” particle relics in the galactic
halo would force us to reconsider our current view of a
radiation-dominated universe at time earlier than about 1
sec.
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APPENDIX

Here we show that the Boltzmann equation [cf. Eq. (2)]
used to describe the evolution of the number density of a
species in the FRW model is also valid for the Bianchi I
model considered in this paper. To do so we follow the
discussion in Ref. 5.

The evolution of a particle’s phase-space distribution
f(p¥x"¥) is governed by the Boltzmann equation, which
can be written as

Lif1=clsl, (A1)

where C is the collision operator and L is the Liouville
operator and is given by

(A2)

where I'g, are the usual Christoffel symbols. For the Bi-

anchi models, the phase-space density is spatially homo-
geneous, and so f is a function of time ¢t =x° but not
space. A crucial assumption is that scattering interac-
tions are occurring rapidly enough so that the particle
species remains in kinetic equilibrium. Provided that this
is the case, the phase-space density f is isotropic and only
depends on the magnitude of the momentum or,
equivalently, the energy E, and the Boltzmann equation
becomes

f,[f(E,t)]zE%—[RlRl(p1)2+R2R2(p2)2

3E - (A3)

Since the number density of the species is

(A4)

n)=—2,= [d’p f(ED),

27)}

the equation for the evolution of the number density is
obtained by multiplying Eq. (A1) by g d°p /(27)E and in-
tegrating. The first term on the left-hand side becomes
dn /dt, and the right-hand side becomes the right-hand
side of Eq. (2). To obtain the remaining term we note
that the local three-momentum squared is |p|*=g;p'p’/
(i.e., the physical components of the momenta are
p, =R, p!, etc.), and so the second term on the right-hand
side is
— ) d?

(2:)3 f a—g(Hlpxz‘*'HzPyZ"‘szz)—Ep"

—_—8 of ,d’p
(2v)3(H1+H2+H3)f YA

1 g af | .d’?
- (H,+H,+H,) [ 2L|p]2 42
3 (2 P2 0 J or Pl 5

=(H,+H,+H;)n =3Hn , (AS)
where we used the isotropy of f in the first two steps and
integrated by parts in the third step. In doing so, we re-
cover Eq. (2). Thus, although the form of the Liouville
operator in the Bianchi I model differs from that in the
FRW model, the Boltzmann equation for the evolution of
the number density of a particle species is the same.

The crucial assumption made above is that the particle
species is in kinetic equilibrium. Earlier than the time of
freeze-out, annihilations are occurring rapidly (T',,, > H),
and they serve to maintain both kinetic and chemical
equilibrium. In addition, if the species (X) annihilates
into relativistic particles, then by crossing symmetry XX’s
can elastically scatter with particles in the thermal bath
with a similar cross section. The relativistic particles in
the thermal bath are always more abundant than Xs,
especially when x >>1 and YEQ <<1, and so these elastic
scattering processes will serve to keep XX's in kinetic
equilibrium even after chemical equilibrium ceases to be
maintained (i.e., after freeze-out).
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