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We attempt to improve the description of the strange baryons in the "collective" approach to
quantizing the SU(3) Skyrme model. We go beyond the recent work of Yabu and Ando by employ-

ing a kind of "cranking" procedure for the strange fields, which allows them to contribute to the
corresponding moment of inertia. A better overall fit to the mass differences of the low-lying —,

'+

and —', baryons is achieved using values of parameters fixed from the meson sector. The picture of
the baryons that emerges is one in which they contain appreciably fewer "ss current quark pairs"
than in a naive perturbation approach. At the constituent-quark level there is significant mixing of
different SU(3) multiplets. This and a number of related points are treated.

I. INTRODUCTION

The SU(3) Skyrme model of pseudoscalars' has recent-
ly generated a lot of interest because it seems to predict '

a large "strange content" of the proton and also because
it gives ' a pattern of axial-vector-current matrix ele-
ments similar to the one implied by analysis of the recent
European Muon Collaboration (EMC} experiment. We
should say immediately that we do not feel the model of
pseudoscalars alone is detailed enough to give a precise
description of the properties of the baryons (for example,
the neutron-proton mass difference cannot be understood
in this model), but nevertheless it seems an ideal begin-
ning one for understanding various aspects of the baryons
that cannot be easily explained in other ways. The first
step, of course, is to find out just what the model really
does predict. The answer to this question, both from
conceptual and calculational standpoints, has undergone
a certain amount of refinement in the literature. In the
present paper we wish to discuss a new conceptual
refinement that seems to also improve the predictions of
the model.

In the limit when all light (u, d, s) quark masses vanish,
the SU(3) Skyrme model is easy to understand. There is a
classical soliton solution lying, for example, in the isospin
subspace and eight zero modes which can be regarded as
flavor rotations around this solution. Their collective
quantization generates, among other things, eight
baryons which can be thought of as containing not only
valence quarks but also many quark-antiquark pairs. In
particular the proton wave function contains a relatively
large amount of ss pairs. However, life is not so simple:
the strange-quark mass is not at all negligible on the
characteristic QCD scale and only a limited number of ss

pairs can fit into a physical proton. The first workers' on
the SU(3) Skyrme model treated the symmetry breaking

to first order. They assumed that the baryon wave func-
tions were unchanged from the zero-quark-mass limit.
This is why large "strange" matrix elements of quantities
such as ss and sy„yss were obtained. Perhaps it is there-
by understandable why other predictions of the model
treated in this way are not so realistic. For example, the
pattern of octet-baryon mass splittings is not accurate
and g„ is even smaller than the too small SU(2} value.
One approach to this problem involves quantizing only
the "true" nonstrange SU(2) zero modes and treating the
strange baryons as bound states of a kaon and an SU(2)
Skyrmion. Here we want to follow the standard ap-
proach of quantizing all the SU(3) modes so as to be able
to answer questions about the strangeness content of the
proton and so as to be able to make contact with the ordi-
nary successful low-energy phenomenolgy based on SU(3)
multiplets.

Following along this standard line, Yabu and Ando
showed that the predictions of the model could be greatly
improved by treating the same collective Hamiltonian ob-
tained by everyone else' exactly (in a numerical ap-
proach) rather than by first-order perturbation theory. In
fact, it turns out' that second-order perturbation theory
is suf6cient to explain the new qualitative features.
Higher-order perturbation theory also enables one to de-
velop some intuition about the model. As the strength of
the symmetry breaker increases the baryon-octet wave
function develops nontrivial admixtures of the SU(3) 10
and 27 representations. This leads, as expected, to great-
ly reduced matrix elements for "strange" operators and
implies that the number of ss "current-type" quark-
antiquark pairs in the proton has correspondingly de-
creased. At the "constituent-quark" level the 10 and 27
states cannot be of the form qqq but must be objects such
as qqqqq. This is very interesting since it implies a
modified constituent-quark picture for the proton itself.
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There seems to be a natural identification of the proton-
like members of 10 and 27 with the Roper N(1440) and
with the N (1710)I'» resonances, respectively.

The collective Lagrangian [see Eq. (4.5)] contains a
term corresponding to rigid rotations in space (with mo-
ment of inertia a ) and a term corresponding to rotations
into the "strange" direction of "internal space" (with mo-
ment of inertial P ). One would expect that P should be
sensitive to the strange-quark mass (as revealed to us by
the E-meson mass). However in the Yabu-Ando ap-
proach, P is computed at a stage before the model
knows anything about symmetry breaking and is thus in-

dependent of symmetry breaking. The refinement of the
model that we propose is to allow the moment of inertia
for "strange rotations" to depend on the K-meson mass.
This is implemented by introducing a cranking-type an-
satz for the K-meson field; if Qk is an "angular velocity"
isospinor with K-meson flavor quantum numbers, we set
a suitable K field to equal w(r)v rQk. Here w(r) is a
complex function that is determined as a solution of the
equation arising from maximizing P [w (r}]. It is amus-

ing that the existence of nonzero w depends on the pres-
ence of the Wess-Zumino term in the model's action.
The resulting value of P is substantially larger than that
obtained by Yabu and Ando. This feature increases the
strength of the egectiue symmetry breaker with the conse-
quence that the strange content of the proton is reduced
even further.

In this paper we sha11 use the experimental values of all
physical quantities (F„,Fk, m, mk); the only adjustable
parameter is the Skyrme" constant e. As is well known,
using realistic values for these basic constants results in
absolute masses that are much too high. But since for the
SU(3) case there are many splittings available with which
to compare we may get a feeling for the accuracy of our
predictions without solving this problem. While the hope
has been expressed that renormalization effects in the sol-
iton sector might lower the effective F for baryons this
is at present pure speculation.

The model Lagrangian is written in Sec. II and the
classical soliton solution briefly discussed in Sec. III. 'Our

method of deriving the parameters of the by now stan-
dard collective Hamiltonian are set out in detail in Sec.
IV. Some related formulas and arguments are contained
in Appendixes A and B. Section V contains the predic-
tions of the model for mass splittings, excited levels, and
some matrix elements relevant for discussing the inter-
pretation of the results. A brief summary and discussion
of some additional points are given in Sec. VI.

