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Baryon number is conserved in all interactions probed by present-day experiments. If baryon
number is strictly conserved then currently popular scenarios for baryogenesis will have to be reex-
amined. We discuss a new paradigm for baryogenesis in which the fundamental Lagrangian is
baryon conserving [invariant under U(1)s]. At high temperatures, U(1)s is spontaneously broken
and an excess of quarks over antiquarks of 10 ' s (s—:entropy density) is produced. Today, U(1)& is
restored. The most striking consequence of our assumptions is that the baryon number of the
Universe is constant. During spontaneous symmetry breaking, the excess of baryons over anti-
baryons in the quark fields is exactly compensated by antibaryons hidden in the vacuum. Today,
antibaryons appear either as massive U(1)& charged scalar particles or as stable, nontopological
bubbles of antimatter. One intriguing possibility suggested by our scenario is that the dark matter
may be antimatter.

I. INTRODUCTION

Experiments in terrestrial laboratories suggest that the
laws of physics do not differentiate between matter and
antimatter. (The single verified exception to this rule is
CP violation in the E -lt. system. ) Experiments further
indicate that baryon number and lepton number are sepa-
rately conserved in all physical processes. Our Universe
on the other hand is very asymmetric, having far more
protons, neutrons, and electrons than antiprotons, an-
tineutrons, and positrons. This suggests one of two possi-
bilities: either the Universe began with the very special
initial conditions necessary to yield the baryon (and lep-
ton) asymmetry observed today or new physics at high
energies and early times allowed an initially baryon-
symmetric universe to develop a baryon excess.

It is instructive to reexamine the evidence for the
matter-antimatter asymmetry in the Universe. ' There is
clear evidence that sizable objects of antimatter do not
exist in the solar system. If they did, then annihilations
of particles in the solar wind striking their surfaces would
produce y rays that could be easily detected on Earth.
High-energy ( & 100-MeV) cosmic rays provide a sample
of matter from distant regions of the Milky Way. To
date, the only antiparticles detected in cosmic-ray experi-
ments have been antiprotons: no heavy antinuclei have
yet been seen. The measured ratio of antiprotons to pro-
tons with energies above 2 GeV is —10 and this mea-
surement is consistent with the level of antiprotons ex-
pected to be produced as secondaries in cosmic-ray col-
lisions (e.g., p+p~3p+p). This strongly suggests that
our Galaxy is composed almost entirely of matter with
very little antimatter. Finally, there is indirect, though
compelling, evidence that matter and antimatter galaxies
do not coexist within clusters of galaxies. If they did,

then nucleon-antinucleon annihilations in the intergalac-
tic medium would lead to an observable flux of y rays on
Earth.

The baryon excess is usually characterized by the di-
mensionless ratio B where

7l B PlB

ntt (ns) is the number density in baryons (antibaryons),
and s is the entropy density. If baryon number is con-
served, then B is either constant or decreasing. Today
ntt »ns (at least on scales up to clusters of galaxies) and

8=nttls=0. 6 —1.0X10 ' (Ref. 2).
In 1967 Sakharov outlined the ingredients necessary

for baryo genesis, the process whereby an initially
baryon-symmetric universe develops an asymmetry. The
most basic observation is that baryon number cannot be
strictly conserved. If B is initially zero, then only
baryon-violating interactions can generate a nonzero B.
In addition, Sakharov points out that C and CP must be
violated and that the interactions responsible for generat-
ing the baryon asymmetry must occur out of equilibrium.
Grand unified theories (GUT's) introduced in the 1970s
provide a natural setting for baryogenesis. GUT's
generically predict baryon-violating interactions. In gen-
eral, these interactions are mediated by a boson whose
mass mz is —10' GeV, the GUT scale. In the early
Universe, at temperatures above mz, baryon-violating
processes occur at rates comparable to the rates for other
processes. However, today the rates for baryon-violating
interactions (e.g. , proton decay) would be highly
suppressed (I „„„d„,„~m /mx) so long as mx is very
large. CP violation can also occur quite naturally though
GUT s shed little light on the origin of CP violation. Fi-
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where 1(; are the fields in the Lagrangian and b; are their
charges under U(1}z. We further assume that U(1)~ is
spontaneously broken at early times. ' In general, this
occurs when a scalar quantity (either a fundamental sca-
lar or a quark bilinear} charged under U(1)z gets a
nonzero vacuum expectation value (VEV}. For
definiteness let us assume that spontaneous symmetry
breaking is accomplished by a complex scalar field P
charged under U(1)z but neutral under the standard
model gauge group [SU(3)„&„XSU(2)LXU(1)r]. Dur-
ing spontaneous symmetry breaking, baryon-violating in-
teractions among the quarks and leptons can occur. As
long as Sakharov's other requirements are met, an excess
of quarks over antiquarks can develop. Of course, if
baryon number were spontaneously broken today we
would see baryon-violating interactions occurring at very
rapid rates. We therefore require that as the Universe ex-
pands and cools, the VEV's of the baryonic fields disap-
pear and U(1)z is restored. We will discuss this rather
unusual idea of high-temperature symmetry breaking and
low-temperature symmetry restoration in more detail
below. We note here that the phenomenon has been dis-
cussed by various authors. ' Furthermore, high-
temperature symmetry breaking is observed in the fer-
roelectric behavior of Rochelle salts. '

The astute reader may wonder how a baryon excess
can develop in a theory in which baryon number is con-
served in the fundamental Lagrangian. In truth, no
baryon asymmetry has been generated. During spontane-
ous symmetry breaking, a baryon asymmetry in the
quarks develops but this asymmetry is exactly compen-

nally, GUT physics occurs at very early times when the
expansion rate is very fast; it is therefore relatively easy
to have processes occurring out of thermal equilibrium.

Baryogenesis at the GUT scale does have serious draw-
backs. For example, an inflationary epoch produces a
large entropy density thereby diluting B, and therefore
baryogenesis must occur after reheating (or during
reheating as in Ref. 6). However, having the Universe
reheat to such high temperatures can be very difficult to
arrange for in realistic models (see, for example, Ref. 7}.
Furthermore, GUT-scale baryogenesis requires that there
be no baryon-violating interactions below 10' GeV, for
any such processes would wash out the asymmetry. This
requirement appears particularly problematic in light of
recent suggestions that quantum effects in the standard
model may be powerful enough to wash out the baryon
asymmetry at the weak scale. ' Finally, it should be
pointed out that there is no experimental evidence sup-
porting GUT's; indeed the little evidence available rules
out the simplest GUTs. '

In this paper we discuss a new paradigm for baryo-
genesis, " one which allows, perhaps even forces, the
baryon asymmetry to be generated at relatively low tem-
peratures' (T-1—10 GeV}. We assume that baryon
number is conserved in all fundamental interactions.
That is, we assume that the Lagrangian is invariant under
the simultaneous [global U(1)~] transformation

sated by antibaryons hidden in the vacuum. When the
symmetry is restored, the antibaryons reappear, either as
P particles or as solitons containing large numbers of an-
tibaryons.

The comments in the previous paragraph deserve fur-
ther clarification. To this end we discuss the classical
equations of motion. Let jg be the total baryon current:
jg includes contributions from the quark fields, the scalar
field P, and all other fields charged under U(1)z. In a
baryon-symmetric theory, jg is conserved:

8"j =0 .P (1.3)

where p is a heavy (real) scalar and 8 is the massless
Goldstone boson. The low-energy effective Lagrangian
for 8 is

'a~ca -e+ 'a~eJ'—, (1.5}

where j„ is the baryon current from all fields except p.
The equation of motion for 0 is, therefore,

8"(u8„8+j„)=0 . (1.6)

Comparing Eq. (1.6) and Eq. (1.3) we see that during
spontaneous symmetry breaking jg splits into a vacuum
part (excitations of the Goldstone field 8) and a part con-
taining ordinary matter fields. In a closed system (a
closed universe, for example) we can derive a conserva-
tion law for baryonic charge by integrating Eq. (1.6) over
a spacelike surface

where

vacuum

+ "~' =0,
particles

(1.7)

and

Q =vfd x88
vacuum

g, = fd'xj', .
particles

(1.8a)

(1.8b}

Once the symmetry is restored, the vacuum can no
longer hide the charge and antibaryons must appear and
must have a number density equal to the number density
of baryons. This result is a direct consequence of our as-
sumptions and has no analogue in scenarios with explicit
baryon violation. The implications are rather striking.
We immediately see that the energy per baryon number
of the antimatter present today cannot exceed -70 GeV:
if it did, then antimatter would overclose the Universe.
This does suggest the interesting possibility that the dark
matter is actually antimatter. It further suggests that
baryogensis in our scenario will occur at GeV and TeV

[For simplicity we will assume a fiat (nonexpanding)
background. The generalization to a Robertson-Walker
spacetirne is straightforward. 'J During spontaneous
symmetry breaking, ( P ) = 0 /&2 and it is appropriate to
write

"+P ie/ u

V'2
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energies and might therefore be testable in present-day
particle accelerators.

