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Lattice QCD simulation of meson exchange forces
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We present the formalism for investigating the gqgq system in lattice QCD. This system serves

as a model for describing exchange forces between heavy, static hadrons. We use this formalism to
calculate the exchange potential from gauge configurations which incorporate the effects of dynami-

cal quarks. Our data can be interpreted as giving preliminary results on the range of the nuclear
force.

I. INTRODUCTION

It is desirable to examine, within the framework of
QCD, physical systems which contain more than one
color singlet. These systems can serve as an introduction
to problems which appear in nuclear physics. Since the
long-distance properties of QCD are not describable by
perturbation theory, we need a systematic, nonperturba-
tive approximation to perform quantitative calculations.
Lattice gauge theory provides such an approach. ' We
therefore describe here a simulation of a "flavor-
changing" Green's function involving two light quarks
and two heavy antiquarks (Q, qbQ, qd, where a —d denote
flavors). This Green's function displays evidence of
meson exchange and allows us to extract information
concerning an exchange potential.

Lattice gauge theory has already told us much about
the low-energy properties of QCD. The spatial depen-
dence of forces between massive quarks can be shown to
be described ' ' in terms of a set of potentials:

V= Vo(R)+
S) L)+S2 L2

2mgR

Sj L2+S2 L) dV2+
mgR

dVO 2dV,
dR dR

+ (S, RS~ R ——', S, S2)V3+ S, S2 .

Simulations in the quenched approximation of lattice
QCD show that the spin-averaged potential is consistent
with a linear plus Coulomb parametrization

Vo(R) —=KR +-
R

used in phenornenological studies of the cc and bb spec-
tra. Simulations also show that the spin-spin tensor po-
tential V3 and the spin-spin scalar potential V4 have a
shape consistent with a one-gluon contribution even
though the magnitudes of these potentials are not calcul-
able from a one-gluon-exchange mechanism. In addi-

tion, the spin-orbit potentials have been extracted from
simulations in the quenched approximation. In this
work, the form of d V2/dR can be seen to be consistent
with one-gluon exchange while d V, /dR is slowly varying
with R and suggests the validity of the scalar confinement
ansatz.

The heavy-quark potentials discussed above provide a
good introduction to the nonperturbative aspects of
QCD. The apparent agreement with experiment found
there provides the confidence necessary to tackle more
difficult problems. Another aspect of the low-energy be-
havior of the theory which can be studied quantitatively
with lattice simulations involves the hadron spectrum.
The significance of spectral calculations for QCD is that
they provide a calibration of numerical methods along
with insight into the complexities of gauge theories. A
recent review of the overall status of low-lying meson and
baryon masses can be found in Ref. 7. Again, the mes-
sage from the lattice calculations is that we can learn a
great deal about nonperturbative dynamics from them.
A slightly different role is played by the calculation of the
glueball spectrum in lattice QCD. Since there is, as yet,
no substantial experimental evidence for states without
quark constituents, lattice simulations provide important
predictions for the masses and couplings of low-lying
glueball states. If these predictions can be confirmed ex-
perimentally it will justify the confidence expressed by
lattice theorists,

The status of lattice-gauge-theory calculations dis-
cussed above is such that it makes sense to try to extend
them into the realm of multihadron states. However,
some fundamental problems emerge when we make this
attempt to extend lattice calculations into the realm of
nuclear physics. Nuclear physics is presumably described
by the QCD Lagrangian. Yet nuclear interactions exhibit
several features that would seem difficult to ascribe to
QCD. First, why do nucleons in heavy nuclei retain their
identity, even though the separations between the partons
within a particular nucleon may be no greater than the
separation between partons in two different nucleons?
Second, how can QCD account for "color saturation, "
whereby the binding energy between nucleons, or be-
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t~een color-singlet states in general, is very much less
than the typical QCD energy scale? Finally, we would
also like to understand how QCD gives rise to the usual
picture of internucleon interactions in which the force be-
tween color-singlet objects is mediated by the exchange of
mesons and is attractive at large distances and repulsive
at short distances.

Measurements of the potential between pairs of heavy
quarks at large distances in lattice QCD discussed above
suggest that the interquark force arises from a color flux
tube joining the quarks with energy proportional to the
separation, yielding a linear (confining) potential. This
picture of the interquark potential gives rise to one of the
most successful hadronic models, and has been widely ap-
plied to baryonic and rnesonic spectroscopy. It is tempt-
ing to apply this model to many quark systems, in which
the quarks are expected to be configured into color-
singlet hadrons, and there have recently been two at-
tempts at such studies. '

In the study by Watson, a system of quarks interact-
ing through SU(2)-color flux tubes was investigated.
Several sirnplifications are made: first, the spins of the
quarks are ignored, and second, the quarks are associated
with a particular color, so that the model describes
mesonic rather than baryonic matter. An ensemble of up
to seven pairs of quarks was simulated using a Monte
Carlo procedure. The model displays color saturation,
but unfortunately does not bind into "nuclei" at finite
density.