Tr(B„UB„U )+ Tr([B„UU",B, UU ] ),
32e'

(2.2)

where F is the bare pion decay constant and e is the di-
mensionless "Skyrme constant. " Typical values for e
quoted in the literature are around 5. The dynamical
variables are contained in the 3X3 unitary matrix U,
which may be expressed in terms of the pseudoscalar oc-
tet fields cp as

27+U= exp F (2.3)

It is sometimes convenient to define a square root of U by

g= U' = exp F
(2.4)

I wz is the Wess-Zumino term

—iX,
I wz 2

Tl cx
240m

(2.5)

Here the "spurions" T and S are defined by

T=diag(1, 1,0},
S=diag(0, 0, 1) . (2.7)

Equation (2.6) mocks up the fundamental mass terms of
the QCD quark Lagrangian to second order in deriva-
tives' but with neglect of Okubo-Zweig-Iizuka- (OZI-)
rule violation. We expect the coefficients to obey

(2.8)

in terms of the usual quark "current" masses. From the
physical values of m„, mk, F ~, and Fk~ we find (this
analysis is discussed in Ref. 7, for the case where vector
mesons are present)

the integral being over a five-dimensional manifold whose
boundary is Minkowski space and where the one-form a
is defined by a=dUU . N, =3 is the number of colors.
Finally the symmetry-breaking terms are

Xs =Tr[(P'T+P"S)(B„UB„UU+U B„Ud„U )

+ (5'T+ 5"S)( U + U —2) ] . (2.6)

II. MODEL LAGRANGIAN

P' = —26.4 MeV, P"= —985 MeV

, (2.9)
5'=4. 15 X 10 GeV, 5"=1.55X10 GeV

The underlying SU(3) chiral action we consider has
three parts:

r = fd'x(z, +r„)+r„, . (2.1)

Xo consists of the standard SU(3) nonlinear cr model sup-
plemented by an ad hoc term introduced by Skyrme" to
enforce the stability of the soliton:

Note that

F =F + 16P', (2.10)

where the physical pion decay constant F p
132 MeV.

We have not included the g' field and a term needed to
satisfy the U(1)„anomaly. This will not be relevant for
our present purpose.
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III. CLASSICAL SOLITON

SU(3)-symmetry breaking actually plays an important
role in the determination of the classical soliton solution.
The usual' "hedgehog" Ansatz is

(3.1)

P.rF(r)
0

(3.2)

~-rF(r) 0
Uo(r) = 0

0 0 1

where F(r) is to be determined to minimize the static en-
ergy of (2.1). If the symmetry-breaking terms XsB in (2.6)
were neglected one could equally well choose another
Ansatz such as

1 0 0

and the results for the classical mass and profile F ( r )

would be the same. This is not true when XsB is present.

Then for (3.1), F(r) will fall off like (1/r ) exp( m—r ) at
large distances while for (3.2), F(r) would fall off like
(1/r)exp( m—

l, r) T. he classical masses would differ in
the two cases and further properties related to F(r) like
the "moments of inertia" would also differ. We see that
already at the very start there is some ambiguity for the
SU(3) Skyrme model. It is clear that physically motivat-
ed assumptions are required. Now if we were to allow a
fast fall off like (1/r) exp( mi, r—), the nucleon charge ra-
dius would turn out to be too small. Hence we shall
adopt the Ansatz (3.1) which also gives a lower energy.
Substituting this into the Hamiltonian derived from (2.1)
gives the classical mass:

F 2

M,~=4mfdr . " (F' r +2sin F)+ sin F 2F' + +45'r (1 —cosF)+4P'(1 cosF)(F' —r +2sin F)

(3.3)

where F'=dF/dr. As usual F(r) is found by minimizing
M, ~

with the boundary conditions F(0)= sr, F ( ~ ) =0 ap-
propriate to the baryon-number-one sector of the theory.

IV. COLLECTIVE QUANTIZATION

The analog of the Adkins-Nappi-Witten' quantization
for the SU(3) Skyrme model without XsB would be based
on the recognition that the choice A UOA, where A is a
unitary unimodular 3 X 3 matrix, leads to another
equivalent classical solution with the same energy.
Quantization then proceeds by elevating A to a function
of time A (t) and considering it as the collective dynami-
cal variable. Now when Xsa is included A must be re-
stricted to be an SU(2) rather than an SU(3) matrix in or-
der to give a different classical solution with the same en-
ergy. Hence a collective quantization along the same
lines would give SU(2) rather than SU(3) multiplets of
baryons. This is the path taken by Callan and Klebanov
in the "bound-state approach to strangeness. " However,
it is clearly desirable to make contact with the great
quantity of low-energy phenomenology, which is based
on SU(3) multiplets, and to recognize that fiavor SU(3) is
a good approximate symmetry in nature. Hence we shall
deal with the collective degrees of freedom contained in
the 3X3 matrix A (t). This is, of course, the usual ap-
proach to the present model. We would like to stress
that, as just described, unlike the SU(2) case, it is not
strictly based on quantizing the *'zero modes. " The ini-
tial work by many people' showed that this approach,
when supplemented by a first-order perturbation theory
treatment of XsB, gave rather poor results on comparison
with experiment. More recently Yabu and Ando have
shown that these results could be noticeably improved by

(4.1)

We have chosen to work with g instead of U and have
taken the particular parametrization (which is of course
arbitrary) shown with an eye to extending this model to
include vector mesons. As it stands, the only difference
between (4.1) and the usual approach is the presence of
the two factors of g&. In order to explain our Ansatz for
g& it is useful to define the "angular velocity" matrix

0„+O„A,k
(4.2)

k
A A= —QXQ =il

0 a
a =1

—20 '9 .

an exact treatment of XsB. Further interpretation from
the present point of view is contained in Ref. 10.

The motivation of the present work is to attempt to im-
prove the Yabu-Ando results which achieve a fit only by
using unphysical values of F„and/or m&. The new
feature is that we will take "cranking-type" corrections
into account. Specifically, the quantized collective Ham-
iltonian of the SU(3) Skyrme model corresponds to a rigid
object rotating in both ordinary as well as flavor space.
The object, in turn, is made out of various field excita-
tions. When the assemblage starts rotating we would ex-
pect these excitations to adjust themselves to maximize
the moments of inertia. It is especially important that
the moment of inertia for internal space rotations of non-
strange into strange flavors be maximized. This type of
approach has been successful' ' in treating the contribu-
tions of the vector mesons to the moment of inertia in the
SU(2) Skyrme model.

To accomplish our goal we introduce collective coordi-
nates for the field g in (2.4) in the following manner:
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where Q =
—,'g, , r, Q„etc., and the I,, are the 3X3

Gell-Mann matrices. Then

gk
—=e"=1+iz—

—,'z + . (4.3)

where the simplest Ansatz for z taking into account the
pseudoscalar nature of the kaons is

0 w (r)~.r Qk

Q&r'hu'(r) (4.4)

a=1 a=4

+ Qs —
—,'y[1 —Dss( A)] .

v'3
(4.5)

The classical mass M, ~
is given in (3.3) and the

symmetry-breaking coefficient y is obtained as

y= f dr r (5"—5')(I cosF)—32K 2

3

2

(4.6)

where D»(A)= —,'Tr(ksAAsA } is an element of the
SU(3)-octet representation matrix. The formula for the
space rotation moment of inertia a is given in Appendix
A and only differs slightly from that of Ref. 9. The main
difference is seen in p, which is a moment of inertia for
rotation into strange directions. This rather lengthy for-
mula is also displayed in Appendix A. In calculating the
moments of inertia we have made the simplifying approx-
imation that the terms from Lsa proportional to 0 be
considered as flavor singlets, i.e.,

&»-Tr[y, (a„Ua„U'U+U'a Ua U')

+yz( U+ U —2)], (4.7)

Notice that w(r) is in general a complex function and
that the expansion for (k will be truncated at quadratic
order. We have not introduced a possible isoscalar pseu-
doscalar excitation in (4.4) because it has been shown else-
where' that such a function would vanish in a pure
Skyrme model of pseudoscalars (vector mesons are need-
ed for this purpose).