In Sec. II we present a simple model which demon-
strates the essential ideas of our scenario. In Sec. III we
calculate the baryon asymmetry generated in this model.
In addition, we demonstrate that inverse decays and
baryon-violating scatterings do not wash out the asym-
metry. In Sec. IV we discuss the possibility that the anti-
baryons which must be present today turn up as free P
particles. A somewhat more speculative idea is to have
the antibaryons trapped in large regions of the false-
vacuum energy. This possibility is discussed in Sec. V. A
summary and conclusion are given in Sec. VI. Finally, an
appendix is devoted to the question of how charge gets
stored in the vacuum during spontaneous symmetry
breaking.

II. BARYON VIOLATION AT HIGH TEMPERATURES

In this section we present a simple model in which
U(1)~ is unbroken at low temperatures but spontaneously
broken at high temperatures. In addition to the ordinary
fields and coupaings of the standard model we introduce
four new scalar fields —P, $„$2,and P3. Their couplings
to ordinary quarks and leptons are

L =A~Mp*p)$2+A3M$'p)p3+f, p, U CD

+f2/2 U CE+f3/3 U CE+H. c. (2.1)

f)$)U CD~a «f I'P, Up; C D
1+yq

(2.2)

Here i,j are indices labeling the three generations of fer-
mions and a,P, y are SU(3)„&„indices.

The interaction Lagrangian in Eq. (2.1) respects all of
the symmetries of the standard model. Clearly it is in-
variant under the gauge group SU(3)„&„XSU(2)z
XU(1)z. For example, P2 transforms as an SU(3),

& „
triplet, a singlet with respect to weak interactions and
carries electric charge —

—,'. The transformation proper-
ties of the scalar fields are listed in Table I ~ The local
symmetries of the standard model are not the only ones
preserved by these interactions; the global symmetries—
baryon number and lepton number —are also respected.

Here the A, 's and the f's are dimensionless coupling con-
stants; M is a parameter with dimensions of mass —com-
parable to the masses of the P, 's; C is the charge-
conjugation matrix (iy y in the Dirac representation);
and U, D, and E refer to the ordinary quarks and leptons.
For simplicity we assume that the P s couple only to
right-handed fermions so that, for example, U in Eq. (2.1)
stands for Uz =—[(1+y,)/2]U. Color and generation in-
dices have also been suppressed: P, , for example, couples
to the top and bottom quarks as well as the up and down.
Let us exhibit explicitly one of the Yukawa terms in Eq.
(2.1):

TABLE I. Transformation properties of the scalar fields in-

troduced in the text.

SU(3)„i,„ U(1),
1

3
l
3
1

3

U{1)g

—2
3

1

3
1

3

U{1),

1

2
1

2

For example, the interaction term Pz U CE is invariant
under U(1)z.

y» U TCE ~ ( e i 8/3y )» ( e i 8/3 U )TCE

=$*U CE, (2.3)

P like P is a gauge singlet but carries baryon (and lepton)
number —

—,'. As with P, if P gets a VEV, then baryon
number and lepton number will be spontaneously broken.
The baryon asymmetry based on Eq. (2.4) is roughly the
same as the asymmetry that develops in the model based
on Eq. (2.1). However, as we shall see in Sec. IV, there
are dramatic differences between the P model and the P
model in the present Universe. For the time being we
will stick with the P*P&Pz coupling.

Our model Lagrangian also has a potential for
V(P). The Lagrangian is symmetric under U(1)~ and

we therefore require that V = V( l Pl ). Consider then the
potential

(2.5)

where o is another complex scalar field. The dimension-
less couplings a; are assumed real and positive. Further-
more,

a&a2 & a32 (2.6)

if we assign Pz baryon number + —,. Similar considera-
tions applied to the other scalar fields allow us to fill out
Table I. Of particular interest is the scalar field P; it is a
gauge singlet and has B =L = —1, just like a positron-
antiproton combination (antihydrogen). Therefore, if P
gets a VEV, the global symmetries U(1)~ and U(1)z will

be broken, but the gauge symmetries will remain unbro-
ken.

We note that P, has the same quantum numbers as P2
and is apparently redundant. Baryogenesis is in fact pos-
sible in a model without P3 but achieving a final baryon-
to-photon ratio of order 10 proves diScult. [This
problem is reminiscent of one encountered in baryo-
genesis models based on the minimal SU(5) GUT.] We
will return to this point below. Finally, we note that
there is a simple change that can be made in Eq. (2.1) that
maintains all of the features necessary for baryogenesis:
we can replace the P'P, Pz coupling by the term

(2.4)
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is required so that the potential is bounded from below.
The values of 1/1 and Io I

in the ground state (the vacu-
um) are determined by minimizing the potential with
respect to 1/1 and

I
o I:

L /
I

el@1
=0=21@1(m2p+2a) lyl' —2asla I'),

av =0=21cr 1(2a~lcr I' —2a3lyl') .

(2.7a)

(2.7b)

FIG. 1. Feynman diagrams for the one-loop correction to the
finite-temperature effective potential. Shown here is the correc-
tions to the I(P) I' term in the effective potential. Similar dia-
grams can be drawn for the

I ( a ) I' term.

The solution Icr I
=1/1=0 is clearly an extremum, but is it

the global minimum'? Inspection of Eqs. (2.7) shows that

(2 g) Thus, for T) T, where

is the only extremum and is therefore the global
minimum of the potential. By definition this is the zero-
temperature vacuum state. In it, P has mass m&', cr is
massless (this is not essential as we could have added an
m Io I

term to the potential); and since P does not have
a VEV, baryon number and lepton number are unbroken
symmetries.

At finite temperature there are corrections to the po-
tential which are capable of shifting the ground state.
We need consider only the one-loop corrections to the
finite-temperature effective potential, V(o, g; T). Figure
1 shows typical diagrams that contribute to V. Summing
all one-loop contributions (see, for example, Ref. 14) we
find

6

Q3 2Q)

' 1/2

m&, (2.12)

the effective potential has two extrema. It is easily
verified that in this case Icr I

=1/1=0 is a local maximum

V) )oop(o, g;T)= —
6

T Ifl

(2.9)

for temperatures above m&. If 2a& & a3 & 2a2, then these
corrections induce a negative mass-squared term for 1/1
which depends on the temperature. Once again the vacu-
um state is found by minimizing V(cr, g; T)
= V(o,g)+ V& ~„(cr,P; T) with respect to the fields. We
therefore look for solutions to the equations

(b)

+2a
q I & I 2as I o I (2.10a)

av 2 2Q2 Q3 2 2=0=2lol 2a2lal'+

(2.10b)

2Q1

Q3 2Q)
T my (2.11)

is a solution so long as the term in parentheses is positive.

Clearly Io I

= I/1 =0 is a local extremum, but again we
must check to see if it is the global minimum. It is
straightforward to show that Io 1&0, 1/1=0 and
Io 1@0,1/1%0 are not solutions of Eqs. (2.10). However,
I
cr

I

=0 and
FIG. 2. Feynman diagrams for the P, ~UE decay. Scalar

particles are represented by dashed line and fermions by solid
lines; (a) is the tree-level graph and (b) is the one-loop graph. In
addition, the Feynman diagrams with Pz replaced by P3 contrib-
ute to the decay rate.
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and the true minimum is at o =Q and

j(y) j
=s(T —T )'~

where
1/2

cl3 2' )

12')

(2. 13)

(2.14)

is dirnensionless and typically of order unity. To summa-
rize, at low temperatures baryon and lepton numbers are
unbroken symmetries. However, at temperatures above
the critical temperature T„P gets a VEV and baryon
number and lepton number are spontaneously broken.