The simplest multiquark system that can be treated as
a nuclear molecule is the Q, gag, g& system, where the
subscripts denote (not necessarily distinct) quark flavors.
The four partons can form color-singlet mesons in two
ways: (Q, gs)(Q, Q&) and (Q, gs)(Q, Q~). For the case
where the Q's are heavy quarks, this basic system has
been investigated in the strong-coupling approximation
by Matsuoka and Sivers. '

The results for the QQQQ system are instructive for
our discussion. To simplify the geometry we assume that
massive quarks are confined to the x-y plane at the
corners of a rectangle as shown in Fig. 1. The labels
a, b, c,d denote distinct flavors. There are two flux
configurations, shown in Figs. 1(a) and 1(b), which associ-
ate the QQ pairs into color-singlet mesons. The two pos-
sible orientations of the flux produce distinct quantum
states:

Qc

0 Qg

Qb c

(b)

FIG. 1. The two possible orientations of the flux that bind

the QQQQ system into two QQ pairs are shown in (a) and (b), re-

spectively.

able to show that the mixing between the two different
color-singlet states was small and with R& =Rp=R cor-
responded to an energy shift

b.E exp( —oR )

E 20 Ra
(1.4)

Qg Qg

where a is the lattice spacing, cr(a) the string tension, and
R is the quark separation.

Neither of the above models is consistent with the view
that nucleons interact through meson exchange. There-
fore before our simple models can accord with this pic-
ture we have to give them the flexibility to allow for
quark exchange. We can incorporate this feature into the

1» = l(g.0.),(g, g, ), &,

l2&=l(g. g„),(g, g, ), & .
(1.3)

(b)

In a dynamical approximation consistent with
confinement these are adiabatic states for the Hamiltoni-
an at large distances.

The Euclidean space Green's function which corre-
sponds to the creation of the QQQQ system at t =0 and
its annihilation at t =T is then a 2X2 matrix in color
space. The generalization of a %'ilson loop for a single
QQ pair is the 2X2 matrix Wrj, I,J=1,2 whose corn-
ponents are indicated in Fig. 2.

Matsuoka and Sivers discussed the diagonalization of
the matrix 8'~J in the strong-coupling limit. They were

(c) W

Qc Qb
Qg

Qc

FIG. 2. The diagrams show the components 8'» of the Eu-
c1idean Green's function for the QQQQ system.
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approach of Matsuoka and Sivers by studying the
Q, qbg, qd system, where Q and q represent heavy and
light quarks, respectively, and the subscripts again denote
the quark flavors. It is this system that we shall investi-
gate in this paper, and in particular we shall aim to show
that this model does indeed describe the interhadron
force in terms of meson exchange. Such a four-quark sys-
tem may be thought of as a two-hadron "molecule. " It
serves as an introduction to the nucleon-nucleon interac-
tion in the quark-diquark picture, in which the heavy an-
tiquarks assume the role of the diquarks. Since our treat-
ment of the heavy Q's is such that they could equally well
be thought of as heavy-Qg pairs our model could equally
well be considered as a study of the interactions between
two baryons each consisting of two heavy quarks and one
light quark. In this interpretation we come even closer to
the nuclear-physics problem.

The rest of this paper is organized as follows. In Sec.
II we shall construct the formalism for studying Qqgq
systems on the lattice, and discuss some simple expecta-
tions for the model. In Sec. III we shall describe the nu-
merical simulations, and present results for the range of
the interhadron force. We shall conclude by defining our
strategy for future investigations.

0)(y)

0&(t)

FIG. 3. Diagram contributing to flavor-nonexchange part of
nuclear potential.

the heavy- and light-quark propagators, respectively.
The diagram of Fig. 4 corresponds to the off-diagonal ele-
ments in the Green's function of Fig. 2 for the static
Qggg system. Its evaluation allows us to extract the
range of the nuclear force. In particular our simulation
allows us to determine whether the range depends on the
t-channel quantum numbers. Calculation of the diagonal
components of the Euclidean space Green's function can,
in principle, specify the strength of the nuclear potential.
We employ local interpolating operators for the heavy-
light mesons

(2.3)