The collective Lagrangian is to be obtained by substi-
tuting the above Ansatz into the action (2.1). The result
is extremely complicated and not tractable without some
approximations. First, we assume as usual that only
terms up to order 0 are to be kept and that Q, =O.
Second, we wish to find the effect of the relatively large
kaon mass on the moment of inertia for rotation into
strange directions. This was not previously taken into ac-
count. With our Ansatz the main effect is related to the
large numerical value of mk, rather than the detailed
form of Xsa. Hence, for computing the terms in the col-
lective Lagrangian proportional to 0 and 0 we shall
simplify XsB in (2.6} by treating it as an SU(3) singlet.
Then we obtain a Lagrangian that is the same as that
considered by Yabu and Ando:

3 7
L= —M„+—,'a g Q, +—'P g Q

where the real coefficients y &
and y2 are taken to satisfy

y2

y&

Ql Qll

Pl Pl l (4.8)

A second consistency condition for completely determin-
ing y &

and y2 will be discussed shortly.
As mentioned before, the main new feature of the

present approach is the maximization of the moment of
inertia for internal space rotations of nonstrange into
strange directions. We thus impose

5
6w(r) P [w(r)]=0 . (4.9)

This results in a second-order differential equation for
w (r). One boundary condition is obtained by demanding
finiteness as r~O. The second boundary condition re-
sults from noting that at large distances

—m, r
m ——e /&

r

which implies

y2 =mk —2y]
8

(4.10)

This, together with (4.8), serves to fix both y, and yz.

y&
= —482 MeV, y2=7. 56X lO GeV (4.11)

BI..b aQb=] b

and when they are computed by integration of the micro-
scopic Noether currents.

In order to gauge the accuracy of our approximations
we have performed some exploratory calculations in Ap-
pendix C. The main effects of using (4.7) rather than (2.6)
for X» can be recaptured by retaining (4.9) as an approx-
imate equation of motion with however a different func-
tion p2. Then it is found that the kaon profile w (r) does
in fact fall off as

A.s expected y, and y2 are similar to p" and 5", respec-
tively, in (2.9). It should be noted that if the Wess-
Zumino term in the action were absent, w (r) would van-
ish. As can be seen from (4.4) and (4.2), the other terms
would just contribute even powers of w to p, so w =0
would be a solution of (4.9). However, since the Wess-
Zumino term (which provides a contribution proportion-
al to e„„&in four-dimensional Minkowski space) contains
only one time derivative, it produces terms proportional
to [Rew (r)]Qk Ql, . These linear terms act as a source for
the w field and prevent it from vanishing. Since only
Re( w) appears, Im( w) =0 is a solution of (4.9).

As a check on our Ansatz as expressed in (4.1)—(4.4) as
well as on our collective quantization procedure, includ-
ing the approximation (4.7), we have verified in Appendix
B that the identical expressions for the flavor-symmetry
charges Q' emerge when they are computed directly
from the collective Lagrangian (4.5}as
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H =M,i+ ~
+ [ Ci [SU(3)]—J(J + 1)——,

'
I

+—[1—Dss( A )] . (4.12)

Here J is the angular momentum eigenvalue and
Cz[SU(3)] is the quadratic Casimir operator for the SU(3)
group. Note that the coefficient of I/2P is positive
definite so that maximization of P sensibly decreases the
energy. We should stress that, while (4.12) has the same
form as in Ref. 9, the dependence of M, i, a, P, and y on
the underlying parameters in (2. 1) is different. The only
parameter not determined from the meson sector is the
Skyrme constant e. Unlike Yabu and Ando, we will al-
ways consider F and mI, to be fixed at their physical
values.

V. PREDICTIONS OF THE MODEL

In the absence of the last symmetry-breaking term in
(4.12) the eigenfunctions of H are known' to be SU(3) D
functions corresponding (for baryon number 1) to irre-
ducible representations which contain a state with hyper-
charge Y=1 and I =J. The initial treatments' of the
SU(3) Skyrme model assumed that it was sufficient to use
these eigenfunctions even in the presence of symmetry
breaking. But Yabu and Ando showed that this is not
an adequate approximation and that it is better to diago-
nalize (4.12) exactly. Acting on a multiplet of definite J,
I, and Y it is sufficient to diagonalize the operator

C~[SU(3)]+)33 y[1 —Dss( A)] . (5.1)

This may be converted into a system of coupled second-
order linear differential equations by introducing a
"Euler-angle" representation for A and representing the
generators appearing in Cz[SU(3)] as differential opera-
tors. This equation is discussed at length in Ref. 9. How-
ever, instead of introducing an approximate basis we
have numerically performed a direct integration of these
differential equations to obtain the eigenvalues esB and
the eigenfunctions of (5.1). Evidently esB is a function of
the product of yf3 . The energy of each state is obtained
as

—mkr—e
7

as used in deriving (4.10). Furthermore, the numerical
results for mass splittings are substantially unchanged. It
is pointed out that an exact solution of the equation of
motion would require a much more complicated Ansatz
for z in (4.4).

Passage from the Lagrangian (4.5) involving the angu-
lar velocities (4.2) to the Hamiltonian has been discussed
in the literature. ' lt results in

the proton is not a pure octet but looks like

ip }= ip, 8}+0.0745 yP ip, 10)

+0.0490@13 ~p, 27)+ (5.3)

This illustrates that the product yP is the effective mea-
sure of symmetry breaking. The 10 and 27 states play a
very important role since matrix elements of physical
quantities depend sensitively on their admixture. For
realistic values of yP the second-order mass corrections
are of similar magnitude to the first-order ones. The
physical content of the 10 and 27 is that of 3 constituent
quarks plus an extra constituent quark-antiquark pair. In
the case of the proton the pure octet wave function in the
SU(3) Skyrme model contains a relatively large amount of
ss "current" quark pairs. The effect of increasing symme-
try breaking and the consequent mixing of higher SU(3}
representations turns out to decrease these content.

As mentioned we will keep F and mk at their physi-
cal values and vary e to achieve a "best fit." By agreeing
to use physical values for well-known parameters it
would seem easier for various groups of workers to readi-
ly compare their results and determine when improve-
ments have been really made. Now it is known' ' that
using the experimental F gives a very large M, &

in the
SU(2) Skyrme model. In the SU(3) Skyrme inodel the
masses are additionally pushed up by the term y/2 in
(4.12). Thus we will end up with outlandishly high (but
honest) masses and will take the attitude that only predic-
tions for mass differences and dynamical properties
should be taken seriously. Various subtraction schemes'
have been proposed to overcome this defect of the model
but we shall not consider them here.