Spontaneously broken baryon number means that there
are fundamental processes —decays, (2~2) scattering,
etc.—in which the baryon number of the initial set of
particles is different from the baryon number of the final
set. For example, since P, has baryon number —

—,', it

normally decays into UD. When P has a VEV, there are
terms in the interaction Lagrangian [Eq. (2.1)] that mix

P, and /2:

=A, M~QT TP P*— (2.15)

III. BARYON-SYMMETRIC BARYOGENESIS

A. General considerations

A net baryon asymmetry can be generated only if (a)
there are baryon-nonconserving interactions, (b) CP is
violated, and (c) the Universe is not in equilibrium. At
temperatures above T, we have seen that there are funda-
mental processes in which the baryon number of incom-
ing particles is not equal to the baryon number of outgo-
ing particles. CP violation is achieved by having complex
Yukawa couplings in the interaction Lagrangian. We
must be careful that the complex phases associated with
the coupling constants cannot be rotated away by
redefining the quark fields. In fact, without P3 and with

only one generation of quarks and leptons, just such a ro-
tation exists:

—i(, phase f2) —i(phase fl )E~e 'E, D~e (3.1)

The new coupling constants would be completely real,
and there would be no CP violation. There are two sim-

ple ways to avoid this: one is to rely on the fact that there
are several generations of fermions. It can be shown that

These terms facilitate the decay P, ~UE, as shown in

Fig. 2. Therefore P, decays into two modes (UD, UE),
that have different baryon numbers (

—
—,', + —,'); it is no

longer meaningful to assign P, (or Pz, $3) distinct baryon
numbers. This is analogous to the situation encountered
in GUT-inspired theories in which the so-called X and Y
bosons couple explicitly to the two different modes. ' It
is therefore reasonable to ask if a nonzero baryon number
could build up at T & T, just as a nonzero baryon number

emerged from GUT's. In the next section we address this
question.

——', [I (P; ~ UD )
—I ( P,

*~ UD ) ] ] . (3.2)

Here the I"s are the partial widths into the given chan-
nels and I, is the total decay width of P;. Recall that
while CPT constrains the total width of P; to be equal to
that of P; the partial widths can differ if CP is violated.

We can obtain an order of magnitude estimate for the
baryon asymmetry by examining the Feynman graphs
that contribute to e. In our model, CP violation mani-
fests itself in the interference of the tree-level and one-
loop graphs. For example, in the P, ~UE decay, one
contribution is M' "M"' where M' ' is the tree-level
graph depicted in Fig. 2(a) and M' " is the one-loop graph
in Fig. 2(b). For simplicity we take the masses of the
P;[(M„M~,M3)] to be of the same order of magnitude
M. We then estimate the net baryon-number density to
be

ne, —n -Im[(f ~ A~(P)*)'(jf, j f 3 A3(P)*)]
1

j(k)j' (3.3)

As we will see in the next section this estimate is a good
one. Several points about Eq. (3.3) are readily apparent.
First we note that if U(1)z were unbroken, then (P) =0
and no asymmetry could develop. In our model (P) is of
order T so that if a large enough asymmetry is to devel-

op, then the decays must take place at temperatures not
too much smaller than M. Third, the final asymmetry de-

pends on the phase of f2f 3 A.2 A, 3, this confirms the fact

the CP-violating phases cannot be rotated away when we
consider more than one generation. However, the calcu-
lation of the baryon asymmetry in this case is tedious and
we have resorted to a less elegant albeit simpler way of
maintaining CP violation: we have simply added P3. As
we will see, with this addition CP is violated. We focus
on one generation of fermions and assume that it is the
heaviest generation so that U, D, and E become the top
quark, bottom quark, and tau lepton, respectively. To be
explicit, we are assuming that the Yukawa couplings to
the heaviest generation are much larger than those to the
lighter generations. We note that it is straightforward to
generalize our results to the case in which all of the Yu-
kawa couplings are comparable.

Finally, we need an out-of-equilibrium scenario. We
assume that at some temperature Td there is an equal
number density n = Td of P; particles and antiparticles.
If Td is much smaller than the P; mass M;, then these
heavy particles are out of equilibrium. [Recall that in

equilibrium the abundances would be suppressed by the
Boltzmann factor exp( —M, /Td ).] Since their lifetimes
are much shorter than the age of the Universe, they im-
mediately decay. If Td is above the critical temperature
T„ then each P; can decay into two channels: UD and
UE. The decay of n P; —

P,
* pairs produces a net baryon-

number density in the quarks given by

n e; = n t —,
' [I ( d; — UE )

—I ( P,
*—+ UE ) ]

1
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that P3 is necessary for CP violation (at least if we consid-
er only one generation of fermions). Finally, we note that
the final asymmetry does not depend on the phase of (P ).
This is important since during symmetry breaking, the
magnitude of (P ) is fixed but the phase of (P ) is com-
pletely undetermined. It is expected to vary from one
causal domain to another. The fact that the final baryon
asymmetry does not depend on the phase of (P ) means
that the asymmetry is the same everywhere, even in
domains in which ((t ) has a different phase.

As discussed in the Introduction, the fundamental La-
grangian is baryon symmetric and therefore the total
baryon number in the Universe must be conserved. This
implies that any baryon violation in ordinary matter
fields that arises during spontaneous symmetry breaking
must be compensated by baryon number stored in the
vacuum. To be more explicit, at temperatures above T„
(P)%0 and we can parametrize P using Eq. (1.4) with
U =@2'(T2 T2)'~2—[cf. Eq. (2.13)]. The low-energy
effective theory for 8, the phase of P, is then given by Eq.
(1.5) where j„ includes contributions from the p; as well
as the ordinary quarks. In the above scenario j 0 starts
out at 0 but builds up to some nonzero value as the P, 's

decay. This time dependence ofj 0 causes 8 to develop a
finite velocity. Even after j o becomes constant, there is
no force acting against the time dependence of 9 so it
continues to rotate. With this velocity, 8 (or equivalently
P) can store charge (i.e., baryon number) and this charge
exactly cancels any change in baryon number in the ordi-
nary matter fields. In the Appendix we discuss the pro-
cess of storing charge in the vacuum in more detail. The
fate of the stored charge once the symmetry is restored is
the subject of Secs. IV and V.

In the next section we will undertake a more careful
computation of the final asymmetry. Before this, though,
let us return to the question of nonequilibriurn. We have
assumed that the P s decay when they are out of equilib-
rium. However, the simplest processes which govern
their abundance —decays and inverse decays —have rates
much greater than the expansion rate of the Universe. If
the Universe evolved in a straightforward manner, then
the number density of P; would decrease like e as
the temperature dropped. At T&(M, there would be

essentially none of these particles left and therefore no

asymmetry would result.
However, the early Universe holds many mysteries and

there is no reason to expect it to evolve in a "straightfor-
ward" manner. In particular there are many violent phe-
nomena that might produce P s at temperatures far
beneath their mass. For example, at the end of an
inflationary era, the vacuum energy responsible for driv-
ing inflation is converted into particles. It is easy to en-
vision P;-((}; pairs produced at the end of such an era
even if the "reheating" temperature is much less than M.
The pairs would immediately decay producing the re-
quisite asymmetry. ' Alternatively, a very massive parti-
cle (mass )&M) could have a very long lifetime and decay
into P;-P; pairs only when the temperature has dropped
beneath M. Another intriguing idea is that the P, 's get
their mass from the vacuum expectation value of another
field. If the Universe undergoes a phase transition
wherein the VEV of this other field changes, then the
mass of P; changes accordingly. Say, for example, the
mass of tI}; is initially 0 but after the phase transition it
becomes M~. Initially the number density of P; (and P; )

is —T; after the phase transition this is much larger
than the equilibrium number density [-(MT) e ].
The P;-P; pairs then immediately decay producing the
asymmetry. It is conceivable that one or another of these
speculations can be incorporated into the phase transition
at T„where P loses its VEV. In this work, to make the
new physics as transparent as possible, we will not rely on
any specific way of attaining out of equilibrium condi-
tions; we simply pararnetrize whatever process is respon-
sible by saying that at some temperature TD below the
mass M, there is a number density n of P; —P; pairs and
this number density is considerably larger than the equi-
librium number density.