II. Qqgq SYSTEMS ON THE LATTICE

Qq systems have been studied extensively by Eichten"
in the regime mq AQCD«m~. Since the momentum
transfer between the heavy quark and the light quark is
typically of the order of AQCD and very much less than
I&, the heavy quark can be treated nonrelativistically,
and its propagator expanded as a power series in m& '.
We shall apply the same techniques to the study of the
Qqgq system, but shall always work to lowest order in

m&
' so that the heavy quarks represent fixed color

sources.
The heavy-quark propagator is given by

C( x, ;y, s)=( 0, ( x)&, ( )0, (y)0 (s)), (2.4)

where yo &xo and so) ro. The range of the force be-
tween the mesons can be extracted by measuring the fall-
off with z of the "z-sliced" correlation function

C(R, T)= g C(x, r;y, s),
I2, a,

where

(2.5)

where I ~=y5 for pseudoscalar mesons and I „=y,
(i =1,2, 4) for vector mesons. We begin with the con-
struction of the correlation function

SH(r;s)=P(r;s)[0(so ro)e ~ '—'
y

x=(O, t, ), y=(O, t, +T},
r=(aj, R, t2), s=(a~, R, t2+T) .

(2.6)

where

+9(ro so)e ~ '—' y+],

P(r;s)=U&(r, ro) U4(r, so —1}

(2.1)

(2.2)

The contribution of the Aavor-exchange diagram to C
can be calculated by computing the quark propagator
from one point on each time slice to every point on the
lattice. However for the disconnected diagram the prop-
agators from every point on one time slice to every point
on the lattice have to be calculated. This is clearly a very

for ro &so, with a similar expression for ro) so. In Eq.
(2.1), y+ and y denote the positive- and negative-energy
projection operators, respectively, while in Eq. (2.2)
U(r, ro) is an SU(3) matrix. For the case of a periodic lat-
tice there is an additional contribution to the propagator
that arises from the Wilson line that passes in the oppo-
site direction around the lattice. For our work the con-
tribution arising from the longer of the two lines is ex-
ponentially suppressed in m& and can therefore be ig-
nored. The light-quark propagators are computed in the
usual way.

The diagrams contributing to the interhadron force are
shown in Figs. 3 and 4; the solid and curly lines denote

Ol(x) y)

0 &(r

FIG. 4. Diagram contributing to flavor-exchange part of nu-

clear potential.
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much more demanding task, and therefore as a first step
we have restricted the calculation to the flavor-exchange
contribution.

At large separations R the theoretical expectation is
that the correlation function is dominated by the contri-
bution of the lightest state ln ) coupling to the operators
in the t channel and becomes

C(R, T)-e " (OlO, (0,0)O, (O, T)ln)

X (n IO,'(0,»O, (0, T) lo&, (2.7)

where m„ is the mass of this state. This correlation func-
tion therefore gives a measure of the range of the Yu-
kawa potential between the two hadrons.

We conclude this section with a discussion of the ex-
pectations for the range of the force in the t channel. We
shall use the notation V and P to denote the vector and
pseudoscalar Qq mesons, respectively. The first process
that we shall consider is

PP~PP (s channel) . (2.8)

In this process the qq particle exchanged in the t channel
has natural parity, and hence we expect the mass of the
intermediate state in Eq. (2.7) to be that of p. In order to
see the exchange of a m meson we must consider the pro-
cess

PV~ VP (s channel) (2.9)

for which a particle of unnatural parity can be ex-
changed. The fact that the range of the correlator de-
pends on the quantum numbers in the t channel provides
an important theoretical constraint. In our numerical
simulation we will look for this relationship.

III. NUMERICAL RESULTS

The gauge configurations for our simulations of the
correlator (2.4) were generated by Grady, Sinclair, and
Kogut' on an 8 X16 lattice using the hybrid algorithm
with four flavors of staggered fermions. However, we
have chosen to use Wilson fermions for the calculation of
the correlators of Eq. (2.4) since the Wilson formulation
of the fermion propagator admits a straightforward
flavor identification. The value of the hopping parameter
is chosen so that the pion mass obtained using hadron
correlators constructed from Wilson fermion propagators
is the same (in units of the lattice spacing) as that ob-
tained purely when using staggered fermions, and this
value was determined in an earlier calculation of the had-
ron spectrum. ' For this calculation the gauge
configurations were replicated in the z direction to yield
an 8 X16X16 lattice, since we are aiming to extract the
lightest particle exchanged in that direction. Periodic
boundary conditions were employed in the spatial direc-
tions, but an antiperiodic boundary condition was used in
the time direction. The propagators were calculated us-

ing a conjugate residual algorithm preconditioned ac-
cording to the prescription of Oyanagi. ' On the Cray
XMP/14 at Argonne National Laboratory the generation
of the quark propagators required approximately 5 h per
configuration, with a further hour required to construct

the correlation functions.
The results presented in this paper are obtained from

an analysis of 21 configurations at m =0.1, P=5.4, and
of 29 configurations at m =0.05, @=5.2. The various
parameters used in the simulation, together with the m.

and p masses obtained on the unreplicated 1attice, are
listed in Table I. We are obviously not in a range of pa-
rameters where the range of the pion-exchange force is
vastly different from that of p. In fact even for lighter
staggered quarks and larger lattice the %'ilson p mass still
remains relatively close to that of ~.'