Now that we have set up our model let us present the
numerical results. The masses and mass differences of the
low-lying baryons are given in Table I. The first column
in that table gives the eigenvalues of the operator (5.1) for
each degenerate isospin multiplet. The second column

6.87

8.51

2313

2470
157 177

9.36

10.75

2551

2684
133

—125

125

TABLE I. The predicted low-lying baryon masses for the
best fit, e =4.0 in our model and comparison of the mass split-
tings with experiment. M, ~

=1744 MeV, a =0.00674 MeV
P'=0.00523 MeV ', and y=1374MeV.

Eigenvalue Baryon masses Mass differences (MeV)
of (5.1) (Me V) Model Expt.

E= ' +M +'"+"
2@2

SB cl
2 2

1 [J(J+1}+—] . (5.2)
2P

10.12

11.53

2559

2694
135

139

153

148

One may understand the physical significance of this pro-
cedure by treating (4. 12) with perturbation theory beyond
the leading order. Then it is found, ' for example, that

12.99

14.40

2833

2974
141 139
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presents the corresponding energies (5.2), while the mass
differences between neighboring multiplets are listed in
the third column. We have chosen the single adjustable
parameter. e to be 4.0 to obtain a "best fit." These mass
differences reproduce the experimental values inside each
spin multiplet to within better than about 20 MeV. The
difference between the spin- —,

' and -—', multiplets as a whole

(measured by 5-:-) is seen to be only about 40 MeV too
small. In terms of the average multiplet masses we pre-
dict m3&2

—m~&2=181 MeV (cf. expt=231 MeV).
The main consequence of introducing w (r) is that a

and p now are of the same order of magnitude. While
Yabu and Ando have shown for their model that the in-
equality a )2p is valid this is no longer the case when
wAO. We illustrate in Table II for various values of e the
results for p with and without an excited w(r). The
values with w%0 are uniformly larger than in the case
w—:0. As is clear from the discussion of the Hamiltonian
in (4.12) this larger p leads to a smaller energy. Thus the
fact that a nontrivial m maximizes the corresponding mo-
ment of inertia provides the most compelling evidence to
include w. Furthermore, we compare in Table III the
mass splittings for both models, with and without w. The
input parameters are the same as in Table I. It is obvious
that the predicted mass differences within each spin mul-
tiplet are considerably improved due to the inclusion of
m. The difference between the two multiplets, however,
sufFers to some extent in the case of nontrivial m as can be
seen from the b -:- splitting.

A plot of Rew(r), as determined from the differential
equation (4.9) is shown in Fig. 1. Remember that
Imw (r)=0 is the indicated solution of (4.9). We notice
from Fig. 1 that w(r) falls off more quickly than the
Skyrme profile F (r), which is also shown.

There are two different factors underlying the improve-
ment of the intramultiplet mass splittings in this model.
These splittings are seen from (5.2) to be given by
(1/p~)esB(yp2) for each particle. Their detailed pattern
depends on the product yp and tends to improve as this
product increases. Their overall magnitudes, however,
are dominated by the dependence on y alone. For this
last dependence, we profit from the derivative-type
symmetry-breaking terms in (2.6) needed to accommo-
date F AF„. Taking this experimental feature into ac-
count increases the contribution of the usual (5-type)
symmetry-breaking terms to y by about 50%%uo since we
have (see Ref. 7}

4(5"—5') =F„m„F„m„=l. 5F„~—(mk —m „) .

TABLE III. Comparison to experiment of the predicted mass

splittings with and without w(r). The input parameters are the
same as in Table I.

With w

157
81

133
—125

135
139
141

Mass differences (MeV)
Without w

155
111
106

—102
127
126
117

Expt.

177
77

125
—86

153
148
139

= 1:0.51:0.85,
which is in significantly better agreement with the experi-
mental numbers 1:0.44:0.71 than the first-order predic-
tions 1:1:0.5. Hence our improvement of the baryon
mass splittings is based on a considerable enlargement of
the effective symmetry breaker p y. By noting that p y
very approximately scales as mk/F e we can under-
stand why (for experimental F„}Yabu and Ando found
it necessary to increase mj, by about 40% in order to ob-
tain sufficiently large magnitudes for the mass splittings
within an SU(3) multiplet. For comparison with Table I,
we show in Table IV the Yabu-Ando results (their Table
II) when one uses the experimental value of mk with
e =3.95. We also show in Table IV a best fit to the mass

MESON PROFILES

4.0

3.0

Furthermore, there is also a direct contribution from the
p terms to y of the order of 150 MeV. Thus we end up
with y=1374 MeV, which is almost twice as large as a
Yabu-Ando-type fit with physical parameters. The larger
value of the moment of inertia due to the new function m

increases the deviation of the exact eigenvalue of (5.1)
from first-order perturbation theory. This deviation gives
rise to an improved pattern of the mass splittings. For
example in the spin- —,

' multiplet we have

m(A) —m (N):m (X)—m(A):m(:-) —m(X)

TABLE II. The effect of including w (r) on the moment of in-
ertia for "strange direction" rotations P' (in MeV ') for various
values of the Skyrme constant e.

With w Without w

1.0

~a\
I 7

2.0
3.0
3 ' 5

4.0
4.5
5.0

0.006 86
0.005 65
0.005 23
0.005 31
0.005 74

0.005 48
0.003 73
0.002 65
0.001 96
0.001 49

r (fmj

FIG. 1. Rew(r) compared with the "hedgehog" profile F(r).
Note that F(r) is dimensionless while Rew is measured in

y —
1
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TABLE IV. Mass splittings in the Yabu-Ando model with

physical values of F ~ and mk. mz =495 MeV, F,= 132 MeV.

e =3.95 e =3.1

87
74
51
75
66
63
59

162
93

130
—227

139
140
138

splittings in the Yabu-Ando model based on keeping F
and mk physical and varying e. This yields e =3.1. They
presumably rejected such a fit since they also were in-
terested in lowering the absolute masses; from the fact
that M„scales approximately as F /e it can be seen that
choosing e =3 would make the predictions for the abso-
lute masses significantly worse. For example, one would
then get a nucleon mass of 2907 MeV (compared to 2318
MeV gotten for the present model in Table I).

There is a more direct effect of nonzero w(r) on the
difference between the masses of the low-lying spin- —,

'

baryons and the spin- —,
' baryons. This can be understood

from the terms in (5.2):

1

2Q

1 J(J+1) .
2P

(5.4)

One effect of nonzero w (r) is to drive P closer to a and
thus to decrease the magnitude of (5.4) (for our choice
e =4). Hence we predict b, —:-= —125 MeV (expt = —86
MeV) which should be compared to the value —227 MeV
shown for the best fit in Table IV for the Yabu-Ando
model.