B. Calculating the asymmetry

In this section we calculate the final baryon asymmetry
produced when the P s decay. To simplify the calcula-
tion we work in a basis in which the mass matrix for the
P s is diagonal. When (P) becomes nonzero, there are
mass mixing terms in the Lagrangian. The mass terms
are

M
1

I (pi Qp $3} ApM( y )*

X,M(y)*

A2M(tI}) X3M(p)

M 0

M 3

(3.4)

We can diagonalize this mass matrix by rotating 4 with a unitary matrix. Specifically, we define the rotated fields

X,*M(y)

(X, , X~,X3)=Q 4=- X,M(y)*
M) —M2

M) M3

(3.5)
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This form of 'M is correct in the limit that the off-diagonal
terms are small. Even if the A, 's are of order 1,
(P) —T«M so that this is the appropriate limit. In
terms of the new fields X,- the mass matrix is diagonal;
indeed to lowest order in A, T/M, it is simply
diag(M„Mz, M~). The coupling of the X s to ordinary
fermions can be read off from the interaction Lagrangian
(2.1) and the relationship between X; and P, [Eq. (3.5)].
We find

L;„,= gX;(c, U CD+d;UE'), (3.6)

where E'= CyoE' is the conjugate of E and the new

couplings written in terms of the old ones are

c, —= 'M„f„d;—= 'M~;ff +R„ff . (3.7)

In this form the similarity between the spontaneously
broken theory considered here and theories with explicit
baryon violation becomes apparent. The X; propagate
without mixing. However, they do not have definite
baryon (or lepton) number as can be seen from the fact
that each couples to two modes that have different
baryon number.

We are interested in the net baryon number produced
when these heavy particles decay. However, it is simpler
to calculate the net lepton number produced. These two
quantities are equal since B —J is not spontaneously bro-
ken: in each fundamental process the baryon number
minus lepton number of the incoming set of particles is
equal to that of the outgoing set. In analogy to Eq. (3.2)
we have

To calculate the difference between the amplitudes, we
need to evaluate the interference between the tree graph
in Fig. 3(a) and the one-loop graph in Fig. 3(b). The tree
amplitude is

(3.12)

where S is the spinor product

1+r5
S =u~, (q)C ug(q') (3.13)

and the u's are the spinors for massless particles. The
one-loop amplitude is

T"'=2iS g c,'d'c I,
I

where the loop integral is

d'k k
I; =

(2m) (k —M )(q —k) (q'+k)

(3.14)

(3.15)

The subscripts on I indicate that it depends on the masses
of both the internal particle X and the decaying particle
X; (the latter since 2q q' =M; ). Again the factor of 2 in

)le llL
[I (X, UE) —I (X,' UE)], (3.8)

n n, . I,.
where I; is the width of X;.

We will restrict our analysis to the case of massless de-
cay products. This is a good approximation as long as
the decaying particles are much heavier than the quark
and lepton masses. In this limit the kinematics is greatly
simplified and the decay rates are related to the ampli-
tudes by

r= y IrI',
spins

(3.9)

where T is the amplitude for the process. From this we
get the full widths of the X;:

M,' (2lc;I'+Id;I'),
16m.

(3.10)

where the factor of 2 accounts for the fact that there are
really two different UD final states with U and D color in-
dices interchanged. In terms of the amplitudes, the final
lepton number is

, g [ I
2 (x, —Uz) I'

2c; +Id I M,

—II (X,*-U&) I'] .

(3.11)
FIG. 3. Feynman diagrams for X;~UE decay; (a) is the

tree-level graph and (b) is the one-loop graph.
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the one-loop amplitude accounts for the two different
graphs with only internal color indices interchanged. So
far we have focused only on the amplitude for L; decay;
the amplitude for X,* decay is exactly the same except
that the coupling constants are replaced by their complex
conjugates. A little algebra then leads to

1
Re(I; )=— M

1 — ln(1+M; /M~ ) . (3.18)
M,

1
Q I(MJ /M, )Im.(d, d'c,*c,),

2c, +d;

We can use these last three equations to express the final
lepton number as

g S'S Q Im(d;d'c;"c )Re(I,") .
SPInS

The sum over the different spin states yields

g S'S=2q q'=M~

(3.16)

(3.17)

where

I(x)—= — [1—x ln(1+1/x)] .1

2'

(3.19)

(3.20)

spins

The real part of the integral in Eq. (3.16) is not divergent
and can be evaluated by standard techniques:

The c's and d's can be written in terms of the funda-
mental parameters A, , M;, and (P) using Eqs. (3.5) and
(3.7). Substituting we find

/f /'M'/(y)/'
(M2 M2 )(M2 M2 )

I(M~/Mf )
—I(M3/M, ) I(M3/M~ )

—I(M, /M~ ) I(M, /M3 )
—l(M~/M3)

(3.21)

Equation (3.21) gives us an expression for the final
baryon-number density produced in terms of the funda-
mental parameters of the theory, the number density of
the heavy particles right before they decay, and the tem-
perature at the time of decay (recall that ( P ) depends on
the temperature). We now calculate B the ratio of the
final baryon-number density over the entropy density.
This ratio will remain constant once baryon-violating re-
actions have become ineffective (assuming of course that
entropy is conserved). In the next section we demon-
strate that for a reasonable set of parameters baryon-
violating reactions are indeed ineffective immediately
after the (t, 's decay. The baryon to entropy ratio today is
then the same as it was immediately after decays. At that
time the entropy density was

(3.22)

where g~ counts the number of degrees of freedom. At
temperatures above the electroweak scale g, is roughly
equal to 100. The subscript f on the temperature refers
to the fact that the temperature is raised when the decay
products of the P, 's equilibrate. If we denote Tz as the

temperature right before decays and if we make the ap-
proximation that all decays take place simultaneously,
then Tf can be determined by energy conservation:

pd =2n(M, +Mz+M3}+ g, Td
277 4

45

277 4

4
g~T

(3.23}

With this expression we can determine Tf in terms of Td
and write the final baryon to entropy ratio as

2n (M(+Mq+M3)
(2n /45)g„Td

1+
(2~ /45)g, rd

a=10

C. Washing out the asymmetry

(3.25)

Once the heavy particles have decayed, baryon-
nonconserving processes must become ineffective. If not,

(3.24)

From this expression we see that if the decay temperature
is many orders of magnitude smaller than the M s, a lot
of entropy will be produced, thereby diluting the final
asymmetry. For our purposes, though, we will assume
that the decay temperature is not too much lower than
the heavy masses, so that the entropy increase factor (in
large parentheses) is of order unity. In the next sections,
then, we will use the approximate equality B-e/100.
Since B today is approximately 10 ' we will require
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U

then these processes will wash out any baryon asymmetry
produced. Quantitatively, the requirement is that

r„&0 . (3.26}

X)

l

I

I

I

I

I

I

I

I

I

I

FIG. 4. Feynman diagrams for the baryon-violating scatter-
ing interaction U+D~ U+E; (a) is the diagram for s-channel
scattering and (b) is the diagram for t-channel scattering.

Tg (M/25 —M/30 (3.27)

inverse decays should not cause a problem.
The second type of dangerous reactions are (2~2)

scattering processes mediated by one of the heavy parti-
cles. To get the rate for this process we first calculate the
cross section due to both s- and t-channel graphs [Figs.
4(a) and 4(b)] and then integrate over the light-particle
distributions. Explicitly,

That is, the baryon-nonconserving rates must be less than
the Hubble expansion rate.