The correlation function corresponding to the process-
es of Eq. (2.8) and (2.9) were evaluated for all R and T.
The effective masses of the exchanged particles obtained
at T =1, T =3, and T =5 are shown in Fig. 5 (PP~PP)
and Fig. 6 (PV~ VP) In .each figure the masses of n and
of p obtained from the falloff of the two-point correlator
in the z direction on the replicated lattice are shown as
the dashed and dot-dashed lines, respectively.

At both values of the quark mass the range of the force
in the z direction is consistent with the exchange of a
light meson. However, it is only for m =0.5 that the
separation between m and p masses is such that one can
numerically discriminate between m and p exchange in
the data. Even here, though, the closeness of the m and p
masses makes analysis difficult. It should be kept in mind
that there are considerable systematic errors in the calcu-
lation arising from the finite size of the lattice. The mass
of the particle exchanged in the t channel is consistent
with our expectation from Eqs. (2.8) and (2.9). Finally it
should be noticed that the effective mass increases with
increasing R at larger values of T. This may be the well-
known artifact of lattice doubling, ' or it may be indica-
tive of a repulsive force present at short distances. Such
a repulsive force is necessary in typical potential models
to prevent a collapse of the system to R =0.

Overall, the behavior of the correlation function in R
provides a strong confirmation of the meson-exchange
picture for nuclear forces, at least in a flavor-exchange
channel.

IV. DISCUSSION AND CONCLUSIONS

TABLE I. The various parameters used in the simulation are
listed. Columns 4 and 5 show the pion and p masses, respective-

ly, obtained on the unreplicated lattice.

mq

No. of
configurations m m

0.1

0.05
5.4
5.2

21
29

0.84(1)
0.61{2)

0.90(2)
0.74(5)

We have discussed a model that forms a useful tool for
studying the internucleon force within the framework of
QCD. The internucleon force in this model is clearly
mediated by meson exchange, and at the lower value of
the quark mass the quantum numbers of the exchanged
meson would appear in accordance with our naive expec-
tations.
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FIG. 5. The effective mass of the particle mediating the nu-
clear force in the process PP~PP at separations T=1, T=3,
and T =5 is shown for m =0. 1 and m =0.05 in (a) and (b), re-
spectively.

FIG. 6. The effective mass of the particle mediating the nu-
clear force in the process PV~ VP at separations T = 1, T =3,
and T =5 is shown for m =0.1 and m =0.05 in (a) and (b), re-
spectively.
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It is instructive to compare the simulations discussed
here with lattice calculations aimed at studying the H di-
baryon proposed by Jaffe. ' Two groups' ' have
reached opposite conclusions concerning the mass of a
(udsuds) system which couples to two A' s. Both groups
have explicitly calculated the six-quark correlator at
large T in an effort to distinguish the expected behavior

and

f710 T
CH- Ae

—2mb T
(CA) —Ae

(4.1)

(4.2)

In principle, such a calculation could hope to see a tight-
ly bound H dibaryon (mH ((2m~) although one needs to
worry whether the systematics in extrapolating in the H
channel and the A channel are separately under control.
Mackenzie and Thacker' reported no evidence for a
tightly bound H dibaryon while Iwasaki et al. ,

' working
on a larger lattice, reported a positive signal for binding.
Note that, in order to study the weak binding typically
associated with extended hadronic systems (such as nu-

clei), it is not practical to directly measure the T depen-
dence as in (4.1) and (4.2), since the difference between
the masses of the bound and unbound systems can be
very small.

In order to study the general binding problem we need

to incorporate the full scope of the multibody formalism.
For the QqQq system described here this means calculat-
ing both the flavor-exchange "off-diagonal" correlator
discussed here and the corresponding diagonal entries in
the Euclidean space Green's function. As mentioned
above, because of computational limitations, we have not
been able to do the more complete calculation at this
time. With a full simulation of the 2X2 Green's function
in flavor space a mixing formalism would enable us to ex-
tract a potential. This is the obvious next task in a pro-
gram aimed at studying multihadron forces in lattice
QCD.
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