To partially summarize, we have seen that the effect of
larger P due to nontrivial w(r) is rather beneficial but
somewhat complicated for the predicted mass differences.
Now we will discuss the fact that it has a clear and sub-
stantial effect on the structure of the baryons as well as
on various important matrix elements. Reference to the
perturbation theory expression for the proton state in
(5.3) shows that increasing P increases the admixture of
representations other than the pure octet. Hence the
effect of nonzero w is to more strongly excite higher rep-
resentations. It has been noted' that representations
higher than 10 and 27 will not arise until fourth order of
perturbation theory. Thus to a reasonable approximation
the proton contains not only three constituent quarks but
a nontrivial amplitude for an extra constituent quark-
antiquark pair to be present, as one sees from the way in
which the 10 and 27 representations can be made up out
of quarks. It is evidently interesting to consider the prop-
erties of the states that start out in perturbation theory as
pure 10 and pure 27. In the zero symmetry-breaking lim-
it the energy differences between the states N(10) and
N(27) carrying nucleon quantum numbers and the nu-
cleon are simply given by the differences of the corre-
sponding Casmir operators:

N(10) —N(8) = =287 MeV,=3=
2 2

N(27) —N(8) = =478 MeV,5

22
(5.5)

where we have used P =0.00523 MeV ' from our best
fit in Table I. Employing the exact diagonalization of
operator (5.1) yields significantly larger mass differences:

N(10) —N(8) =495 MeV,

N(27) —N(8) =608 MeV .
(5.6)

&plq. q. lp &
—&oIq. q. lo&

X, =
&p I u u +dd +ss Ip &

—
& o

I
uu +dd +ss I &

(5.7)

For a =s (5.7) yields with a o model interpretation of the
quark bilinears

x, =-,'&pl) —D„(w)lp &, (5.8)

which predicts in the zero symmetry-breaking limit

X, —,', =0.233. This value is remarkably reduced to

The difference between (5.5) and (5.6) shows that the ei-
genvalues of corresponding members of different repre-
sentations evolve differently with yP . The relative posi-
tion of the N(10) seems to suggest an identification with
the Roper resonance (1440). An identification of the
N(27) with the experimentally observed Pl 1 resonance
at 1710 MeV appears reasonable but less compelling.
Having such an interpretation of F11 states would be in-
teresting since at least the Roper is completely absent in
the SU(2) Skyrme model approach to pion-nucleon
scattering [in pion photoproduction, however, the SU(2)
Skyrme model shows some evidence for the presence of
the Roper resonance].

It is furthermore clear from (5.3) that matrix elements
of various operators sandwiched between the proton
states will depend on the admixture of higher representa-
tions and hence on yP . It has already been noted in the
present model that the effect is to lower the strange-quark
axial-vector-current matrix element. The SU(3)-singlet
axial-vector-current matrix element needed to understand
the EMC experiment is identically zero in this model.
This was shown for the case of a nonderivative symmetry
breaker in Ref. 4 and both by explicit calculation and
general argument for the present case where a
derivative-type symmetry breaker also exists in Ref. 5. In
the present model the axial-vector renormalization con-
stant in neutron decay g~ comes out to be about 1 where
the contributions of the P' and P" terms in (2.6) have
been, for simplicity, neglected. One can understand why
this number is somewhat larger than the typical SU(2)
Skyrme model value of about 0.6 by noting that gz
roughly scales as 1/e and e is here reduced. In Ref. 10 it
is furthermore explained how the use of a large value of
yp~ drives the SU(3) prediction for g„ to the SU(2) pre-
diction.

It is also interesting to consider the matrix elements of
the scalar densities, which are related to the so-called
"flavor content" fractions. ' ' The content fractions for
the nucleon are defined as
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X, =0. 142 when the exact diagonalization of (5.1) with
the "best fit" parameters is performed. There is an even
greater reduction for the isovector density which now be-
comes

X„—Xd =0.006 . (5.9)

This should be compared to the value 0.033 when
symmetry-breaking corrections are neglected' and to the
value 0.0133 for a typical Yabu-Ando fit. This has the
further consequence that the predicted nonelectromag-
netic part of the neutron-proton mass difference in the
SU(3) Skyrme model is only about 0.25 MeV ( compared
to the 2 MeV or so which is required). This strengthens
an earlier conclusion that the Skyrme model of pseudo-
scalars must be extended to include new (short-distance)
degrees of freedom in order to explain m„—m .

It is also of interest to define, analogously to (5.7), the
strange content fraction X, for baryons other than the
nucleon. This requires us to compute the expectation
value of the operator —,'[1—D«( A )] for the baryon under
consideration. We have evaluated these expectation
values and present the results in Table V for the two
choices of effective symmetry breaker co ==,'yp =0 and
co =10.78. The latter corresponds to our "best fit" pa-
rameter e =4 and the former to the unjustified use of
SU(3)-symmetric wave functions. Table V reveals two in-
teresting features. The first is that using a realistic value
for co reduces the strange content fraction of all low-

lying baryons considerably. This is expected since in-
creasing the kaon mass decreases the probability for ex-
citing strange degrees of freedom. The second point may
be illustrated by considering the 0 baryon; its strange
content is reduced from —,', =0.417 to 0.360 if realistic
symmetry breaking is adopted. For both cases this is
surprisingly small since the quark model tells us that the
0 is built out of three strange quarks. One would have
naively expected a value not much less than 1. The SU(3)

TABLE V. "Strange content" of the low-lying baryons.

—10 78

0.233
0.300
0.367
0.400
0.292
0.333
0.375
0.417

0.141
0.213
0.227
0.308
0.137
0.203
0.275
0.360

Skyrme model evidently predicts a large amount of uu
and dd pairs in addition to the three strange valence
quarks in the 0 baryon.

The "content-fractions" discussed above measure vari-
ous diagonal matrix elements of the operator U+ U —2.
These are structurally similar to the so-called o. terms de-
duced from applying current-algebra approximations to
mN and KN scattering amplitudes. For completeness we
will give the relevant o. terms here, taking into account
also the contributions from the derivative-type
symmetry-breaking terms in (2.5). The rr and Ic cr terms
at zero momentum transfer are conventionally defined '

by the expectation values of the equal-time double com-
mutators

3

o.(0)=-,' & (P(p)l[Q.', [Q.', H]llP(p)),
a=1

5

cr (o)=! g (P(p)I[Q.', [Q.', H]]IP(p)),
a=4

(5.10a)

(5.10b)

where the axial generators are normalized as

[Q,', Qb ]=if,b, Q„[Q„Qb]=if,b, Q, and P (p ) is a pro-
ton state of four-momentum p. Intepreting the operators
in (5.10) as the quadratic terms in the axial variation of
the Hamiltonian H we obtain

[Q,', [Q,', H]]= ,'Tr[(d„Ud„—U —U+U B„Uc)„U )(A,,B+2A,,BA,, +BR,).
+ ( U+ U —2)(A.,D +2k,,DA, , +DR, )], (5.11)

where the A., are the Gell Mann matrices, B =/3'T+p"S and D =o'T+5"S (see Sec. II). Setting U = AUDE we get

o(0)=—', ('(2+D&s))p Jd r P'cosF F' +——sin F +5'(I —cosF)
2. 2

7

(5.12a)

2 2 2ok(0)= —,'((4+&3D3s —D»))p Jd r —(P'+P")c sFoF' +—sin F +(5'+5")(I—cosF)
T

(5.12b)

With our best-fit parameter we finally obtain

o„(0)=49 MeV, ok(0)=624 MeV . (5.13)

ones: 43 MeV and 552 MeV for cr (0) and cr I,.(0), respec-
tively.