There are two types of processes which are dangerous.
The first is inverse decays: if the heavy particles can be
reproduced rapidly, inverse decays will wash out the
asymmetry. However, this process is suppressed by a
Boltzmann factor. To see this, note that the total energy
of two incoming fermions must exceed M; if they are to
produce an X, . Since the decay products quickly equili-
brate with the rest of the plasma, the number of any
species having energy of order M; is suppressed by—M; /Td
e ' ". Even if the nominal rate for inverse decays is
large compared to the Hubble rate, it is clear that for

r, ,=,f

happ'e

"'f-~, e ~ "a(p,p')1 z — /v d p — 'tr
dpp'e &'

1 d'p' .,„1 d'q d'q'
3

dpp'e P" 3e P'",
3 3

2~' 'p+p' —
q

—q'
22T (2m. } 4' (2n ) 2q (2m ) 2q'

(3.28)

s —= (p+p')', t —= (p —q)' (3.29)

we find

Here the cross section o.(p,p') has been expressed in
terms of the amplitude 'T. A number of approximations
have been used to derive this expression. First, we have
again taken all fermion species to be massless. We will
briefly return to this point later; for now we note that this
leads to an ouerestimate of the rate and will therefore give
an overly conservative constraint for our theory. We
have also used Boltzmann statistics; this should be a good
approximation since the particles most likely to take part
in such a reaction are those in the tail of the distribution
(p & T). For such particles, the difference between the
Fermi-Dirac and the Boltzmann distributions is negligi-
ble [1/(e~ + l)~e ~~ ]. The factor of 6 in the last
line of Eq. (3.28) comes from summing over colors of the
incident and outgoing particles and the factor of —,

' ac-
counts for spin averaging.

First we evaluate the amplitude and sum over spins. In
terms of the Lorentz invariants

SPI I1S

=IGi (s +t +2st) . (3.30)

G is the four-Fermi coupling for baryon-violating interac-
tions

d; c,6=g
M;

(3.31)

df f 3
(2m) 5 (p+p' —

q
—q')

(2m. ) 2q (2~) 2q'

X (s + t +2st) =const Xs (3.32)

By choosing a simple reference frame, it is easy to verify

To perform the q and q' integrations we notice that since
the measures of integration are Lorentz invariant, the in-
tegrals over the Lorentz-invariant quantity s + t +2st
must also be Lorentz invariant. The only such quantity
that depends on p and p' is the center-of-mass energy
squared s, so that
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= 3
, I

Gl'T,' .
27T3

(3.34)

Again we can express the c's and d's in G in terms of the
fundamental constants of the interaction Lagrangian
(2.1):

~f, ~'M'~ & y & ~' f X'

M) M2 M2
(3.35)

To see that the constraint equation (3.26) can be
satisfied while at the same time producing a large enough
baryon asymmetry, we assume that all of the couplings
are of the same order of magnitude (f; —f,A,; —1, ) and all
of the heavy masses are similar (M;-M). Then, e is of
order

Te-fzAz

M
(3.36)

that the constant is I /24ir .Therefore the scattering rate
1S

I = ' Jdppe J e s (3 33)
Gl' d3 '

64~T p'(2m. )

Performing the integrations and setting T = Td we find

case then we have probably overestimated the scattering
rate for

M-100 GeV . (3.42)

For then, by Eq. (3.27), the decay temperature is much
smaller than the top-quark mass and this ensures that
there are very few top quarks around (their number is

suppressed by e "& ") that can rescatter into P s. In
any event, it is clear that with natural choices of the pa-
rameter set, a large baryon asymmetry can emerge.

D. Baryon-number--, ' scalars

Until now we have focused on a model in which the
field which gets a vacuum expectation value is a gauge
singlet and carries baryon and lepton number equal to
—1. As mentioned in Sec. II, we could have substituted
the scalar interaction P'P "PiPz for the term P'P, Pz.
Here we pause to point out that it is possible to achieve a
final asymmetry of the requisite order in this alternative
model. The only change in the calculations of the previ-
ous sections is in the off-diagonal mass terms of Eq. (3.4).
The coupling A,zMP'P, Pz gives rise to the off-diagonal
mass term

and the scattering rate is

I -f A, -efzTd Td
2~2 M M

(3.37)

7 zM & y &'y, yz
= & zM~( T' T')'"y y—'

With P we have

(3.43)

(3.44)

Note that we have used the fact that & P) —Td to obtain
these expressions. We must compare the scattering rate
with the expansion rate:

Therefore, our final result for e, Eq. (3.21), is exactly the
same except that in the numerator we must make the sub-
stitutions

[(2m /45)g, Td]'i
H= 8n/3

ill p)

=20
mp)

(3.38) M'-
I & y & I'

(3.45a)

(3.45b)

Using the fact that e must be 10, the ratio of the rates
is then

I Tz 2 6X1()6fz d 1 TeV
0 M M

(3.39)

However, we have argued above [Eq. (3.27)] that Td must
be smaller than M/25, so

r z z z 1 TeV
& 400 (3.40)

To satisfy Eq. (3.26) we require that this be less than 1;
this in turn places a constraint on the parameters f and
M:

Let us rework the order-of-magnitude estimates of the
previous subsection for the P model. The asyinmetry is
now of order

4
Tde-fzAz
M

(3.46)

fA, &0.06 . (3.47)

Since Td/M must be less than —,', to suppress inverse de-

cays, the couplings f and A. must be slightly larger to
achieve a final asymmetry of order 10 ' . In fact we re-
quire

1/20
1 TeV &1.

M
(3.41)

We see that a significant asymmetry can develop without
being erased by rescattering even if the heavy masses are
—10 —10 GeV. Moreover, it is possible that p; couples
strongly with the heaviest generation (top, bottom, tau)
and weakly with the lighter generations. If this is the

This is certainly not unreasonable but it is a little more
stringent than in the P model. The scattering rate in the
P model is different, but when written in terms of e, it is
again given by Eq. (3.37). Therefore, the final constraint
on the coupling f and the heavy mass scale M, Eq. (3.41),
holds in this model as well. To summarize, the final sym-
metry is relatively insensitive to the choice of model.
However, we will see in Sec. IV that the later history of
the Universe may be very sensitive to this choice.
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IV. SCALAR ANTIBARYONS

During the baryogenesis epoch, the baryon asymmetry
generated in the quark fields is exactly compensated by a
density of antibaryons hidden in the vacuum. Once the
symmetry is restored the vacuum can no longer hide the
charge and antibaryons, in one form or another, must ap-
pear, being present today with a number density equal to
the number density of ordinary baryons. In this section
we discuss the possibility that the antibaryons present to-
day are in the form of free P particles.

At temperatures above the critical temperature T„ the
vacuum hides charge by having ( P ) develop a time-
dependent phase; (P) =ve ' '/&2. In this simple an-
satz, P is homogeneous; the magnitude of P and the angu-
lar velocity are roughly constant on time scales short
compared to the expansion time [0/v-t'v/tv=0(H)]. v

and co are determined by minimizing the energy while
holding the charge density fixed. As T drops below T„
(P) is driven to zero. However, P carries a net baryon
number and therefore P cannot be driven to zero every-
where. To see this, let us assume that (P) =ve ' '/&2
at temperatures below T, where again v and co are slowly
varying functions of time. The expression for the energy
density of the P field is

p&= —,'co v + V(v) . (4.1)

At low temperature, v will be small so it is sufficient to re-
tain only the quadratic term in the potential,
V(v)=m&v /2. Substituting ntt/v for cv and minimiz-

ing the result with respect to v we find

1/12

(4.2a)

co=m&,

p&=n~m& .

(4.2b)

(4.2c)

These results indicate that the P field is behaving like a
condensate of zero momentum P particles and this is pre-
cisely what it is.

It is useful to think of baryon-number density in the
field (() as a type of angular momentum. [It is in fact just
the angular momentum of P rotating in its internal U(1)e
space. ] Above T„P has a large VEV ((P) —T) and can
"spin up" to a charge density of —10 T with small
angular velocity (cv-10 T) and relatively low rotational
energy density (p„„-10 ' T ). (The fact that the
baryon number can be stored in the 0 field with such low
energy is further justification for our claim that charge is
hidden in the vacuum. ) As T drops below T„(P) is
driven to zero and m as well as p„„must increase in order
to conserve baryon number. We can in fact think of the
~ v /2=nz/2v term in the energy density as a centrifu-
gal barrier which prevents ( P ) from reaching zero.

While at early times P might well be in the coherent
state described above, it is unlikely that this will be the
case today. Gravitational interactions between the P field
and ordinary matter should be enough to endow the P
field with nonzero momentum. It is therefore useful to

think of the field as free, nonrelativistic P particles. The
P's in fact make a natural candidate for cold dark matter
and would be expected to accrete into our galactic halo.
(As a dark-matter candidate, the P is in some respects
similar to the axion).

The parameters governing P are tightly constrained by
both cosmology and particle physics. The constraints of
course must be satisfied subject to the conditions that
e- A. f ( Td /M )'-10 and that the asymmetry is not
washed out [Eqs. (3.27) and (3.41)]. To simplify the dis-
cussion which follows we take Td/M=0. 03 so that
e-10 f A, or equivalent f A, —10

Clearly, m
&

must be greater than the proton mass, else
the proton would decay into a (()' and a positron. Assum-
ing that most of the P's have not yet decayed, the energy
density in P's as compared to the critical energy density

pc is

py pl
y

b ~

p I (4.3)

where Qb is the density in baryons relative to the closure
density. Since 0.014 ~ Qb 0. 16 we have that

0.94 GeV & m& & 6—70 GeV . (4.4)

We note here that as T drops below T„ there may be
many P's and P*'s over and above the P's necessary to
compensate for the baryon excess in the quarks. That is,
we might have n&

—n + =nz but n&+n + &&n~. We as-

sume that tt-P' annihilations [e.g. , P+P*~o.+o*, cf.
Eq. (2.5)] are very eIIicient so that at temperatures not too
far below T„n,=0 and n&=ne (Ref. 21) (If this were

not the case then P's and P"s would overclose the
Universe. )

In the model described by Eq. (2.1), P can decay into
an antiproton and a positron. This process will wipe out
the baryon asymmetry, since all antiprotons produced
will annihilate with protons, unless the lifetime of the P s
is greater than the age of the Universe (i.e., v&) t«). The
constraint imposed is actually much tighter than this
since the decay products from the (()'s can be observed on
Earth. For example, P decay could lead to an observ-
able Aux on Earth of antiprotons in cosmic rays. Let us
assume that P particles make up the dark matter in the
galactic halo. The number density of P's is then

n& —-0.01 (m&/30 GeV) cm . Antiprotons produced by

P decays will be trapped in the halo of our Galaxy by
galactic magnetic fields with a confinement time tz of
about 10 yr. The number of p 's found in the halo is
therefore n =n&tz/r& and the fiux of antiprotons

P
measured on Earth will be F =cn /4m =2X 10

P
X(m&/30 Ge )(Vt« &/) cm s 'sr '. &or this to be
consistent with observations, we require that F (10

P
cm s 'sr ' (see, for example, Refs. 22 and 24). This
translates to a limit of w&) 10' tU. In addition, it is possi-
ble that P decays will produce an observable level of
high-energy y rays. For example, P can decay into heavy
quarks and leptons. These in turn decay into light quarks
and leptons emitting pions in the process. 100-MeV y
rays are then produced in e.g. , m ~2y. Measurements
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by Fitchel, Simpson, and Thompson show that the
number density of 100-MeV y rays is =4X10 ' /cm
while the number density of P's is

n& =nz -1.4—3.0X 10 /cm . We find, then, as an
overall limit, that less than 1 part in 10' of the P's should
decay. That is, we require that ~& & 10 sec-10' tU.

To implement this constraint we must calculate the P
decay rate. The decay proceeds through diagrams such
as the one in Fig. 5. We can estimate the amplitude cor-
responding to this diagram by noting that the typical
momentum transfers (of order m

&
) are much smaller

than the masses the of the heavy internal particles. Thus,
from coupling constants and heavy propagators alone, we
find

(A,2M)f, f2
M M

(4.5}

where 7 is the amplitude. Now we assume that m& is
sufficiently above m so that there is no phase-space
suppression. The lifetime of the P is then

1 M'-
ry —

2 4 my

=10 sec f M
10 GeV

'6 '7
10 GeV

(4.6}

D

We could, for example, have I,—1, f = 10, m
&

——10
GeV, and M &10 TeV. This places a rather stringent
constraint on M. We can soften this constraint by mak-
ing f smaller. For example, we can have a situation
where the P s couple strongly to the heavy generation
quarks and leptons and weakly to the light generation.

Interactions such as Pp~m e+ are also possible and
are potentially dangerous in wiping out the asymmetry.
However, the rate for these reactions is very slow and in
particular is much slower than the rate for P decay.

The situation is very different in the P 'P 'PiPz model.
In this case b&= —

—,
' and the P's are stable. There are,

however, scattering interactions that convert P's to ordi-
nary antibaryons. For example, the interaction
P+ P ~p+ e can potentially wipe out the asymmetry.
The cross section for this interaction is

o u =X'f'4 m&
m (4.7}

and the reaction rate is

m&
I -- +=nsau =10 A f

8
T3

2
(4.8)

To satisfy the constraint, Eq. (3.47), we take fA, =0.03.
Now we can compare I -- + to the expansion rate H.

P~ 2During the radiation-dominated era, H = 10T /m pi and
'8

@~pe+ m
y

m pi

H M m~
(4.9)

The condition that I — +/H & 1 is easily satisfied (e.g.,
take m&

= 10 GeV and m& &0. 1M) even when the tem-
perature is of order m&. Today, I -- +/H is extremely

small (I -- +/H =10 f with the above values) and
Pe

the number of p 's produced will be well below the
threshold placed by cosmic-ray experiments.

To summarize, we have calculated the various de-
pletion rates for the charge carried by the antibaryonic
scalar fields. In the b&= —1 model, the mode of de-
pletion is decays; in the b&= —

—,
' model, scattering pro-

cesses are needed to get rid of antibaryon number. In
performing these calculations we have assumed we are
dealing with particles; i.e., we calculated the decay rate of
P and the scattering rate of P. This is certainly justified
today, since, as argued above, gravitational inhomo-
geneities will endow the coherent P field with nonzero
momenta. What about in the early Universe though,
when the field configuration could well have been truly
coherent? Abbott, Farhi, and Wise (Ref. 19) have exam-
ined this question in the context of inflation. They found
that the damping rate for coherent field oscillations is
indeed exactly equal to the decay rate of the correspond-
ing free particles. This equality follows from a considera-
tion of the imaginary part of the two-point function I' '

in the effective action. By the optical theorem, this imag-
inary part is equal (apart from some kinematic factors) to
the decay rate. They proved their result for a field with
Yukawa couplings to fermions (i.e., Pff) corresponding
to free particles which decay. This is our b& = —1 model
above. The 6&= —

—,
' model is different in that we must

consider the four-point function I' ' in the effective ac-
tion. By the optical theorem. again the imaginary part of
this is the cross section. Therefore the rate of damping
for the coherent oscillations of P should be equal to the
scattering rate we computed above. Work is now in pro-
gress to make these comments rigorous.

V. BUBBLESOF ANTIMATTER

FIG. 5. Feyntnan diagram for P decay into an antiproton and
a positron.

The baryon number hidden in the vacuum during an
epoch of baryon-symmetric baryogenesis must be present
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antibaryon B n $ +n BAM (5.1)

where nBAM is the total number density of antibaryons
hidden in the BAM s. In the investigations of HAM for-
mation mentioned above, n&/nB~~ can be large ( &&1)
and BAM's in such models would hold only a small frac-
tion of the total antibaryon number in the Universe. In
general, if P's are stable (have a lifetime longer than the
age of the Universe) then the BAM's will also be stable.
However, the converse need not be true. As we shall see,
it is possible for free P's to decay while the P's trapped in
the BAM's are stable. In this case, the BAM's will hold
all of the antibaryon number in the Universe.

The simplest example of a NTS is the Q ball first dis-
cussed by Coleman. A Q ball involves a single scalar
field whose Lagrangian is symmetric under a global U(1)
symmetry. For the case at hand, the scalar field is P and

today in some as of yet undetected form of matter. In the
previous section we assumed that the vacuum baryon
number was transferred to free P particles. However, it is
possible that the lowest-energy field configuration for P
(given fixed charge density} is very diff'erent from a free-
particle configuration. In particular we may have /=0
everywhere except within small localized regions of very
high charge density. That is, antimatter could be hidden
in nontopological solitons (NTS's) hereafter referred
to as bubbles of antimatter (BAM's).