VI. SUMMARY AND DISCUSSION

The value of o. (0) is in agreement with the "experimen-
tal" value 56+8 MeV. The nonderivative symmetry-
breaking term contributions to (5.13) are the dominant

We have stressed that, due to the relatively large K-
meson mass, the SU(3) Skyrme model is not a trivial gen-
eralization of the SU(2) case. We followed the path of
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quantizing the collective modes in an SU(3) [rather than
in an SU(2)] framework and treating the symmetry break-
ing exactly (as pioneered by Yabu and Ando). Our ap-
proach differs from this by taking into account the con-
tribution of an induced kaon field to the moment of iner-
tia for "strange" Aavor rotations. Using physical values
for known meson parameters and a best-fit value e =4.0
for the Skyrrne constant, we found the ordinary and
strange flavor rotation moments of inertia, a and p, re-
spectively, to be

a =6.74 GeV

P =5.23 GeV
(6.1)

The ratio p /a is much larger than in the Yabu-Ando
case and this results in an improved description of the
mass splittings. It also increases the effective symmetry
breaking that yields a decreased strange content for phys-
ical baryons. This can be intuitively related to the
diSculty of accommodating "heavy" ss pairs in the pro-
ton and is physically reasonable.

An interesting aspect of the SU(3) Skyrme model with
symmetry breaking taken into account is the fact that the
low-lying spin- —,

' baryons do not belong to a pure octet
but contain sizable 10 and 27 components. The nucleon-
like members of the 10 and 27 were found to have masses
that support tentative identification with the P„Roper
N(1440) and N(1710) resonances. These states thus
have a qqqqq (rather than qqq) structure at the
constituent quark l-evel and the proton inherits some of
this too. Further investigation of this aspect of the model
would seem to be very worthwhile.

Our calculations of the "strange content" of those
baryons that contain strange valence quarks strongly sug-
gests that they contain many uu and dd "current"-type
quark pairs. For example, the "strange content" of the
0 is found to be only about 36%.

While the developing physical implications of the
SU(3) Skyrme model are very fascinating it should be
borne in mind that the main thrust of the paper here has
been related to verifying that the technical refinement in-
troduced of "cranking" the E-meson excitation leads to
an improved and more sensible picture. There are clearly
many further technical refinements required to perfect
the soliton picture of baryons in the SU(3) framework.
We conclude with a brief mention of some relevant points
for this purpose.

(i) Even though the relatively good agreement with a
large and intricate pattern of mass splittings, assuming
physical values of meson parameters, gives us confidence
that we are on the right track, the need for an overall en-

ergy subtraction of about 1400 MeV to obtain agreement
with the absolute nucleon mass is a disturbing feature.
Arguments presented' in the literature include motivat-
ing an arbitrary subtraction by appealing to operator-
ordering ambiguities in going from the classical to the
quantum theory and subtracting the eigenvalue of (5.1)
associated with the state which develops out of the
"bare" SU(3) singlet. One problem with the latter ap-
proach is that there is no obvious reason to make this
special subtraction. This singlet state is actually ruled

out of the allowed spectrum of (5.1) because its baryon
number is zero. The justification given for this subtrac-
tion is that it reproduces the SU(2) spectrum in the limit
of large symmetry breaking. In any event, it should be
recognized that the SU(2) Skyrme model suffers from a
similar problem' (yielding nucleon masses —1.5 GeV} if
experimental values of the mesonic parameters are used.
The introduction of vector mesons with "realistic" pa-
rameters' ' at the SU(2) level does not seem to help
much in this regard. Perhaps this problem is nature' s
way of telling us that we cannot completely forget addi-
tional "short-range" effects in the "core" of the nucleon.
Alternatively, it may indicate the need for a still more so-
phisticated collective quantization scheme.

(ii) In some sense the present model is intermediate be-
tween the "rotation"' and "bound-state"s approaches.
The general formalism is that of the former but like the
latter, the K meson is singled out for special treatment.
In fact, our ansatz for the kaon isospinor in (4.4)
w (r)r PQk is comparable to the lowest-lying bound-state
kaon wave function in the Skyrmion background. Con-
sidering the entire 8 and 10 multiplet particles, our mass
splittings come out appreciably better than those in the
bound-state approach.

(iii) It seems worthwhile to comment on the connection
between the w (r) excitation just mentioned and the "zero
mode" for rotations into the strange direction. As dis-
cussed in Sec. IV there is only a true zero mode if p'=p"
and 5'=5" (which implies m„=mk and F =Fk ). Note
that (4.7) holds exactly rather than as an approximation
in this limit. This zero mode can be obtained by an
infinitesimal rotation of the classical solution Uo [see
(3.11)]with the matrix

0 Ok
A (t)=1+- + 0 ~ ~

2 Ok 0

The contribution from this to the kaon isospinor is

(6.2)

it
0

F . F
1 —cos——fr. v sin —0

2 2 k (6.3)

On the other hand, introducing the excitation w as in
(4.3) and (4.4} gives the comparable piece from g& Uo

F . . F%=i 1+cos—r a+i sin —w(r)Q
2 2 k (6.4)

Although the structure of (4.1) suggests that this mode is
of axial type it actually differs from an axial mode by a
factor of r-~, which converts it into a vector-type mode.
Thus the overlap

& +o~+) ~ f r dr w(r}sin— (6.5)

is nonvanishing so 4' ~ould contain a piece of the zero
mode 40. For the physical values of mk and m this
overlap is very small; e.g., going from mk =200 MeV to
mk =495 MeV reduces the overlap by a factor of 10 (as-
suming here P =P"=0 for simplicity). One might think
that 4 would coincide with the zero mode +0 if the
SU(3)-syinmetry breaking were to vanish. A naive calcu-
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lation results in p diverging as this limit is approached in
either direction (mk & m or mk (m ). This may be un-
derstood because then the equation fip /5w=0 has a
solution (homogeneous case) without the contribution
from the Wess-Zumino term. This is the zero mode and
corresponds to

W 0
1 —cos(F /2)

sin(F/2)

pp 7'+cop Kp
p„=A (6.7)

where in addition to the p„and ~„ fields which were
given elsewhere, ' the strange vectors are

Ko =S(r)Qk,

K =[E(r)r, +e&&r&rkD(r)]0k . (6.8)

S (r), D (r), and E (r) are a priori complex functions but it
turns out (on explicit calculation) that only ReS, ReD,
and ImE get excited by extremizing the moment of iner-
tia p. This is a lengthy program compared to the
present calculation. In general, one might perhaps expect
somewhat less effective symmetry breaking than in the
present case because the vectors are more nearly degen-
erate than the pseudoscalars. Masak has recently car-
ried out part of this program. However, he neglected
D(r), E(r), and w(r) and also restricted himself to first-
order perturbation theory. It thus seems likely that the

The correct approach in this special case is to project out
the zero-mode part with a Lagrange multiplier, replacing

(6.6)

and fixing A, by requiring (%o~%)=0. Then it is found
that w(r) does not vanish and actually has a significant
effect on p, increasing it by about a factor of 2 (using
m =m =138 MeV, p'=p"=0, e =4.0). It would thus
seem that the present technique may be useful for other
applications where one considers a classical topological
solution belonging to a subgroup 0 of a group G.

(iv) At the two-fiavor level it is known that a better
description of the nucleon may be achieved by introduc-
ing vector mesons. ' Then one also does not require
the Skyrme term; the stabilization is achieved by terms
proportional to the Levi-Civita symbol e„, & which are
anyway required to describe vector-meson decays. One
may use, for example, the Lagrangian discussed in Ref.
22. The vector-meson nonet field p is now given by an
Ansatz similar to (4.1)—(4.4):

results of the full program would be rather different from
his results.

(v) One might wonder about the possibility of also ex-
citing a pionlike mode (different from the pion zero mode
which must be present) in our formalism. A suitable An
satz would be to replace the zero in the upper left 2X2
subblock of (4.4) by P (r)r. (r X 0). Unlike the kaon func-
tion w(r), P(r) will not get excited in this model. This
can be simply understood by noting that the source for
w(r) is provided by the Wess-Zumino term. However,
the Wess-Zumino term does not provide a source for P (r)
since it vanishes in SU(2).

(vi) The X,~oo limit of QCD has provided many
helpful suggestions about the interpretation and treat-
ment of the Skyrme model, although for numerical pur-
poses the closeness of 3 to ~ is hard to establish. One
might wonder about the N, dependence associated with
SU(3)-symmetry breaking. In the SU(3) Skyrme model
the relevant parameter [see (5.1)] for discussing symmetry
breaking is the combination yp, which is immediately
seen to scale like N, . If one sets up the conventional per-
turbation theory as in Ref. 10, the energy splittings are
given as power series in yp . Naively, this inight suggest
that the splittings depend on N, in a very drastic way.
However, it must be remembered that the SU(3) represen-
tations of the baryons must contain a state with right hy-
percharge YR N, /3 so that the representations them-
selves cannot be held fixed if one makes an N, expan-
sion. This means that the coefficients multiplying (yp )"
will also depend on N, so no conclusions can be immedi-
ately drawn. In the Yabu-Ando approach no SU(3) rep-
resentation is assumed and they obtain a mass formula
[(4.5) in Ref. 9] for large yp —=—', co and arbitrary Yii,
which may therefore be regarded as a large-N, formula.
(Note that their eigenvalue esB has to be divided by p to
obtain the expression for the energy eigenvalue. ) Then it
is seen by inspection that the mass splittings within a
given spin multiplet go as N, for large N, as one knows
from QCD.
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APPENDIX A: SU(3) MOMENTS OF INERTIA

In this appendix we will briefiy present the expressions derived for the moments of inertia a and p as defined in
(4.5):

2 ~
a = fdrr sinF 'F + F'+-

T

—8y&cosF sin F (Al)

The expression for P is a bit lengthy; it is therefore convenient to divide it into two parts:
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~NSB t SB (A2)

In (A2) pNsB represents the moment of inertia originating from the chiral-invariant part of the model Lagrangian while

psB stems from (4.7). Furthermore, we will split the radial function w, as defined in (4.4), into real and imaginary parts:

w =wi+lw2 )

2
F@sB=nf dr F r (1 co—sF)+ (1—cosF)(F' r +2sin F)—2 F r + sin F 1+cos —(WP+wz )

2e

(A3)

—2F' F r sin —+ sin F sin —+ sinF cos—1+cos-F 4 . 2 . F 6 . F F
2 2 2 2

(W, WI +W~ W2)

+ F —,F r + sin F+ sinFsin —+—sinF —,F r +8 . p 8 . . F 2 . , 22 sinF
e e2 r 8

F
3 sinF+4 sin—

2

F~ + F r + sin F 1+2cos—+cos F221)2222
r 2 2e 2 2

(w, +wz)

r

+ 3F'sin —sin F+4F'cos —sinF 1+cos—1,. F.2, 2F. F
m2 2 2 2

2 F . F
wi+ cos—sin F 1+cos—w&

772 2 2
(A4)

A prime indicates a derivative with respect to r Not. e that the two last terms in (A4) are linear in w, ; thus there are in-
homogeneous terms in the differential equation derived from (4.9). Hence this results in a nontrivial solution for the
real part of w. The first two terms in (A4) comprise the result of Ref. 9. Finally, for psB we find

r '2
F 2 2 7 FPsB=8nfdr .—y, r sin F 2y2r —1+2cos—+cosF (w, +wz)+2ylr (1+cosF) 1+cos— (w', +w2 )

+y, 2F' r sin —sinF —sin —1+cos—)2 2. F . . F F
2 2 2

—2 F"r sin —+2rF'sin —+—'F' r cos—F, . F, ,22 F
2 2 2 2

F
cosF — 1+cos—

2

—cosF F' y +2sjnF 3 sinF+4sin—
2 4

'(F' r +—2—sin F ) 4 cos —+ 3 cosF + 1
2

r 2

F F F+(1+cosF) 1+2cos—+cosF —4sinF sin —1+cos—
2 2 2

1+2cos—+cosF (w, +w2)
F 2 2

(A5)
In (A5) we have performed an integration by parts to avoid terms such as w, w', .

Insertion of the equation of motion (4.9) for w, provides a much simpler expression for P (see, e.g. , Refs. 15 and 17):

P =n f dr F r (1—cosF)+ (1—cosF)(F' r +2sin F)—8y&r sin F1

2e

+ 3F'sin —sin F+4F'cos —sinF 1+cos— w
&
+ cos—sin F 1+cos—w'i

1,. F. 2 ) 2F. F 1 F ~ F
2~2 2 2 2 „2 2 2

(A6)

APPENDIX B: NORMALIZATION OF THE VECTOR CHARGE

A microscopic expression for the vector current is obtained by gauging the theory with an external vector field (e.g. ,
Ref. 17), i.e., replacing the ordinary derivative by a covariant one:

D„U=B„U—i A„U+i UA„

with A = A =a "
A, b. This procedure of gauging only holds for the nonanomalous parts of the Lagrangian. The re-

V b'
suit for the WZ term has been derived in Eq. (4.18) of Ref. 27. In the next step the current is given as the coefficient of
the term linear in a„:

~b„5L
6a ab =ob

P )

(B2)
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Substituting in the Ansiitze for Uo and gk results in the following expression for the time component of the vector
current:

2 2
~ao 3 F, Sill FD l . 2F lF2 1 F,2+ sill F

4a r2 2 a8 T 2 7I 2e r 2

3

8y 1
cosF g DobQb

b=1

(1—cosF) ,'F —+ F' +21 1,2 sin F
2 4e r

—4y, sin F

+ 1 3F'sin —sin F +2F'cos —sinF 1+2 cos—+cosF w1
F.2, F. F

4~ r 2 2

+2cos—sin F 1+cos—II1I g D,blab,
F ~ F

b=4
(B3)

where we again made the approximation (4.7) for the symmetry-breaking terms.
The vector charge is defined as the spatial integral of (B3); together with (Al) and (A6) this leads to

Q'= Jd3rX' = — D, 8
—a g D,blab

—p g D,blab .
b=1 b=4

Considering Eq. (4.5) this may be expressed as

BL.b anb=1 b

(B4)

(B5)

which is the vector charge on the collective, macroscopic level. Hence the identity of the microscopic and macroscopic
expressions for Q' provides a consistency check for our approach to strangeness in the Skyrme model.