Before turning to BAM's in the context of baryon-
symmetric baryogenesis, let us discuss some general prop-
erties of NTS's. NTS's are stable extended objects that
arise in a variety of classical field theories. The common
feature of these theories is the presence of an unbroken
global symmetry. Associated with this symmetry is a
conserved charge. [For BAM's the symmetry is just
U(1)ii and the conserved charge is baryon number. ] A
NTS is a localized, nondissipative field configuration that
is, for fixed charge Q, the lowest-energy solution to the
field equations. In particular, the NTS has lower energy
than Q free particles. It follows that a necessary in-
gredient of NTS models is an attractive force that can
bind the particles together.

Recently, a number of authors have considered cosmo-
logical NTS s. For example, Frieman, Gelmini, Gleiser,
and Kolb discuss the formation of NTS's in a second-
order phase transition in the early Universe. Subsequent
investigations have considered the possibility that NTS's
are synthesized from free particles much in the way that
heavy nuclei form during primordial nucleosynthesis.
A key assumption in most of these scenarios is that there
is a charge asymmetry in whatever field forms the NTS's
[typically a complex scalar field charged under a global
U(1} symmetry]. Indeed, this is precisely the situation
found after an epoch of baryon-symmetric baryogenesis.

We now consider some possible examples of BAM's.
In what follows we will discuss the structure of these ob-
jects and how they interact with ordinary matter. We
leave, for future investigations, the question of how the
BAM's form. We note here that in general BAM's will
coexist with free P's. If both the P's and the BAM's are
stable, then the total antibaryon number density is

the U(1) symmetry is U(1)ii. We now discuss BAM's as Q
balls. The first part of the discussion is fairly general in
that it applies to all Q balls. (Our discussion, in fact, fol-
lows closely the discussion in Coleman's original paper. )

Consider a BAM so large that surface effects can be
neglected. We take, as an ansatz for the Geld,

Joe '"'/&2, r (R,
0, r&R. (5.2)

That is, the BAM is spherically symmetric with radius R.
Inside the BAM, P is homogeneous and rotates at a con-
stant rate in its internal [U(1)2i] space. Outside, /=0.
The energy and charge (antibaryon number) of the BAM
are

E =[—,'|I)ov + V($0)]Q,

Q =povQ,

(5.3)

(5.4)

where Q=4mR /3 is the volume. Q refers to antibaryon-
ic charge so that a BAM of charge Q has baryon number
—Q. Eliminating v in the expression for E and minimiz-
ing the result with respect to Q we find that

2V( o)E =Q
p2

(5.5)

where $0 is evaluated at the minimum of the function
V(go)/Po. A necessary condition for BAM solutions to
exist is therefore that V($0)/$0 have a minimum at
$0%0. As noted by Coleman, this condition is never
satisfied for renormalizable interactions. However, V(P)
may be an effective potential derived from a more funda-
mental theory operating at higher energies. Consider, for
example,

6

V(y) =m', fy(
—a/yJ'+ (5.6)

where a and P are positive dimensionless coupling con-
stants. This effective potential governs physics on energy
scales lower than m&/p'~ . We note in passing that this
potential also has the property mentioned in Sec. II: at
intermediate temperatures m& & T ~ m&/p' the symme-
try is spontaneously broken while at low temperatures,
the symmetry is restored. In this case

1/2

0 p
(5.7)m&,

E =Q(1 b)m6, —

3PQ
4ira(1 b)—' 1/3

—1
m&

(5.8)

(5.9)

where 1 b=(1 —a /4P)'~ —. The binding energy per
charge is therefore bm& (We should no.te that BAM's of
the type described here have a minimum allowable
charge. BAM's with small Q have relatively large surface
energy and this surface energy can destabilize the BAM.
Q,„can be —1 or larger depending on the parameters in
the theory. )
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and T& is the temperature of the Universe at the time
when the BAM's form. Of course the exact constraint
depends on the details of BAM formation, a complicated
and model-dependent subject that will be left to future in-
vestigations. With this estimate we can give quantitative
estimates for the maximum mass and radius of a
Coleman-like BAM. With the nominal values in Eq.
(5.10), the maximum radius is of order 1 cm with a corre-
sponding mass of 10 kg.

BAM's, being domains of antimatter should interact
with ordinary matter (protons, neutrons, etc.). In partic-
ular, a BAM of charge Q and a nucleon can interact to
yield a BAM of charge Q —1, a charged lepton, and radi-
ation (pions, photons, etc), i.e.,

Q+p ~(Q —1)+e++ (5.11)

Processes of this type can potentially wipe out both the
BAM's and the proton-antiproton asymmetry. Let a(Q)
be the cross section for the above process and U be the ve-
locity of the nucleon relative to the BAM. neo(Q)u is
then the reaction rate for the process in Eq. (5.11). If
nba(Q)v/Q is greater than the expansion rate H, then we
can expect a BAM of charge Q to disappear due to its in-
teractions with nucleons. We can estimate a(Q) as fol-
lows. Inside the BAM, P has a nonzero VEV and U(1)&
is therefore broken. This implies that there are baryon-
violating interactions among the quark fields inside the
BAM. (The total baryon number of the quarks and the
BAM together is of course conserved. ) In particular, a
proton inside the BAM can decay into a positron and ra-
diation. Let ~ be the lifetime of a proton inside a BAM.
The probability P, that a proton will decay while moving
through a BAM of radius R is

P( Q) = 1 —exp( —R /rz v ) (5.12)

since 8 /U is the amount of time the proton spends inside
the BAM. The Q dependence in P enters through R [cf.,
Eq. (5.9)]. a (Q) is given by the product of the probability
of proton decay inside the BAM and the geometric cross
section for the BAM:

Cosmological considerations place several constraints
on the BAM's produced after an epoch of baryon-
symmetric baryogenesis. Roughly speaking, the charge
of a BAM cannot exceed the charge inside the horizon at
the time when the BAM's form. That is, Q & Q,„where

Q,„=n,H '

where vp=
l
A2Mpoe' '/v'2l =A2m&M(a/2p)'~ and

tan5=1m(A, ze'")/Re(A, 2e' '). We assume that

g & M „M2 and, for definiteness, take M, & M2. We can
diagonalize X,» by choosing the basis (X, Y) where

P, =X cosH+ Ye ' sinH,

$2= —Xe' sinH+ YcosH,

with tan28= 2g /(M2 —M, ). In this basis

&..—„=M,'IXI'+M,'I YI',
where

M' =M'+M'+ Q(M' M'—)'+4q'

and

M =M +M —Q(M —M ) +4'

(5.15a)

(5.15b)

(5.16)

The interaction terms between the P; and the quarks
now become

X =f, cosHXU CD+f&e
' sinHYU CD

f2e ' sinH—X*U CE+f2cosHY'U CE . (5.17)

To simplify, we assume that g «M, i.e.,
A2(a/2P)'~ (m&/M) &&1. Then, Mx—-M& ——M, Mr
=M2-M, cos8=1, and sinH=A2(a/2P)' (m&/M).
From these interactions we estimate the proton lifetime
to be

f ai, ' mm'
p

(5.18)

This expression can now be used to calculate o(Q) which
in turn allows us to evaluate nba(Q)v/Q in terms of the
parameters of the theory. The argument of the exponen-
tial in Eq. (5.12) is R/ur . To estimate this ratio take,
for example, m& =10 GeV, M =10 TeV, and
I, f =10 . Then

1/3
1() vsQ

U 'Tp U

' 1/3

f2 (5.19)

(5.20)

Even at very low temperatures, when the protons are
traveling very slowly, R /ur « 1 for reasonable values of
Q. Therefore, the probability that a proton traveling
through a BAM decays is simply P=R/u~ This leads.
to a reaction rate

o(Q)=mR P . (5.13)

=M', ly, l'+M'ly, l'+q'e "y y*+q'e

(5.14)

We now calculate ~ . Consider again, the Lagrangian
equation (2.1). For simplicity we neglect P3. Isolating
the mass terms for P, and $2 we have

Since R -Q, n~cr(Q)u/Q is independent of Q. It is easy
to check that n~o (Q)v/Q is much less than H.