APPENDIX C: DISCUSSION OF THE APPROXIMATION (4.7)

If we do not make the y, —
y2 approximation (4.7), the collective Lagrangian would become

L = —MH+-,'a' g 0,'+ —,'p' g 0', + 08+ —,'y(1 —D88)
a=1 a=4

7 7 3 7

+pl X D8a+a + Ip2(1 D88 ) X ~a + I p3 X g D8kdkab~a~b (Cl)
a=4 a=4 k =1 a, b=4

where d,b, are the structure constants for the SU(3) anticomlnutators.

pNsB in (A4) is unaffected by this more precise evaluation. psII in (A5), however, is replaced by
2

F
PsB =8Ir Idr r P' cosF cosF —1+2 1+cos—

2
ur + -- cos —m

2 2 2F 2

r2

+4F'm'm sin ——F' m ——m sinF 3 sinF+4sin—F,2 2 2 2. . . F
2 2 2

+~ F' + sin F 1+cos
2 2

F
1 —2 cos—

2

F . . F, , 2 . F—2m 1+cos— sinF+sin — F'w'+ —m sinF cos—
2 p 2 2

+P" 1+cos—
2

2 cos——1 +2 1+cos— m' +—cos —m
F F,2 2 2F
2 2 r 2

2 F2+2sinFcos N
2 r2

F, , 2 ~ F—2u sin —F'm'+ —m sinF cos-
r 2 2

6' 3 cosF+4cos —+1 +6" cosF+4cos —+3j 2 F F
2 2 2

IC2)
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This, of course, reduces to (A5) if P'=P"=y, and
5'=5"=y2.

The additional coefficients P„P2, and P3 are given by
the integrals

16m „, 2 . F F
P, = —(5"—5') dr r w sin —1+cos—

2 2

P = (5"—5') dr r w 5 —cosF+4cos—2 3 2
(C3)

P&= —(5"—5') dr r w 5+cosF+4cos-8n F
3&3 2

where we have neglected the contribution from the P-
type symmetry breaker since the 5 type has been proven
to be dominant in the baryon sector. The w equation of
motion is obtained from (C 1) as

where the R, denote the "right" SU(3) generators. We
therefore have to diagonalize instead of (5.1) the opera-
tor:

7

C2+yP (1—Dss) —
P& g Ds (R, P,—Ds, ) .

a=4
(C8)

The results of this calculation are presented in Table VI
and found not to deviate significantly from our earlier re-
sults in Table V. Furthermore, a fine-tuning of the
Skyrme constant e could restore the original results.

Now the nature of our approximation can be more
clearly understood. It corresponds to neglecting P~ in
(C4) for the purpose of determining the profile w(r) but
not in the Hamiltonian (C7) for determining the energy
eigenvalues. A possible motivation for this treatment
may be obtained by reviewing the derivation of the equa-
tion of motion for the chiral angle F(r). In the limit
0, =0 the Lagrangian reads

—,'P g 0, +P, g Ds, (A)Q, + =0,
a=4 a=4

(C4) L(Q=O)= —MH+ [1—Dss(A)] .

—2, 2 4(5'+5")
w — w +—w+ w

r r F +8(p' —p") (C5)

The r-independent coefficient of w can be seen to be
equal to mk, thus the profile function w(r) decays ex-
ponentially with mk as we required in the y, —

y2 approx-
imation (4.10). Choosing the Skyrme constant e =4.0 we
find P =4.57 GeV ', which is only slightly different
from the value obtained in the y 1

—
y2 model (5.23

GeV '). Of course, we are free to choose a value for e
such that the original value for P is restored. Still this
value is twice as large as in the model without w(r),
which supports our procedure of cranking the kaon
fields.

Having found the profile function w(r) we may evalu-
ate the additional integrals P„P2, and P&..

P, = —0.735,

p2=0. 115p

Pi = —0. 134P

(C6)

Pz and P3 can be seen to be small compared to P and thus
may be neglected. However, 13& is not completely negligi-
ble. Including the P, term the Hamiltonian is found to be

H= C2+ — — J(J +1)—1 1 1 1 3
2@2 2 ~2 P2 8@2

7

Dsg(R, f3,Ds, )+—,'y(1 —D—ss),
213~, 4

{C7)

where the ellipsis indicates terms proportional to P2 and

Pi which we will later argue are negligible. Keeping only
the first term of (C4) gives still (4.9) but with the P in-
volving (C2) instead of (A5). It is straightforward to find
the change in our previous results due to the use of the
new expression for P . The large distance behavior of
w(r) is then determined by solving the differential equa-
tion

7

&.—La —
&i g D.bDsb

b=4
(Cl 1)

TABLE VI. Mass splittings derived from diagonalizing (C7).

Mass differences ( e =4.0)

182 MeV
106
138

—156
165
139
159

The chiral angle is gotten by extremizing the hedgehog
mass MH, or equivalently L evaluated with A = 1 since in
this limit D,b =5,b. If we now substitute A =1 but allow

Q, AO in the Lagrangian, the profile w (r) would be again
determined by

SP [w(r)]
5w(r)

Suppose one wanted to include the P, term in (C4).
Then it is seen that (C4) is not just a differential equation
for w as a function of r but also depends on the collective
coordinates A. This would be rather difficult to handle
and would imply a somewhat modified Ansatz for z in
(4.4). For the formal purpose of verifying the conserva-
tion of the isospin and hypercharge generators

Q, = f d r Jo (a =1,2, 3, 8), (C10)

it is necessary to use the full (C4). This can be under-
stood by remembering that Noether's construction for
the conserved charges requires the exact equation of
motion. Specifically, if the f3, term is retained the new re-
lation between angular velocities and "right" SU(3) gen-
erators together with the approximate equation (4.9)
leads to
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where L, denote the "left," fiavor-SU(3) generators.
Here a procedure analogous to going from (B3} to (B4}
was used. The charges (Cl 1) do not formally commute
with the collective Hamiltonian. However, if one uses

the full (C4) one finds again Q, =L„which does com-
mute with the Hamiltonian. We should stress that the
use of the y&

—
y2 approximation circumvents this prob-

lem.
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