The BAM's described above can evaporate into an-
tiprotons and positrons. (For a detailed discussion of Q-
ball evaporation, see Ref. 31.) This occurs so long as the
energy per charge inside the BAM is greater than the
proton mass [i.e., (1—b)m&&m ]. Roughly speaking,
the evaporation time scale is given by the decay time for
the free P's. It therefore follows that if the P's are unsta-
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ble, then the BAM's will also be unstable. We can solve
this by requiring the energy per charge inside the BAM
to be smaller than the proton mass. For the model in
Eqs. (5.2) —(5.9), however, this requires rather fine-

tuning.
A rather di6'erent situation is possible if one considers

theories with more than one scalar field. BAM's in such
theories are examples of NTS's of the type first discussed
in Ref. 26. In these models the energy per charge inside
the BAM can be well below the proton mass without
fine-tuning. We can then have a situation where all of the
free P's decay and only the antibaryons in the BAM's sur-
vive.

Consider, for example, the Lagrangian '

there must be exactly as many antibaryons hiding in the
Universe as there are baryons residing in protons and
neutrons. During spontaneous symmetry breaking, the
antibaryons are stored in excitations of the Goldstone
field associated with the broken symmetry. Today, the
antibaryons may be in the form of free scalar particles or
in more exotic structures such as BAM's.

Our scenario should be testable. The energies in the
theory naturally fall in the GeV and TeV ranges suggest-
ing that there will be signatures for our model in particle
accelerator experiments. Furthermore, since antibaryons
are as abundant as baryons, the scenario will no doubt
lead to important consequences for cosmology and astro-
physics.

z =-,'(a~)'+ fa„yf' —U(fyf, p), (5.21) ACKNOWLEDGMENTS

where

U(lyl, p) = (p' —po)'+—m pg IPI'+~IPI'2 22

+mi~ /p['
po

(5.22)

M =Q(gl/2~1/2 2+ m 2
)
1/2

lx pp m yy
(5.23)

The BAM's in this theory will be stable against evapora-
tion into protons so long as A.

' a' pp+m&& (m or
g1/2~1/2 2 ( 2

cx pp(my .

VI. CONCLUSION

The simplest interpretation of proton decay experi-
ments is that baryon number is conserved and therefore
that the Lagrangian describing the interactions probed by
these experiments has a global U(1) symmetry. It is pos-
sible that at very high energies, this symmetry is explicit-
ly broken as in grand unified theories. A further possibil-
ity is that these hypothetical baryon-nonconserving in-
teractions are responsible for the baryon asymmetry of
the Universe. However, it is fair to say that at present no
compelling model for either baryon-nonconserving in-
teractions or baryogenesis at very high energies exists. In
this paper we propose that the baryon asymmetry of the
Universe can arise even if the fundamental Lagrangian is
invariant under the global U(1)s symmetry.

Our conclusion is that an asymmetry between protons
and antiprotons can indeed develop so long as U(1)s is
spontaneously broken at some time in the early Universe.
However, even during spontaneous symmetry breaking,
the symmetry is realized. This fact leads to the most
striking prediction of baryon-symmetric baryogenesis:

with p being a real scalar field. The vacuum of the theory
is at (p) =+pa, (P) =0. In this vacuum, the masses of
the fields are m =2k,pp and m~=m~~+m~ . Again, we
require that m &

& m in order to avoid proton decay. As
in the simple Q ball, the P field can carry a nonzero, con-
served charge (baryon number for the case at hand). So
long as a%0, the structure is similar to the Q ball. ' In-
side the BAM, P =Joe ' '/&2 and p =constApo. The
mass as a function of charge is
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APPENDIX

In the Introduction we discussed classical equations of
motion for the Goldstone field 8 derivatively coupled to
the baryon-number current j ~z. These equations give us a
conservation law for baryon number: any change in the
baryon number of particles is exactly compensated by an
equal and opposite change in the baryon number of the
vacuum. By "baryon number in the vacuum" we mean
baryon number stored in Goldstone mode (8-field) excita-
tions. At the classical level, 8 stores charge by develop-
ing a velocity.

The arguments mentioned above are of course purely
classical. On the other hand, the P, decays that give rise
to the baryon asymmetry are quantum processes. In
principle, we should treat the full system (Goldstone
modes, P, 's, and quark fields) using methods of quantum
field theory. At present we do not have such a treatment
though work is in progress.

Here we give a two-part argument that gives some
justification to our assumptions. We first consider the
quantum theory of the Goldstone field 0 in the absence of
sources [Eq. (1.5) with j=0]. We will show that even
though the vacuum is not an eigenstate of the charge
operator Q~, the vacuum expectation value of Qs is zero.
We also calculate the quantum fluctuations in Qz and
show that in the context of baryogenesis, these fluctua-
tions are extremely small and therefore irrelevant to the
discussion in the text. In the second part of the Appen-
dix we treat the 0 field as a quantized scalar field interact-
ing with a classical baryon current. The emission of 0
particles interacting with a classical source can be calcu-
lated using standard techniques. The result, in a loose
sense, is that the final state of Goldstone modes is precise-
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ly what we expect from classical physics.
Consider the low-energy effective Lagrangian for the

Goldstone mode 0 in the absence of external sources:

2 V2/3
«IQ'I»= ', , (A 10)

X=
—,'(r)„8)' . (A 1)

If we view Eq. (Al) as the fundamental Lagrangian for a
real, massless scalar field, then we see that the vacuum is
not invariant under the transformation equation (A2) in-
dicating that the symmetry associated with this transfor-
mation is spontaneously broken. 2 [This has to be since
the symmetry, Eq. (A2) is equivalent to the U(1)s symme-
try which is spontaneously broken. ] The conserved
current associated with Eq. (A2) is

~~=Ua~e . (A3)

Recall that 8 is just the phase of (() and Eq. (Al) is
relevant when ((() ) =u/&2%0. The U(1)s symmetry
/~Pe'" is equivalent to the symmetry

(A2)

indicating that there are quantum fluctuations in the sys-
tem. To see if these fluctuations are important we must
compare the quantum fiuctuations in Q with the total Q
generated from our baryogenesis scheme. To do this we
take V to be the Hubble volume at the time when the
baryon asymmetry develops. We then find that

&(Q')
(A 1 1)—10

PPl p)
2/3

For U in the TeV range we see that the quantum fluctua-
tions are completely negligible. That is, quantum fluctua-
tions cannot generate a baryon excess of sufficient magni-
tude, nor can they wash out an excess generated by some
other mechanism.

We now discuss the emission of Goldstone bosons un-
der the influence of an external classical source. The
equation of motion

In an infinite volume, the charge

Qs =u f d x r)o8(x, t)

is ill defined. However, in a finite volume, the charge is
well defined. Let us assume that the system is confined to
a volume V and define the charge to be

a a~8= ——a
1

p B

has the general solution

8(x)=8' '(x)+ f d y G(x —y)r)p ~s,

where

(A12)

(A13)

Q =m. '"u fd'x 8 8(x t )e (A5}

8 can be expanded in terms of creation and annihilation
operators:

8(x)=f [a(k)e '"'"+a (k)e'"'"],d k

2k (2n }

where

[a(k),a (k')]=2k (2m) 5 (k —k') .

Similarly, we can write the charge operator as

d k
Qa = iuV f— [a(k)e

2(2n )

at(k}e' o"0]e—
~k~ v i4

(A6)

(A7)

(A8)

(0IQI0) =0. (A9)

However, the expectation value of Q is nonzero,

It is easy to see that the expectation value of the charge
operator vanishes:

a„a~G (x —y) =()'(x —y) (A14)

and 8' '(x) is a free quantum field. We assume that the
source Bp ~z is switched on for a finite period of time.
[Indeed this is precisely what happens in baryon-
symmetric baryogenesis. The net baryon density of
quarks and antiquarks (j s ) starts out at 0 and builds up
to some nonzero value. During the time in which this
build-up takes place, r)p ~s =ris is nonzero. ] We can then
calculate the emission of Goldstone particles due to the
presence of the classical 8J~s source using standard S-
matrix techniques. The problem is in fact analogous to
one encountered in quantum electrodynamics: the emis-
sion and absorption of photons in the presence of a classi-
cal electromagnetic current (see, e.g., Ref. 33). The result
is that the probability of Goldstone-particle emission as a
function of the number of particles emitted is given by a
Poisson distribution. That is, the final state does not
have definite Goldstone-particle number. The final state
is in fact a coherent state and the expectation value of 0,
or more importantly, 3 0, is given by the solution to the
classical equations of motion.
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